~ ?yvD ?Dy
?
EBc
±sZ?
~ ?yvD ?Dy
?B?
±sZ?'à
Q
Vs ?M
Z?
~ ?yvD ?Dy
è B wLYV? (1,2), O? wL
 ?B?
),( yxM )¥ ML¥|
q1 x2, p? wL¥Z?,
3 )(xyy =
!
p wL1
x
dx
dy
2=

= xdxy 2
2,1 == yx
H ?
,
2
Cxy +=',1=C p¤
.1
2
+= xy
p wLZ?1
Baù5¥4
~ ?yvD ?Dy
è
ú
ü°¥L
^
[
ü
e¥
?
R
???
H
ú¤F
4.0?
ü
e


ù 7
S??
a

HW
ú?
Tt$[#
ú?
HW
=
?
R


^?$ 
3
)(,tssst =
ü
eò?
R
!??a
4.0
2
2
=
dt
sd
,20,0,0 ====
dt
ds
vst
H
1
4.0 Ct
dt
ds
v +?==
21
2
2.0 CtCts ++?=
~ ?yvD ?Dy
} ?Hqa?
0,20
21
== CC
,202.0
2
tts +?=
,204.0 +?== t
dt
ds
v
#
),(50
4.0
20
e==t
ú?
HW
=?
R

).(5005020502.0
2
ü=×+×?=s
7
S???
ú? ?Tt
3
~ ?yvD ?Dy
±sZ?
Ocμ??f
¥?
±s¥Z??±sZ?
è
,xyy =

,0)(
2
=++ xdxdtxt
,32
x
eyyy =?

+
′′
,yx
x
z
+=
Lé ó"1M

??f
[#??f
¥
t?
±s
-W¥1"
T
=a±sZ?¥?l
~ ?yvD ?Dy
±sZ?¥¨ ±sZ??C¥??f
¥K
ú¨?
¥¨
?-
s ? è±sZ?

ê±sZ?
,0),,( =

yyxF
B¨±sZ?
);,( yxfy =

ú¨ n
±sZ?
,0),,,,(
)(
=

n
yyyxF L
).,,,,(
)1()(?

=
nn
yyyxfy L
s ?
~ ?yvD ?Dy
s ? L?DdL?±sZ?
),()( xQyxPy =+
′;02)(
2
=+


xyyyx
s ? ??±sZ?D±sZ?F
=
=
,2
,23
zy
dx
dz
zy
dx
dy
~ ?yvD ?Dy
±sZ?¥3
} ?±sZ?
PZ??1?
T¥f
?-
,)( ¨?
μ uW
! nIxy?=
.0))(,),(),(,(
)(
=

xxxxF
n
L
±sZ?¥3¥s ?
?a?1ù5  pZ?¥3

Y3±sZ?¥3?cμ ?iè

O ?
iè
¥?
D±sZ?¥¨
M]
~ ?yvD ?Dy

+3 ??
Y3? ?iè
[a¥3
,yy =

è;
x
Cey=Y3
,0=+
′′
yy ;cossin
21
xCxCy +=Y3
3¥m` ±sZ?¥s wL
Y3¥m` s wLB

SHq ¨ ? ?? ?iè
¥Hq
~ ?yvD ?Dy
V??¥s wL ;
=
=

= 0
0
),(
yy
yxfy
xx
B¨,
=¨,

=

=

=
′′
== 00
00
,
),,(
yyyy
yyxfy
xxxx
V?? O??¥ ML¥|
q1?′¥s wL,
′ù5 p±sZ?
@
SHq¥3¥ù5
~ ?yvD ?Dy
è £,f
ktCktCx sincos
21
+=
^±s
Z? 0
2
2
2
=+ xk
dt
xd
¥3,i p
@
SHq
0,
0
0
==
=
=
t
t
dt
dx
Ax ¥+3,
3,cossin
21
ktkCktkC
dt
dx
+?=Q
,sincos
2
2
1
2
2
2
ktCkktCk
dt
xd
=
,
2
2
¥Vr
T} ?eZ?| x
dt
xd
~ ?yvD ?Dy
.0)sincos()sincos(
21
2
21
2
≡+++? ktCktCkktCktCk
.sincos
21
^eZ?¥3# ktCktCx +=
,0,
0
0
==
=
=
t
t
dt
dx
AxQ
.0,
21
==∴ CAC
p+31,cosktAx =
?  ±sZ?¥?3E ?sE
p3±sZ?
ps
(Y3 V¨?f
sV
U ? )
~ ?yvD ?Dy
1a Vs ?M
¥±sZ?
dxxfdyyg )()( =
Vs ?M
¥±sZ?
5
4
2
2 yx
dx
dy
= è ?,2
2
5
4
dxxdyy =?
3E
!f
)( yg )(xf
^ ??¥,
∫ ∫
= dxxfdyyg )()(
!f
)( yG )(xF
^GQ1 )( yg )(xf ¥ef
,CxFyG += )()( 1±sZ?¥3,
s ?M
E
~ ?yvD ?Dy
è p3±sZ?
.2 ¥Y3xy
dx
dy
=
3
s ?M
,2xdx
y
dy
=

s
,2
∫∫
= xdx
y
dy
1
2
ln Cxy +=
.
2
1
pY3
x
Cey=∴
~ ?yvD ?Dy
.0)()( Y3 pZ? =+ xdyxygydxxyf
,xyu=
7
,ydxxdydu +=5
,0)()( =
+
x
ydxdu
xugydxuf
,0)()]()([ =+? duugdx
x
u
uguf
,0
)]()([
)(
=
+ du
ugufu
ug
x
dx
.
)]()([
)(
||ln Cdu
ugufu
ug
x =
+

Y31
3
5 è
~ ?yvD ?Dy
è
Mù5,
M
D?
Me0c
 M?
?1,X?
00
MM
t
=
=
, p
MV??°c

)(tM
HW tM¥
p,
3,
dt
dM
M
?5
!Hq
)0(
M"
>?= λλ M
dt
dM
dt
M
dM
λ?=
,
∫∫
λ?= dt
M
dM
00
MM
t
=
=
} ?
,lnln CtM +λ?=
,
t
CeM
λ?
='
0
0
CeM =¤
,C=
t
eMM
λ?
=∴
0
M
p
~ ?yvD ?Dy
è 7 μú1 1
ü¥? o? ? ,
£V
¥??l
d
@,l d?
1 1
üZ D
ü ( ?m ), 7
S
H ? 
=
9

£, p
£Vl d
@V?? ? 
ú

¥úh(

D d g??W¥  ? )
H
W t¥M
p,
3 ? ?D?
M¤,
£V d g
@
¥
@
1
,262.0 ghS
dt
dV
Q?==
@
"
d g?

× ?F

~ ?yvD ?Dy
cm100
h
o
r
h
dhh+
)1(,262.0 dtghdV =∴
!±l¥
HWW?
],,[ dttt +

¥ú? h?à,
dhh+
,
2
dhrdV π?=5
,200)100(100
222
hhhr?==Q
)2(,)200(
2
dhhhdV?π?=∴
1? (1) (2)¤,
dhhh )200(
2
π?,262.0 dtgh=
1=SQ,cm
2
~ ?yvD ?Dy
dhhh )200(
2
π?,262.0 dtgh=
'1??f
¥±sZ?,
Vs ?M

,)200(
262.0
3
dhhh
g
dt?
π
=
,)
5
2
3
400
(
262.0
53
Chh
g
t +?
π
=
,100|
0
=
=t
hQ
,10
15
14
262.0
5
××
π
=∴
g
C
).310107(
265.4
5335
hh
g
t +?×
π
=
p
p1
~ ?yvD ?Dy
3
è
úW81 12000 ?Z
ü, 7
S
H b ?
cμ ¥,1
??úW
= b ?
¥c
,¨B
?
1
s 2000 ?Z
ü¥?
Y ?c ¥ ¥?7 b ,]
H[]"¥
?
| (
¥ b 
,ù? 7? 6s
òa,úW
= ¥?s1???
?
2
CO
%1.0
2
CO
2
CO
2
CO
%03.0
!? 7?a
H Y ¥c
1
2
CO
)%(tx
t
],[ dttt +
=,
2
CO
¥Y ?

2
CO
¥


,03.02000= dt
),(2000 txdt=
~ ?yvD ?Dy
2
CO
¥Y ?

2
CO
¥


2
CO ¥?M

=
03.0200012000= dtdx ),(2000 txdt
),03.0(
6
1
= x
dt
dx
,03.0
6
1
t
Cex
+=?
,1.0|
0
=
=t
xQ
,07.0=∴C
,07.003.0
6
1
t
ex
+=?
,056.007.003.0|
1
6
≈+=
=
ex
t
6sòa,úW
= ¥?s1???
%.056.0
2
CO
~ ?yvD ?Dy
è l/VH )? 0 ?
R_á
á1
ü
?°L

! a/
1
/?Z_
S?Dá<°
! z h1
? ?i?)¥

@
D???
á  ?¥e??1 1 è k"
1
 pl/
¥t?
^L
x
0
y
3
! 1e?
á?
¨
£Z_1 àx
ày ·_á
dt
dx
dt
dy
dx
dy
=
,
)( yhky
a
=
dyyhkyadx )(?=
,
32
32
C
y
k
y
khax ++=
,0
0
=
=x
y?
,0=∴C
)
3
1
2
(
32
yy
h
a
k
x?=∴
~ ?yvD ?Dy
±sZ?
±sZ?¥¨ ±sZ?¥3
Y3 
SHq +3
′ù5 s wL
?al2
'à
Q
s ?M
E??
1as ?M
 ;
2a

s -------?
TY3,
~ ?yvD ?Dy
± I5 1
f
x
ey
2
3=
^±sZ? 04 =?
′′
yy
¥
I
13?
~ ?yvD ?Dy
± I5 13s
,6
2x
ey =

Q,12
2x
ey =
′′
=?
′′
yy 4,03412
22
=
xx
ee
x
ey
2
3=Q ??c ?iè
,
#1±sZ?¥ + 3,
~ ?yvD ?Dy
± I5 2
p3±sZ?,
2
cos
2
cos
yxyx
dx
dy +
=
+
~ ?yvD ?Dy
± I5 23s
,0
2
cos
2
cos =
+
+
yxyx
dx
dy
,0
2
sin
2
sin2 =+
yx
dx
dy
,
2
sin
2
sin2
∫∫
= dx
x
y
dy
2
cot
2
cscln
yy
,
2
cos2 C
x
+= 1
p3,
~ ?yvD ?Dy
?a
! wL
? ),( yxP )¥ELD xà¥??1 Q

OL
PQ$ yà
üs
k? wL
@¥±
sZ?
BaA b5
a 02
2
=+
′′
+
′′′
yxyyx
^@@@@@@¨± sZ?
a 0
2
2
=++
c
Q
dt
dQ
R
dt
Qd
L
^@@@@@@¨±sZ?
a θρ
θ
ρ
2
sin=+
d
d
^@@@@@@¨±sZ?
aB?=¨±sZ?¥Y3?cμ@@@@? ?iè

=a ??f
1"
T )sin(
21
CxCy?=
c¥?

P 
@
SHq 1=
π=x
y
0=

π=x
y 
5
~ ?yvD ?Dy
1aX?f
1?+?=
xbeaey
xx

? ba,1 ?iè


k pf
@¥±sZ?
~ ?yvD ?Dy
5s?
Baa a a a
=a,
2
,1
21
π
== CC
?a 02 =+

xyy 
1a xyy?=?
′′
1 
~ ?yvD ?Dy
Ba p/
±sZ?¥Y3
a 0tansectansec
22
=+ xdyyydxx 
a 0)()( =++?
++
dyeedxee
yyxxyx

a 0)1(
32
=++ x
dx
dy
y 
=a p/
±sZ?
@
ó
SHq¥+3
a
xdxyydyx sincossincos =

4
0
π
=
=x
y 
a
0sin)1(cos =++
ydyeydx
x

4
0
π
=
=x
y 
5
~ ?yvD ?Dy
?aé
 X1 1 ¥é?
s? ?T¨T°L?
?? ?

HW??1
é??¥
?Q1 10=t
e
H
??
e D
ü /50
? ?1
2
/4
e D
ü X?
ùV? 7
SüV
Bsòa¥

^

1al/VH )? 0 ?
R_á
á1
ü?°L

! a/
1
/?Z_
S?Dá<°
! z
h1
? ?i?)¥

@
D???
á  ?
¥e??1 1 è k"
1
 pl/¥t?
^
L
~ ?yvD ?Dy
5s?
Baa Cyx =tantan  a Cee
yx
=?+ )1)(1( 
a Cxy =++
43
3)1(4 
=aa xy coscos2 =  a ye
x
cos221=+ 
?a 3.269≈v D
ü
e
1a |  1e?
á?
¨
£Z_1 àx
ày ·_
á
5
ptL1 )
3
1
2
(
32
yy
h
a
k
x?=