MIT
ICAT
Altimetry
y Standard Atmosphere Referenced
? 29.92 inches of Hg
? 3014 mb
y Pressure Altitude
? Altitude of Pressure in Std Atmosphere
? Used above reference Flight Level (FL180 in US)
y Density Altitude
? Altitude of density in Std Atmosphere
? Used for performance (TO)
y Barometric Altitude
? Estimated altitude corrected for surface pressure
? MSL Altitude above Mean Sea Level (QNH)
? AGL Altitude above Ground Level (QFE)
y Radar Altitude (Cat II and III Approaches)
? 5 cm radar - normally only below 3000ft (Terrain Noise)
y Cabin Altitude (Pressurization)
MIT
ICAT
Airspeed
y Pneumatic Measurement based on Dynamic Pressure
? Pitot and Static
y Indicated Airspeed
? Indicated on Instrument
? Measurement of pressure on Aircraft (ie Load)
? Used for structural operating limits
y Calibrated Airspeed
? Pitot-Static Errors Calibrated out
? Used for Flight Test and Performance
y Groundspeed
? Achieved speed over ground
y Mach Number
? Requires Static Air Temperature
MIT
ICAT
Air Data Sensors
y Pitot Tube
? Heated for De-Ice
y Static Port
? Location Sensitive
? Typically 1/3 Back on Fuselage on Conventional aircraft
? Bilateral with crosstie to avoid Side Slip Errors
? Water Drain
y Alpha Vane
? Heated for De-Ice
y TAT Probe
? Inertial Separator for Water
? Heated for De-Ice
MIT
ICAT
Temperature
y Static Air Temperature
y Ram Rise
y Total Air Temperature
MIT
ICAT
Integrated Air Data Systems
y Air Data Computer
? Compensates out Static System Errors
? Citation Example
y Air Data Heading and Reference Systems (ADHARS)
MIT
ICAT
Heading
y Magnetic Compass
? Variation (Magnetic Deviation
? Deviation (Magnetic materials)
? DC9 Example
? Compass Card (Calibrated with Radios and Equip on)
y Flux Gate Compass
? Electronic Magnetic Compass
? Normally in Tail for deviation
y Gyro Compass
? Precession
? Slaved Flux Gate
y Turn Coordinator
? (Rate Gyro)
MIT
ICAT
Inertial Reference Unit
y Integrate acceleration from known position and velocity
? Velocity
? Position
y Need Heading
? Gyros
? Mechanical
? Laser
y Can get Attitude
? Artificial Horizon (PFD. HUD)
y Drift Errors
? IRU unusable in vertical direction (need baro alt)
? Inflight Correction
? DME
? GPS
? Star Sighting for Space Vehicles
y Measurement Give Attitude Also
y 777 Analytical Redundancy
MIT
ICAT
Communications
y Requirements
? Communicate necessary information between formation elements and
command node (LAN and Air-Ground)
? Bandwidth
? Low-Observable?
? Synchronous vs asynchronous
y Constraints
? Spectrum
? Antenna Location
y Technologies
? Radio
? UHF, VHF, MMW
? Optical
? Laser
? Protocols
MIT
ICAT
COMMUNICATION
y Voice
? VHF (line of sight)
? 118.0-135.0 Mhz
? .025 spacing in US, 0.083 spacing in Europe)
? UHF
? 230-400 Mhz (guess)
? HF (over the horizon)
? Optical (secure)
y Datalink
? ACARS (VHF) - VDL Mode 2
? VDL Modes 3 and 4 (split voice and data)
? HF Datalink (China and Selcal)
y Geosynchronous (Inmarsatt)
? Antenna Requirements
y LEO and MEO Networks
y Software Radios
y Antenna Requirements
MIT
ICAT
Bandwidth Growth Trend
Source: DOD UAV
Roadmap, 2000
MIT
ICAT
Navigation
(relates to Surveillance)
y Requirements
? General Navigation (medium precision)
? Station Keeping (high precision)
? Integrity
? Availability
y Constraints
? Existing nav systems
? Loss of signal
y Technologies
? GPS/Galileo (need Differential)
? Code vs Carrier Phase Approaches
? IRS/GPS
? Sensor Based Approaches for Station Keeping
? Image (Visible, IR)
? Range Finders (Laser, Ultrasonic)
MIT
ICAT
NAVIGATION (ENROUTE)
y Radionavigation beacon
? VHF Omnidirectional Range (VOR)
? Non-Directional Beacon (NDB)
? Distance Measuring Equipment (DME)
? TACAN
y Area navigation systems (ground based)
? Omega
? LORAN
y Inertial navigation systems
y Satellite navigation systems
? GPS (CA)
? GNSS (Galileo?)
MIT
ICAT
GPS
From http://www.Colorado.Edu/geography/gcraft/notes/gps/gps_f.html
(Courtesy of Peter Dana. Used with permission.)
MIT
ICAT
GPS
From http://www.colorado.Edu/geography/gcraft/notes/gps/gps_f.html
Courtesy of Peter H. Dana, The Geographer's Craft Project, Department of Geography, The University of Colorado at Boulder. Used with permission.
MIT
ICAT
GPS ISSUES
y Requirements
? Accuracy
? Integrity
? Availability
y Selective Availability (SA)
? Degraded to 100m accuracy
y Control by US DoD
? International concerns
y US guarantee of service free to world
through 2005
y Vulnerability to jamming
y DGPS
? WAAS
? EGNOS
? LAAS
MIT
ICAT
NAVIGATION TRENDS
(APPROACH)
y Instrument Landing System (ILS)
? Cat. I (200 ft; 1/4 mile)
? Cat. II (50 ft; 800 RVR)
? Cat. III (0,0)
y Microwave Landing System (MLS)
y GPS (100m)
? Wide Areas Augmentation System (5m)
? LNAV-VNAV (250, 1/4 mile)
? Local Area Augmentation System (0.1m)
? Cat. III?
y Change to Required Navigation Performance (RNP)
? RNP X
? X is 95% lateral containment on NM
MIT
ICAT
NAVIGATION TRENDS
(APPROACH)
MIT
ICAT
NAVIGATION TRENDS
(APPROACH)
MIT
ICAT
GPS Approach Navigation
y Requirements
? Accuracy (RNP)
? Availability
? Integrity
y Differential GPS
? Wide Area Augmentation System (WAAS)
? Local Area Augmentation System (LAAS)
MIT
ICAT
Surveillance
y Requirements
? Observed states of lead elements sufficient to form-up and maintain
? Feed forward states (intent)
y Constraints
? Sight Angles
? Installation (weight, cost, power, etc)
? Cooperative Targets
y Technologies
? Automatic Dependant Surveillance Broadcast (ADS-B)
? Image Based Systems (Vis, IR)
? Radar (X Band, MMW0
? Range Finders (Laser)
? Sensor Fusion Systems
MIT
ICAT
RADAR
y Weather Radar (10 CM)
y Search and Track
? Doppler
y Synthetic Aperture Radar
y Radar Altimeter
MIT
ICAT
RADAR
y Wavelength λ
? S Band (10 cm)
? X Band (3 cm)
? Ku Band (1 (cm)
? Millimeter Wave (94 Ghz pass band)
y Radar Range Equation
y Beamwidth Θ
? Θ = λ/D
? D = Diameter of Circular Antenna
? Pencil beam vs Fan Beam
y Mechanically Steered Antennas
? Scan and Tilt
MIT
ICAT
Imaging and Night Vision Systems
y Infrared
? Special Optics (eg Gallium Arsinide)
? Water Contamination
? Sensor Cooling Requirements
y Image Intensifier Systems
y Pointing Systems
MIT
ICAT
Datalink Based Systems
y JTIDS
y Mode S Transponders
? Traffic Information Service
y ADS-B
MIT
ICAT
Self Reporting Aircraft States
ADS-B
Bob Hilb
UPS/Cargo Airline Association
(Image removed due to copyright considerations.)
MIT
ICAT
INTENT REPRESENTATION
(consider other states)
y Intent formalized in “Surveillance State Vector”
y Accurately mimics intent communication & execution in ATC
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
D(t) states, nDestinatio
T(t) states, trajectory Planned
C(t) states, target Current
A(t) states, onAccelerati
V(t) states,Velocity
P(t) states, Position
Traditional dynamic
states
Defined intent
states
Surveillance State
Vector, X(t)
=
FMS
Current
target state, C(t)
Destination, D(t)
Planned
trajectory, T(t)
MCP
PILOT
MIT
ICAT
ADS-B SURVEILLANCE
ENVIRONMENT
y Potential access to more states (e.g. dynamic and intent)
y Need to assess benefits for conformance monitoring
A/C
INTENT
CONTROL
SYSTEM
AIRCRAFT
DYNAMICS
Position, P(t)
Velocity, V(t)
Accel., A(t)
PILOT
INTENT
Target
states,
Guidance
mode
Nav.
accuracy
e.g. ANP
Control
surface
inputs
A/c
property
e.g. weight
Trajectory,
Destination
Position,
Baro altitude
Heading, Speeds
Roll, ...
Target
states
ACTUAL SYSTEM REPRESENTATION
Trajectory
ADS-B SURVEILLANCE SYSTEM
Other useful
states???
MIT
ICAT
Engine Instrumentation
y Rotation Rates
? N1
y Exhaust Pressure Ratio
y Temperatures
? Turbine Inlet Temperature
y Oil Pressure
y Oil Temp
y Vibration
MIT
ICAT
Warning Systems
y Master Caution
? Fire
? Low Pressure (eg oil)
? …
y Stall Warning
? Stick Shaker
y Traffic Collision Avoidance System (TCAS)
y Enhanced Ground Proximity Warning System (EGPWS)
y Envelope Protection
MIT
ICAT
Envelope Protection
Fly-by-wire protection - Normal Law
Pitch
attitude
Load
factor
High
*AOA
Bank
angle
Overspeed
* Angle of Attack (AOA)
Ground
mode
Flare
mode
Flight
mode
Flight
mode
Takeoff
mode
Ground
mode
MIT
ICAT
VLS
Vα Prot
Vα Max
Vα Floor
140
120
CL
Airspeed scale
α Angle of Attack (AOA)
α Stall: Sudden loss of lift and or aircraft control
Angle of attack reached with full aft stick
(max aircraft performance)
Angle of attack, where TOGA thrust is
automatically applied by the A/THR
Angle of attack from which stick input is converted
into angle of attack demand (stick neutral α Prot)
α VLS: Angle of attack reached at approach speed (VLS)
α Max:
α Prot:
α Floor:
High Angle of Attack
Protection
CL