1
T<3s
t
T< p
1
0
21
([ ] 2[ ])dx
xx

b
3 
11
0,
1
21
2
[] 2[]
11
1,
1
1
2
x
n
n
xx
x
n
n
<≤
+
=
<≤
+
+
b
e
T =
1
1
2
1
11 1
1
11 1 1
()2( )
1
12122
2
n
nn n
n
dx
nnn
n
∞∞ ∞
+
== =
+
=?=?
+ ++
+
∑∑ ∑

b
1
1 1 1111 1 1
()
2122 3456 2 12 2
1111 1 1 11 1
2( )
345621224622
11
2222
11111
()
1222
1
ln 2
2
m
m
n
S
nn mm
mm m
mm
mmmmm
=
=?=?+?++?
++ ++
=+++++ +? +++
+ ++
=++?
++
=++? +?
++ +
→?

"
""
"
"
[e
T = 2ln2 1? b
T< ps
1
2
1
2
1
(1 )
x
x
x edx
x
+
+?

b
3 e
T =
1
1
1
2
1
(1 )
x
x
x edx
x
+
+?

+
1
2
1
1
(1 )
x
x
x edx
x
+
+?

=
1
2
2
1
1
1
u
u
u
u
edu
u
+
+?

+
1
2
1
1
(1 )
x
x
x edx
x
+
+?

=
1
2
23
1
21 1
(1 )
u
u
ued
u
uu
+
+?+ +

2
=
1
2
22
1
112
[(1 ) 1 ]
u
u
ued
u
uu
+

+?+



=
1
2
1
1
1
u
u
ude
u
+

+?



+
1
2
2
1
2
u
u
edu
u
+

=
1
2
1
1
(1 ) |
u
u
ue
u
+
+
1
2
2
1
1
1
u
u
edu
u
+

+



+
1
2
2
1
2
u
u
edu
u
+

=
1
2
1
1
(1 ) |
u
u
ue
u
+
+
1
2
2
1
1
1
u
u
edu
u
+




=
1 5
2
2
1
13
()|
2
u
u
ue e
u
+
=b
T< 20
!,[0,2]f →\=Q ?? V? O () 1fx≤ # () 1fx′′ ≤

[0,2]x?∈ b£
ü [0,2]x?∈ μ () 2fx′ ≤ b
£ ? Taylor ?
21
()
(0) ( ) ( )(0 ) (0 )
2
f
f fx f x x x
ξ′′
′=+?+?
22
()
(2) ( ) ( )(2 ) (2 )
2
f
f fx f x x x
ξ′′
′=+?+?

TMh¤
22
12
11
2() (2) (0) () (2 ) ()fx f f xf xfξ ξ′′′′=?+
?
^
22
12
11
2() (2) (0) () (2 ) ()fx f f xf x fξ ξ′′′′≤++ +?
2
22
1
11 (2 ) 3 ( 1) 4
22
x
xx≤++ +? =+? ≤
[ () 2fx′ ≤ b
T< 21
! f  [,]ab
 ?? V?£
ü
1
max ( ) ( ) ( )
bb
aa
axb
f xfxdfxd
ba≤≤
′≤+
∫∫
b
£ ?s?′? ?? [,]abξ?∈ μ
()f ξ =
1
()
b
a
f xdx
ba?

3
?
^
() () () () ()
xx
f xf ftdtf ftdt
ξξ
′′=+ ≤+
∫∫
1
() ()
bb
aa
f xdx f xdx
ba
′≤+
∫∫
[
1
max ( ) ( ) ( )
bb
aa
axb
f xfxdfxd
ba≤≤
′≤+
∫∫
? 
1
! [0,1]fC∈  O (0) 0f =  0()1fx′< ≤ b£
ü
3
11
2
00
[()] [()]f tdt ft dt≥
∫∫

7
3
2
00
() [ () ] [ ()]
xx
Fx ftdt ft dt=?
∫∫

2
! f  [,)a +∞
Bá ??i O ()
a
f xdx
+∞

l ?5
(1) lim ( ) 0.
x
fx
→+∞
=
(2) ?|5
"?¥HqBá ???1 ??i OFHqo f dμp2
?$
£ L
! lim ( ) 0
x
fx
→+∞
≠ 5
0
0ε?>
P 0>  x
>?μ
0
()fx ε
≥ b? f  [,)a +∞
Bá ??#
0
0
2
ε
>  0δ?>? xx δ′′′?≤
Hμ
0
() ()
2
fx fx
ε
′′′? < b
[? [,]xxxδ

∈+
Hμ
00
0
() ()[() ()] () () ()
22
fx fx fx fx fx fx fx
ε ε
ε

=≥≥?=b
i O ()f x D ()f x
]|?5
0
() ()fx fx ε
≥ b
? ()0fx
> 5
0
()
2
fx
ε
≥ b
[
00
()
22
xx
f x dx dx
δδ
ε εδ
++
≥=
∫∫
b] ? ? ()0fx
< 
9μ
00
()
22
xx
f x dx dx
δδ
ε εδ
++
≥=
∫∫
b
[

0
0
2
ε δ
>  0>  xxδ

+> >?
P¤
0
()
2
x
x
fxdx
δ
ε δ?
+


b
4
? Cauchy
l ?e ?? ()
a
f xdx
+∞

? ?b?DX?Hq
±b
[ lim ( ) 0.
x
fx
→+∞
=

2?bQ è ?/
4
3
4
333
3
0,[0,1]
1
4( ),[,]
2
()
111
4( ),[,]
2
1
0,[,1]
x
nxnx nn
n
fx
nxn x n n
nn
xn n
n

∈+
=
∈+ +
∈+ +
A ? () 0fx≥  f  [,)a +∞
 ?? O
32
0
11
11 1
0() 2
2
nn
fxdx n
nn
∞∞
+∞
==
≤=?=<+∞
∑∑

[
0
()f xdx
+∞

l ?b?
^
3
1
lim ( ) lim 2
2
nn
fn n
n
→+∞ →+∞
+= =+∞# lim ( ) 0
x
fx
→+∞
≠ b