T<3s
B
T< 
2
( ) (arctan )f xx=  p b
()
(0)
n
f
3 
21
22
2
00 00
11
() 2 arctan 2 (1) (1) 2 (1)( )
21 2 1
1
n n
nn n n n
nn nm
x
fx x x x
nm
x
+∞∞ ∞
+
== ==
′ ==
++
+
∑∑ ∑∑

V 0? x¤
22
00
1
() 2 (1)( )
212
nn
n
nm
x
fx
mn2
+∞
==
=?
+ +
∑∑

1x < b
?N¤
()
0
0,2 1
(0)
1
2( 1) ( )(2 1)!,2 2
21
k
n
n
m
kn
f
nkn
m
=
=+
=
+=+
(0,1,2n
+

)="b
T< 
!f
()f x  [0,]π
 ?? O
00
() 0,()cos 0fxdx fx xdx
ππ
= =
∫∫
b
£
ü (0,)π
=i
??]¥?
12
,ξ ξ 
P¤
12
() ( ) 0ffξ ξ= = b
£
7
0
() (),0
x
Fx ftdt x π= ≤≤

5A ?μ (0) 0,( ) 0FFπ= = b
0
00
0
0 ( )cos cos ( ) ( )cos | ( )sin
()sin ()sin
f x xdx xdFx Fx x Fx xdx
Fx xdx F
π ππ
π
π
πη η
===+
==
∫∫ ∫

b
?? 0 η π<<?
^ sin 0η > # () 0F η = b?
:? ??
12
(0,),(,)ξ ηξ ηπ?∈ ∈ 
P¤
12
() ( ) 0ffξ ξ= = b
T< 
! ()yfx=  (1
= μ=¨ ???
 O,1)? () 0fx′′ ≠ b£
ü

i·B¥0(1,x?≠∈? ) () (0,1)xθ ∈ 
P¤ () (0) (())f xf xf xxθ′= + b


0
1
lim ( )
2x


= b
£ 
? ?ì μ °?′? ? 0(1,x )? ≠∈? i (0,1)θ∈ 
P¤
() (0) (())f xf xf xxθ′=+ b??? () 0fx′′ ≠  ()f x′′  (1,1)? ?M| ()f x′ 
?ì??#(1,1)? θ·Bb
1

 ()f xθ′ ¨ ?ì μ °?′? ?¤
() (0) ()f xf f xθ ξθ′′′=+?
ξ xθ D -W
} ?5 
?
T0¤
2
() (0) (0) ()f xf xf f xξθ′′′=+ +b
3¤
2
() (0) (0) 1
()
fx f xf
f
x
θ
ξ

=?
′′
b
?N
2
00
1 ( ) (0) (0) 1 (0) 1
lim ( ) lim
(0) (0) 2 2xx
fx f xf f
x
ff
x
θ
→→
′ ′′
= =?=
′′ ′′
b
T< 
!f
()f x 
[ ]
1,2
 ?? ( )1,2
= V± O () 0fx′ ≠ 
£
üi 
P¤
(
,,1,2ξηζ∈
)
()
()
f
f
ζ ξ
ξ η

=

b
£
7 () lngx x= ? O?′? ??i (1,2)ξ∈ μ
(2) (1) ( )
()
1
ln 2 ln1
fff
f
ξ
ξ ξ
ξ
′?
′==?
sY ()f x ¨ ?ì μ °?′? ?¤()gx
(2) (1) ln 2 ln1 1
(),
21 21
ff
f ζ
η

′= = b
?
^
(2) (1)
()
ln 2 ln1
ff
f ζ η
′=?
b
#
()
()
f
f
ζ ξ
ξ η

=


?'5I?¤??
á
Y
L
 |? ??
M?' Vb
2