T<3s?
T< f
()f x  uW (,μ ??¥?f
 O)ab lim ( )
xa
f x
→+
′ D lim ( )
xb
f x
→?

(iμKb
k£
(1) ( )f x 
Bá ?? (,)ab
(2) lim ( )
xa
f x
→+
D lim ( )
xb
f x
→?
(ib
£ (1) ?L
!? ()f x′  (,
 ???l )ab
(),(,)
() lim (),
lim ( ),
xa
xb
f xx ab
Fx f x x a
f xx b
→+
→?
′? ∈
′= =
′ =
V7  [,
 ?? yN  [,
Bá ?? ?
^  [,

μ?'i 
P
()Fx ]ab ()Fx ]ab ()Fx ]ab
0C > ()Fx C< b
V7 ()f xC′ <  (,)x ab∈ b
12
,(,)x xab?∈5
12 1
() ( ) ()( )
2
f xfx f xxξ′?=?
12 1
() ( )
2
f xfxCxx?≤?b
V7 ()f x  (,

@ ?
GHq
[)ab ()f x  (,
Bá ??b )ab
(2) y ()f x  (,
Bá ??#)ab 0,ε? > 0δ? > ?
12
,(,xx aa )δ∈+
H
12
() ( )fx fx ε?<?f
Ki¥ O5? lim ( )
xa
f x
→+
b] ? lim ( )
xb
f x
→?
i
b
T <  p
P¤/
??
T
μ¥1 ?
?? ?¥Kv¥
n αKl
¥
β
11
(1 ) (1 )
nn
e
α β++
+≤≤+ b
1
3 
11
(1 ) (1 )
nn
e
α β++
+≤≤+ ?N?
11
( ) ln(1 ) 1 ( ) ln(1 )nn
nn
αβ++≤≤++
[
1
1
ln(1 )
n
n
α β≤?
+
≤b
7
11
(),(0,1]
ln(1 )
fx x
xx
=?∈
+
5
22
2222
1
1(1)ln(1)
1
()
ln (1 ) (1 ) ln (1 )
x xx
x
fx
x xxx x
+ +?
+
′ =? + =
+++

7 5
22
() (1 )ln(1 ),[0,1]gx x x x x=+ +? ∈
2
( ) ln (1 ) 2ln(1 ) 2gx x x x′ =+++?
12
() [2ln(1 )] 2
11
gx x
xx
′′ = ++
++
=
2[ln(1 ) ]
0
1
xx
x
+?
<
+
#  [0
?ì?h()gx′,1] () 0gx′∴ < ? (0) 0g =
() (0) 0,( 0)gx g x∴ <=>
22
(1 ) ln (1 ) 0xxx+ +?<b?
^
() 0fx′ < ' ()f x  (0
=?ì?hb
7,1]
1
x
n
= 5 ()fxα β≤ ≤ b
(0,1] 1
111
max inf ( ) lim[ ] 1
ln(1 ) ln 2
xx
fx
xx
α
∈→
∴ ==?=
+

0
(0,1]
11
min sup ( ) lim[ ]
ln(1 )
x
x
fx
x x
β


==
+
=
0
ln(1 )
lim
ln(1 )
x
x x
xx

+
=
+
0
1
1
1
lim
ln(1 )
1
x
x
x
x
x

+
++
+
=
0
lim
(1 ) ln(1 )
x
x
x xx

++ +
=
0
11
lim
1ln(1 )1 2
x
x

=
+++
b
T< 
!f
()f x ?? (0)f′ ii O,xy? ∈\μ
() ()
()
14()()
f xfy
fx y
f xfy
+
+=
£
ü ()f x  \
 V±b
2
3 
7 ¤0xy== (0) 0f = b
7 yx=? ¤ () ()f xfx? =? b x?∈\
2
() () () ( ) ( )(1 4 () ( ))
lim lim lim
()
lim lim[1 4 ( ) ( )] (0)[1 4 ( )]
hx hx hx
hx hx
f hfxfhfxfhxfhf
hx hx hx
fh x
fhf x f f x
hx
→→ →
→→
+
==

′==+
x?

[ ()f x  \
 V±b
3