Methods of
Mathematical Physics
Green Functions
Method of Green’s functions
? General concepts of Green’s function
? Fundamental solution
? Green’s function of the evolution
problems
? Fundamental solutions of the evolution
problems
? Green’s function of the evolution
problems
? Conclusion of the charpter
General Concepts of
Green’s Function
? Concept
? Definition:
?The field comes from a point resource
? Example,
?△ G = ?(r-r’),G|?=0
?(?t – a2△ ) G = ?(r-r’)?(t-t’),G|?= G|t=0=0
? General Form
?L G(xi) = ?(xi-xi’)
?G|boundary= G|initial=0
General Concepts of
Green’s Function
? Classification:
? According to the universal equation:
? Green’s function of the steady problem L = △
? Green’s function of the heat problem L = (?t – a2△ )
? Green’s function of the wave problem L = (?tt – a2△ )
? According to the boundary condition:
? The Green’s function for a unboundary space,
namely,the fundamental solution.
? The Green’s function for a homogeneous bounding
condition.
General Concepts of
Green’s Function
Green’s
function
Steady
problems
△ G
= ?(r-r’)
Heat problems
(?t – a2△ ) G
= ?(r-r’)?(t-t’)
G|t=0=0
Wave problems
(?tt – a2△ ) G
= ?(r-r’)?(t-t’)
G|t=0=0
Gt|t=0=0
Unboundin
g space
Boundary
condition
G|?= 0
General Concepts of
Green’s Function
? Properties:
? Let the equation is L u(x) = f (x)
? The eq,of Green’s fn,is L G(x) = ?(x-x’)
? Under the same conditions
? Since,f (x)=∫ f (x’) ?(x-x’) dx’
? Therefore,u (x) =∫ f (x’) G(x-x’) dx’
? Applications
? range:
? nonhomogeneous universal eqs.
? Homogeneous condition
? procedure:
? find the correspondding Green’s fn,then integral
Fundamental Solutions for
the steady problems
Problem Green’s field
Eq.
Sol.
)(rfu ??? )'( rrG ?? ??? ?
0/)'( ?? rrq
V ??
??
??
|'|4 0 rr
qV ??
?? ??|'|4
1
rrG ?? ?
??
???? ?
??
|'|4
')'(
rr
drfu ???
?
?
Fundamental Solutions for the steady problems
can be obtained from the electric field.
Green’s Functions for the
steady problems
problem
??
?
?
??
? 0|
)(
u
rfu ?
Green’s fn.
??
?
?
???
? 0|
)'(
G
rrG ???
Relation
???
???
?
??
')',()'()(
')'()'()(
?
??
drrGrfru
drrrfrf
????
????
? Basic procedure
Green’s Functions for the
steady problems
? 求解方法
? 稳定问题的格林函数也可以利用静电场类比法得到。
? 点源问题可以看成接地的导体边界内在 r’ 处有一
个电量为 - ?0 的点电荷。
? 边界内部的电场由点电荷与导体中的感应电荷共同
产生。
? 在一些情况下,导体中所有感应电荷的作用可以用
一个设想的等效电荷来代替,该等效电荷称为点电
荷的电像。
? 这种方法称为电像法
Green’s Functions for the
steady problems
? Example
在半空间内求解稳定问题的格林函数
??
?
?
??????
? 0|
0),'()'()'(
0zG
zzzyyxxG ???
解:根据题目,定解问题为
这相当于在接地导体平面上方点 M(x’,y’,z’) 处放
置一个电量为 - ?0 的点电荷,求电势。
设想在 M的对称点 N (x’,y’,-z’)处放置一个电量为
+ ?0 的点电荷,容易看出在平面 z=0上电势为零,
这表明在 N点的点电荷就是电像。
Green’s Functions for the
steady problems
||
1
4
1
|'|
1
4
1)',(
Nrrrr
rrG ?????? ????? ??
根据点电荷的电势公式,我们不难得到格林函数
222
222
)'()'()'(
1
4
1
)'()'()'(
1
4
1
zzyyxx
zzyyxx
?????
?
?????
??
?
?
Fundamental Solutions for
the evolution problems
problem Green’s solution
heat
wave
??
???
?
?????
? 0|
)()(
0
2
t
t
G
txGaG ????
)(2
ex p )(4 )( 2
2
??
?
?
?
??
?
??
?
? ?
?
ta
G ta
x
??
???
???
????
||||,
||||,0
2
1 ??
??
tax
taxG
a
Green’s functions for the evolution problems
??
???
??
???
?? )(|
0
0
2
??? xG
GaG
t
t
?
?
?
?
?
?
?
?????
?
?
0|
0|
)()(
0
0
2
tt
t
tt
G
G
txGaG ????
?
?
?
?
?
??
?
???
??
??
)(|
0|
0
0
0
2
???
?
xG
G
GaG
tt
t
tt
Fundamental Solutions for
the evolution problems
??
???
?
?????
? 0|
)()(
0
2
t
t
G
txGaG ????
)(2
e x p
),( )(4
)(
0
2
2
??
???? ?
?
?
??
?
??
?
? ?
??
??
?? tafddu ta
xt
Unboundary heat problems
??
???
?
??
? 0|
),(
0
2
t
xxt
u
txfuau
)(2
ex p )(4 )( 2
2
??
?
?
?
??
?
??
?
? ?
?
ta
G ta
x
)()(),(),(
0
???????? ??? ? ?
?
??
txfddtxf
t
),;,(),(),(
0
?????? txGfddtxu
t? ??
??
?
Fundamental Solutions for
the evolution problems
?
?
?
?
?
?
?
?????
?
?
0|
0|
)()(
0
0
2
tt
t
tt
G
G
txGaG ????
a
fddu
tax
tax
t
2
1),(
)(
)(0
????
?
?
??
??
??
?
Unboundary wave problems
?
?
?
?
?
?
?
??
?
?
0|
0|
),(
0
0
2
tt
t
xxtt
u
u
txfuau
??
???
???
????
||||,
||||,0
2
1 ??
??
tax
taxG
a
)()(),(),(
0
???????? ??? ? ?
?
??
txfddtxf
t
),;,(),(),(
0
?????? txGfddtxu
t? ??
??
?
Green’s functions for the
evolution problems
problem Green’s solution
heat
wave
?
?
?
?
?
?
??
?????
?
??
0|
0||
)()(
0
0
2
t
Lxx
t
G
GG
txGaG ????
)](ex p [
s i ns i n
222
1
??
???
???
? ? ?
?
ta
xG
nL
n nn
Green’s functions for the evolution problems
?
?
?
?
?
??
??
???
??
??
)(|
0||
0
0
0
2
??? xG
GG
GaG
t
Lxx
t
?
?
?
?
?
?
?
?
?
??
?????
?
?
??
0|
0|
0||
)()(
0
0
0
2
tt
t
Lxx
tt
G
G
GG
txGaG ????
?
?
?
?
?
?
?
??
?
??
???
??
??
??
)(|
0|
0||
0
0
0
0
2
???
?
xG
G
GG
GaG
tt
t
Lxx
tt
)](s i n [
s i ns i n
2
1
??
???
? ??
? ? ?
?
ta
xG
nLa
n nn
n
本章小结
? 格林函数问题有两个要素
? 泛定方程的非齐次项为 (瞬时 )点源
? 定解条件为齐次的
? 一般的场源可以分解为 (瞬时 )点源的叠加
? 非齐次泛定方程、齐次定解条件问题可以
由格林函数叠加得到
? 经过适当的推广,非齐次定解条件问题也
可以用格林函数方法来求解