~ ?yvD ?Dy
???
??a??)
2L1?
ù¥f
Z 7?° ?=)
~ ?yvD ?Dy
Baf
Z 7???)
??)
d?
ùf
¥?
ù? 7?
).(
2,],0[)(
xF
xf
f
1?
ù¥ü??[
?l
! ππ
,
0)(
0)(
)(
<<π?
π≤≤
=
xxg
xxf
xF
7
),()2( xFxF =+ π O
5μ ?/
? f ?
.
}ü?
ü?
~ ?yvD ?Dy
ü?,
)()( xfxg=
<<π
=
π≤<
=
0)(
00
0)(
)(
xxf
x
xxf
xF5
x
y
0
ππ?
¥°
f??)
)(xf


=1
sin)(
n
n
nxbxf
)0( π≤≤ x
~ ?yvD ?Dy
}ü?,
)()( xfxg?=
<<π
π≤≤
=
0)(
0)(
)(
xxf
xxf
xF5
¥°
f??)
)(xf

+?

=1
0
cos
2
)(
n
n
nxa
a
xf
)0( π≤≤ x
x
y
0
ππ?
~ ?yvD ?Dy
è|f
)0(1)( π≤≤+= xxxf sYZ 7?
??)
??)

3 
p??)
,)( é? ü? xf

π
=
π
0
sin)(
2
nxdxxfb
n

+
π
=
π
0
sin)1(
2
nxdxx
)coscos1(
2
π?ππ?
π
= nn
n
=?
=

π
=
L
L
,6,4,2
2
,5,3,1
22
n
n
n
n
?
?
~ ?yvD ?Dy
]3sin)2(
3
1
2sin
2
sin)2[(
2
1 L?+π+
π

π
=+ xxxx
)0( π<< x
]5sin)2(
5
1
4sin
4
3sin)2(
3
1
2sin
2
sin)2[(
2
xxxxxy +π+
π
+π+
π

π
=
1+= xy
~ ?yvD ?Dy

p??)

,)( é?
}ü? xf

π
+
π
=
0
0
)1(
2
dxxa
,2+π=

+
π
=
π
0
cos)1(
2
nxdxxa
n
)1(cos
2
2
π
π
= n
n
=
π
=
=
L
L
,5,3,1
4
,6,4,20
2
n
n
n
?
?
]5cos
5
1
3cos
3
1
(cos
4
1
2
1
22
L+++
π
+
π
=+ xxxx
)0( π≤≤ x
~ ?yvD ?Dy
=a[ -1?
ù¥°
f)
,2lT =Q
.
2
lT
π
=
π
=ω∴
? ?
T15
¥° ú=)
Z 7? ?¥Hq
@
l ?¥?
ùf
!?
ù1
,
)(2 xfl
),sincos(
2
)(
1
0
l
xn
b
l
xn
a
a
xf
n
n
n
π
+
π
+=


=
)sincos(
2
1
0
xnbxna
a
n
n
n
ω+ω+


=
} ?°
f)
?
~ ?yvD ?Dy
1 ?"
nn
ba,
),2,1,0(,cos)(
1
L=
π
=

ndx
l
xn
xf
l
a
l
l
n
),2,1(,sin)(
1
L=
π
=

ndx
l
xn
xf
l
b
l
l
n
,)()1( 1 f
?T xf 5μ
,sin)(
1


=
π
=
n
n
l
xn
bxf
,sin)(
2
0
dx
l
xn
xf
l
bb
l
nn

π
=1 ?"
),2,1( L=n
~ ?yvD ?Dy
,)()2( 1
}f
?T xf
5μ
,cos
2
)(
1
0


=
π
+=
n
n
l
xn
a
a
xf
dx
l
xn
xf
l
aa
l
nn

π
=
0
cos)(
2
1 ?"
),2,1,0( L=n
£
ü
,
l
x
z
π
=
7
lxl ≤≤?
,π≤≤π z
),()()( zF
lz
fxf =
π
=
!
.2)( 1?
ù[ πzF
),sincos(
2
)(
1
0
nzbnza
a
zF
n
n
n
++=


=
~ ?yvD ?Dy
)sincos(
2
)(
1
0
x
l
n
bx
l
n
a
a
xf
n
n
n
π
+
π
+=


=
.sin)(
1
,cos)(
1


π
π?
π
π?
π
=
π
=
nzdzzFb
nzdzzFa
n
n
?
.sin)(
1
,cos)(
1


π
=
π
=
l
l
n
l
l
n
xdx
l
n
xf
l
b
xdx
l
n
xf
l
a ?
)()( xfzF
l
x
z =
π
=Q
~ ?yvD ?Dy
?a?? è5
k
2?
x
y
2
0
44?
è
! )(xf
^?
ù1 4¥?
ùf
,
 )2,2[?
¥Vr
T1
<≤
<≤?
=
20
020
)(
xk
x
xf,| Z
?°
f)
,
3,,2
@3
f sHq=lQ
∫∫
+=
2
0
0
2
0
2
1
0
2
1
kdxdxa
,k=
~ ?yvD ?Dy

π
2
0
2
cos
2
1
xdx
n
k
,0=

π
=
2
0
2
sin
2
1
xdx
n
kb
n
)cos1( π?
π
= n
n
k
,
,6,4,20
,5,3,1
2
=
=
π
=
L
L
n
n
n
k
?
?
)
2
5
sin
5
1
2
3
sin
3
1
2
(sin
2
2
)( L+
π
+
π
+
π
π
+=∴
xxxkk
xf
),4,2,0;( L±±≠+∞<<?∞ xx
=
n
a
),2,1( L=n
~ ?yvD ?Dy
è |f
()15510)( <<?= xxxf Z 7?°
f)
,
3
,10?= xzTM
}D
155 << x
,55 << z
)10()( += zfxf ),(zFz =?=
,)55()( ¥?l? f
<<= zzzF
,5)5( =?F
7 )10()( =TzF T?
ùü? ?a|
,
l ?? ?¥Hq??<¥?
ùf
@
).()5,5( zF
=
l ?? OZ 7
T?
~ ?yvD ?Dy
x
)(zF
y
5?
5
015
10
),2,1,0(,0 L== na
n

=
5
0
5
sin)(
5
2
dz
zn
zb
n
π
,
10
)1(
π
=
n
n
),2,1( L=n
,
5
sin
)1(10
)(
1


=
π?
π
=
n
n
zn
n
zF
)55( <<? z


=
π?
π
=?∴
1
)]10(
5
sin[
)1(10
10
n
n
x
n
n
x
.
5
sin
)1(10
1


=
π?
π
=
n
n
x
n
n
)155( << x
~ ?yvD ?Dy
63

π
=
15
5
5
cos)10(
5
1
dx
xn
xa
n

π
=
15
5
5
sin)10(
5
1
dx
xn
xb
n

π

π
=
15
5
15
5
5
cos
5
1
5
cos2 dx
xn
xdx
xn
,0=

=
15
5
0
)10(
5
1
dxxa,0=
,
10
)1(
πn
n
=
),2,1( L=n


=
π?
π
=?=
1
5
sin
)1(10
10)(
n
n
x
n
n
xxf#
)155( << x
),2,1( L=n
~ ?yvD ?Dy
a'
= ?
f

}f
¥°
f";??)
D?
?);d?
ùf
¥?
ù?ü? ;
a3ó b¥+?ù5  a1[/ ? f ?? ?
a.oμ?
ùf
?
Z?°
f);;2,],0[,¥°
f)
·BZ??
ù1
 ππb
).(
,],[.
xf
c
)
))
l ??
′?
H
 ?? OoμμK? ππ?
1al2
~ ?yvD ?Dy
?¨M
}D p°
fZ 7
T ;
p°
fZ 7
T¥?? ;
1.m?£
^?
@3
fHq (
l ?×, 
}? );
2. p°
f";
3.°
f)
,i?
ü
)
l ??
).(xf
[ 2l1?
ù¥°
f";
~ ?yvD ?Dy
Ba
!?
ù1 2¥?
ùf
)(xf B??
ù
=¥Vr
T
1
<≤?
<≤
<≤?
=
1
2
1
,1
2
1
0,1
01,
)(
x
x
xx
xf
k| Z 7?° ú=)

=a
k|f
≤≤?
≤≤
=
lx
l
xl
l
xx
xf
2
,
2
0,
)( Z 7???)
?
?)

5
~ ?yvD ?Dy
?a |f
π
≤≤
π
π
π
≤≤
π
=
2
3
2
,
22
,
)(
xx
xx
xf Z 7?
° ú=)

~ ?yvD ?Dy
5s?
Ba +
π
=
4
)(xf



=
π
π
π

π
π
+
π

1
22
sin
2
cos21
cos]
2
sin2
)1(1
[
n
n
xn
n
n
xn
n
n
n
 ),2,1,0,
2
1
2,2( L±±=+≠≠ kkxkx 
=a )0(sin
2
sin
14
)(
1
22
lx
l
xnn
n
l
xf
n
≤≤
π
π
π
=


=

~ ?yvD ?Dy

l
xnn
n
ll
xf
n
n
π

π
π
+=


=
cos])1(1
2
cos2[
12
4
)(
1
22
 )0( lx ≤≤ 
?a


=
π

π
=
1
2
)]
2
)(12cos[(
)12(
14
)(
n
xn
n
xf
 )0( lx ≤≤