T<3s=
T< X? () 0,f x f≥  [,
 ?? p£ ]ab
lim ( ) max{ ( ) | [,]}
b
n
n
an
f xdx f x x ab
→∞
=∈

b
£ 
! max{ ( ) | [,]}M fx x ab=∈5
1
() ( )
bb
nn
n
nn
aa
f xdx Mdx Mb a M≤=?
∫∫
→b
6BZ
? > uW
 ??f
¥?é
0
[,]x ab? ∈ 
P¤
0
()f xM= b
?
^ 0ε?> 0δ?>?
0
xx δ?< [,]x ab∈
Hμ
()MfxMε ε? <<+
?
^ [,] [,]abα β [,]x α β?∈ μ ()MfxMε ε? <<+b7
() () () ()
bb
nnn
n
n
aa
n
f xdx f xdx f xdx f xdx
αβ
αβ
=++
∫∫∫∫
1
() () ()()
nn
nnn
f xdx M dx M M
ββ
αα
εεβα≥≥?=
∫∫
→b
#
lim ( ) max{ ( ) | [,]}
b
n
n
an
f xdx f x x ab
→∞
=∈

b
w<
!  5
[,]
(),()
ab
fxgx C∈ () 0,() 0fx gx≥≥
lim ( ) ( ) max{ ( ) | [,]}
b
n
n
an
f xgxdx f x x ab
→∞
=∈

b
1
T<  pK
1
12
0
lim,( 0,1,2,)
xx x
x
n
i
x
aa a
ai
n

++ +
>=


""
""nb
3 
!
1
12
0
lim
xx x
x
n
x
aa a
y
n

++ +
=


""
5
12
0
ln
ln lim
x xx
n
x
aa a
n
y
x→
+++
==
"
1111
12
0
1
(ln ln ln)
lim
1
xx x
nn
xx x
n
x
n
aaaa aa
n
aa a

+++
+++
"
"
=
00
11
1
lim ( ln ) lim ( ln ) ln
nn
xx
kk kk
xx
k
aa aa a
n→→
==
==
∑∑ ∑k
=
=
1
12 12
1
ln( ) ln( )
n
nn
aa a aa a
n
=""
#
1
12
0
lim
xx x
x
n
x
aa a
y
n

++ +
=


""
=
1
12
()
n
n
aa a"b
T<  ? 01,
n
a 0λ< <> O lim
n
n
a
→∞
a= 
k£
2
12 0
lim ( )
1
n
nn n
n
a
aa a aλλ λ
λ

→∞
++ ++=
"b
£
10
1
2
12 0
11
lim ( ) lim
1
nn
nn
n
nn n
n
aa
aa a a
λλ
λλ λ
λ

→∞ →∞
a+ ++
++ ++=
"
"
=
1
1
1
1
1
lim lim
11
11
n
n
n
nn
nn
a
a a
λ
λ λ
λλ
+
+
+
→∞ →∞
+
==

b
2
T< 
!
11
(0,1),(1 )( 1,2,)
nnn
xxxx
+
∈ =? ="b
k£ b lim 1
n
n
nx
→∞
=
£ y #
11
(0,1),(1 )( 1,2,)
nnn
xxxx
+
∈=?="
1
(0,1)
n
x
+
∈  O
2
1
(1 )
nnnnnn
x xxxxx
+
=?=?<b?
^ {}
n
x ???hμ/? 0b
[ lim
n
n
x
→∞
ib
! lim
n
n
x a
→∞
= b
1
(1 )
nnn
x xx
+
=?
H |K¤ (1 )aa a=? ?
^ b 0a =
1
1
1
(1)
lim lim lim lim
111
nn
n
nnn n
nn
nnn
xxnnn
nx
x x
xxx
→∞ →∞ →∞ →∞

== =
=
2
11
11
(1 )
lim
(1 )
nn
n
nn n
xx
xx x

→∞
1

= b
1
lim (1 ) 1
n
n
x
→∞
=
3