~ ?yvD ?Dy
?=?

QZ?
B¨L?Z?
Ba
QZ?
)(
x
y
f
dx
dy
=? ?
¥±sZ??1
QZ?
2.3E
,
x
y
u=
TM
}D
,xuy ='
} ?e
T
,
dx
du
xu
dx
dy
+=∴
),(uf
dx
du
xu =+
.
)(
x
uuf
dx
du?
='
Vs ?M
¥Z?
?l
,0)(
H? ≠?uuf
,ln
)(
1
xC
uuf
du
=


,
)(u
Cex
='

= 
uuf
du
u
)(
)(?
,} ?|
x
y
u=,
)(
x
y
Cex
=¤Y3
,
0
u??,0)(
00
=?uuf
P
,
0
^?Z?¥35 uu=
,}íeZ?,
0
xuy =¤
QZ?¥3
è p3±sZ?
.0cos)cos( =+? dy
x
y
xdx
x
y
yx

7
x
y
u= 5 udxxdudy +=
,0)(cos)cos( =++? xduudxuxdxuuxx
,cos
x
dx
udu?=,lnsin Cxu +?=
.lnsin Cx
x
y
+?=±sZ?¥31
3
22
2
2
yxyx
xyy
dx
dy
+?
=
,
1
2
2
2
+?
=
x
y
x
y
x
y
x
y
,
x
y
u=
7
,udxxdudy +=5
,
1
2
2
2
uu
uu
uxu
+?
=

+
.
2
222
xyy
dy
yxyx
dx
=
+?
è p3±sZ?
3
,lnlnln
2
1
)2ln(
2
3
)1ln( Cxuuu +=
.
)2(
1
2
3
Cx
uu
u
=
±sZ?¥31,)2()(
32
xyCyxy?=?
,]
1
1
2
2
)
1
2
1
(
2
1
[
x
dx
du
uuuu
=
+

è
tL¥;D?é
L èú§¥Q
?
è
t
3

!èà ox
?m
),0,0(;÷
)(,xyyL =
x
y
o
M
T
N
R
L
 ?B?1
! LyxM ),(
,,yMT

|
q11 ML
,
1
,
y
MN

|
q11EL
,NMROMN ∠=∠Q

=∠


=∠
y
NMR
yx
y
x
y
y
OMN
1
tan
1
1
tan
,02
2
=?

+

yyxyy
¤±sZ?
.1)(
2
+±?=

y
x
y
x
y'
,tantan NMROMN ∠=∠∴
?C
??
M
T¤
x
y
o
M
T
N
R
L

7
x
y
u=
,
11
2
u
u
dx
du
xu
+±?
=+¤
s ?M

,
1)1(
22
x
dx
uu
udu
=
+±+

7
22
1 tu =+
,
)1( x
dx
tt
tdt
=
±
s¤
,ln1ln
x
C
t =±
,11
2
±=+
x
C
u'
üZe¤,
2
2
2
2
x
C
x
C
u +=
¤}í,
x
y
u=
)
2
(2
2
C
xCy +=
tL
à¥è
t
Z?1
pèà1 ox
).
2
(2
22
C
xCzy +=+
=a V1
Q¥Z?
¥±sZ?? ? )(
111
cybxa
cbyax
f
dx
dy
++
++
=
1
QZ?,0
1
H? == cc

7
kYy
hXx
+=
+=,
? h k
^??¥è

dYdydXdx ==,
?51d
QZ?
)(
11111
ckbhaYbXa
cbkahbYaX
f
dX
dY
++++
++++
=
2.3E
?l
=++
=++
,0
,0
111
ckbha
cbkah
,0)1(
11
≠=?
ba
ba
μ·BBF3,
)(
11
YbXa
bYaX
f
dX
dY
+
+
=
¤Y3}í
=
=
kyY
hxX,
,0)2( =?
?Aμ3,

ZE?
¨,
,0
1
H? =b
.
1
?Aà
μB?1
,D ba
,
11
λ==
b
b
a
a
7
),
)(
(
1
cbyax
cbyax
f
dx
dy
++λ
++
=Z? V1
,byaxz +=
7
5
dx
dy
ba
dx
dz
+=
).()(
1
1
cz
cz
fa
dx
dz
b +λ
+
=?
,0=b ? Vs ?M
¥±sZ?,
,0,0
1
=≠ ab ? ),(
1
a
dx
dz
bdx
dy
=
)()(
1
1
c
cz
fa
dx
dz
b
+
=?
Vs ?M
¥±sZ?,
,0
1
H? ≠b
,byaxz +=
7
Vs ?M
,
.
3
1
¥Y3 p
+
+?
=
yx
yx
dx
dy
3
,02
11
11
≠=
=?Q
=?+
=+?
,03
01
kh
kh
Z?F
,2,1 ==? kh
.2,1 +=+= YyXx
7
,
YX
YX
dX
dY
+
=
} ?eZ?¤

7
X
Y
u=
4 è
,
1
1
u
u
dX
du
Xu
+
=+
s ?M
E¤
,)12(
22
CuuX =?+
,2
22
CXXYY =?+'
}í| 2,1?=?= yYxX
¤eZ?¥Y3
,)1()2)(1(2)2(
22
Cxyxy =+?
.622
1
22
Cyxyxyx =++?+
Z?M1
?¨M
}D p±sZ?¥3
.)(
2
¥Y3 p yx
dx
dy
+=
3,uyx =+
7 1?=
dx
du
dx
dy
} ?eZ?
2
1 u
dx
du
+=
,arctan Cxu +=3¤
¤}í,yxu +=
,)arctan( Cxyx +=+
eZ?¥Y31,)tan( xCxy?+=
5 è
)()( xQyxP
dx
dy
=+
B¨L?±sZ? ¥S?
T,
,0)( ≡xQ?
Z??1
Q¥,
Z??1 d
Q¥,,0)( ≡xQ?
?aB¨L?Z?
è ?,
2
xy
dx
dy
+=,sin
2
ttx
dt
dx
+=
,32 =?

xyyy,1cos =?

yy
L?¥ ;
dL?¥,
.0)( =+ yxP
dx
dy
,)( dxxP
y
dy
=
,)(
∫∫
= dxxP
y
dy
,ln)(ln CdxxPy +?=


QZ?¥Y31
.
)(

=
dxxP
Cey
1,L?
QZ?
B¨L?±sZ?¥ 3E
(
P¨s ?M
E )
2,L?d
QZ?
).()( xQyxP
dx
dy
=+
)
,)(
)(
dxxP
y
xQ
y
dy
=Q
Hs
,)(
)(
ln
∫∫
= dxxPdx
y
xQ
y
),(
)(
xvdx
y
xQ
1
!

,)()(ln

=∴ dxxPxvy
.
)()(

=
dxxPxv
eey'
d
QZ?Y3?
T
D
QZ?Y3M1,
)(xuC?

M^E

QZ?Y3?¥è
M^1??f
¥ZE
Lé ??f
¥M
}D,
),()( xyxu e??f
???f

TMD

=
dxxP
exuy
)(
)(
,)]()[()(
)()(

+


=

dxxPdxxP
exPxuexuy
} ?eZ?¤| yy

,)()(
)(
CdxexQxu
dxxP
+

=

),()(
)(
xQexu
dxxP
=


s¤
B¨L?d
Q±sZ?¥Y31,

+

=

dxxPdxxP
eCdxexQy
)()(
])([
dxexQeCe
dxxPdxxPdxxP


+

=

)()()(
)(
?
Q
Z?Y3
d
QZ?+3
.
sin1
¥Y3 pZ?
x
x
y
x
y =+

,
1
)(
x
xP =,
sin
)(
x
x
xQ =

+?=
∫∫
Cdxe
x
x
ey
dx
x
dx
x
11
sin

+?=
Cdxe
x
x
e
xx lnln
sin
()

+= Cxdx
x
sin
1
().cos
1
Cx
x
+?=
3
è
è ?m
U
ü?? à¥?°L$ w
L D ?/¥L
PQ-

′
??|??s¥
, p wL,
y
)(xfy =
)0(
3
≥= xxy
)(xf
,)()(
23
0
yxdxxf
x
=


=
x
yxydx
0
3
,
H p?¤
,3
2
xyy =+

3
3N±sZ?
x
y
ox
P
Q
3
xy =
)(xfy =

+

=

dxexCey
dxdx
2
3
,663
2
+?+=
xxCe
x
,0|
0
=
=x
y?,6?=C¤
p wL1
).222(3
2
+?+?=
xxey
x
2
3xyy =+

1al2
1a
QZ?
).(
x
y
f
dx
dy
=
2a
QZ?¥3E
.
x
y
u=
7
3a V1
QZ?¥Z?
.
+=
+=
kYy
hXx
7
4a
QZ?
5aL?d
QZ?
6au
m ?Z?
)(
x
y
fy =
′;xuy =
7;)(
)(

=
dxxP
exuy
7;
1
zy
n
=
7
± I5 1
Z?
[ ] )( )()(2
0
22
xxydttytty
x
=++

^?1
QZ
± I5 13s
Z?
H]
H p?,x
,2
22
yxyyxy

+=++
,
22
yyxyx ++=
′,1
2
x
y
x
y
y +
+=

eZ?
^
QZ?,
± I5 2
p±sZ? ¥Y3,
yxyy
y
y
sin2sincos
cos
=

± I5 23s
y
yxyy
dy
dx
cos
sin2sincos?
=,tan2sin yxy?=
(),2sintan yxy
dy
dx
=?+∴
[ ]

+?=
Cdyeyex
yy coslncosln
2sin
+=

Cdy
y
yy
y
cos
cossin2
cos [ ]
.cos2cos yCy?=
Ba p/

QZ?¥Y3
a 0)(
22
=?+ xydydxyx 
a 0)1(2)21( =?++ dy
y
x
edxe
y
x
y
x

=a p/

QZ?
@
ó
SHq¥+3
a 1,02)3(
0
22
==+?
=x
yxydxdyxy 
a,0)2()2(
2222
=?++?+ dyxxyydxyxyx
 1
1
=
=x
y 
?a/
Z?1
QZ?
i pY3
a
3
1

++
=

yx
yx
y 
a 0)642()352( =?+?+? dyyxdxyx 
5B
5Bs?
Baa
)ln2(
22
Cxxy +=

a
Cyex
y
x
=+ 2

=aa
322
yxy =? 
a yxyx +=+
22

?aa Cyx
x
y
+++?=
+
])2()1ln[(
2
1
1
2
arctan
22

a Cxyxy =?+
2
)32)(34( 
Ba p/
±sZ?¥Y3
a
x
exyy
sin
cos
=+


a 0)ln(ln =?+ dyyxydxy 
a 02)6(
2
=+? y
dx
dy
xy 
=a p/
±sZ?
@
ó
SHq¥+3
a 4,5cot
2
cos
==+
=
π
x
x
yexy
dx
dy

a,0,1
32
1
3
2
==
+
=x
yy
x
x
dx
dy
5=
?a
!μBé ¥
1 m é?T°L?V
??
,
¥
H Y ,μB?D?Z_Bá,vlD
HW??
1 (1 è
1
k"
1 )¥ ?T¨?
,N?
s
BD
??1 (1 è
2
k"
1 )¥E ?T¨, pé
??¥
D
HW¥f
1",
1a p/
u
m ?Z?¥Y3,
1a
2
1
2
1
2
1
yxy
x
y
=+


2a 0)]ln1([
3
=++? dxxxyyxdy,
?a ¨
a?¥M
}D|/
Z?1 Vs ?M
¥
Z?
?a pY3
a 1
1
+
=
yxdx
dy

a 1cossin2sin)1(sin2
22
++?+=

xxxyxyy 
a
x
y
xyxdx
dy
=
)(sin
1
2

Ba X?±sZ? )(xgyy =+


?
>
≤≤
=
0,0
10,2
)(
x
x
xg
k pB ??f
)(xyy =
@Hq 0)0( =y
O uW ),0[ ∞+
@

Z?
5=s?
Baa
x
eCxy
sin
)(
+= 
a Cyyx +=
2
lnln2 
a
23
2
1
yCyx += 
=aa 15sin
cos
=+
x
exy  
a
1
1
33
2
2
=
x
exxy 
?a )1(
0
2
2
1
2
1
t
m
k
e
k
mk
t
k
k
v
= 
1aa Cxxy +=  
a )
3
2
(ln
3
2
3
2
2
+?= xxC
y
x

?aa Cxyx +?=? 2)(
2

a
Cx
xy
+
=
1
sin1 
a Cxxyxy +=? 4)2sin(2 
Ba
>?
≤≤?
=?
1,)1(2
10,)1(2
)(
xee
xe
xyy
x
x