~ ?yvD ?Dy
???
=¨è"
d
QL?Z?
)(xfqyypy =+

+
′′
=¨è"
d
QL?Z?
?
QZ?
,0=+

+
′′
qyypy
Y32 *,yYy +=
èn ??
),(xP
m
,)(
x
m
exP
λ
,cos)( xexP
x
m
β
λ
,sin)( xexP
x
m
β
λ
4?  ? p+3$
ZE  ??"
E,
)()( xPexf
m

=
Ba ?
!d
Z?+31
x
exQy
λ
)(= } ?eZ?
)()()()()2()(
2
xPxQqpxQpxQ
m
=+++

++
′′
λλλ
?
^+?Z?¥? ? λ)1(
,0
2
≠++ qpλλ
),()( xQxQ
m
= V
!
^+?Z?¥?? ? λ)2(
,0
2
=++ qpλλ
,02 ≠+ pλ
),()( xxQxQ
m
= V
!;)(*
x
m
exQy
λ
=;)(*
x
m
exxQy
λ
=
^+?Z?¥×? ? λ)3(
,0
2
=++ qpλλ,02 =+ pλ
),()(
2
xQxxQ
m
= V
!
8
)
,)(xQexy
m
xk λ
=
!
λ
λ
λ
=
^×?
^??
?
^?
2
,1
0
k
?i

2
Vw<? n¨è"
d
QL?
±sZ?
k
^×?Q
,
.)(*
2 x
m
exQxy
λ
=
+Y1
x
Aeqyypy
λ
=+

+
′′
+
++
=
^+?Z?¥×?
^+?Z?¥??
?
^+?Z?¥?
λ
λ
λ
λ
λλ
λ
λ
λ
x
x
x
ex
A
xe
p
A
e
qp
A
y
2
2
2
,
2
,
.23
2
¥Y3 pZ?
x
xeyyy =+

′′
3
?
QZ?Y3
+?Z?
,023
2
=+? rr
+??
 21
21
== rr
,
2
21
xx
eCeCY +=
^??2=λQ,)(
2 x
eBAxxy +=
!
} ?Z?,¤
xABAx =++ 22
,
1
2
1
=
=

B
A
x
exxy
2
)1
2
1
(?=?
^
eZ?Y31
.)1
2
1
(
22
21
xxx
exxeCeCy?++=
è
?=a ]sin)(cos)([)( xxPxxPexf
nl
x
ωω
λ
+=
]sincos[)( xPxPexf
nl
x
ωω
λ
+=
]
22
[
i
ee
P
ee
Pe
xixi
n
xixi
l
x
ωωωω
λ

+
+
=
xi
nl
xi
nl
e
i
PP
e
i
PP
)()(
)
22
()
22
(
ωλωλ?+
++=
,)()(
)()( xixi
exPexP
ωλωλ?+
+=
,)(
)( xi
exPqyypy
ωλ+
=+

+
′′
!,
)(
1
xi
m
k
eQxy
ωλ+
=
?¨
x ?
T
,)(
)( xi
exPqyypy
ωλ?
=+

+
′′
!
,
)(
2
xi
m
k
eQxy
ωλ?
=
][
xi
m
xi
m
xk
eQeQexy
ωωλ?
+=∴
],sin)(cos)([
)2()1(
xxRxxRex
mm
xk
ωω
λ
+=
Q[
T
^ ? mxRxR
mm
)(),(
)2()1(
{ }nlm,max=
,
1
0
±
±
=
^??
?
^?
ωλ
ωλ
i
i
k
?i

2
Vw<? n¨è"
d
QL?±sZ?,
.sin4 ¥Y3 pZ? xyy =+
′′
3
?
ZY3,sincos
21
xCxCY +=
T£ùZ?
,4
ix
eyy =+
′′
,
^??i=λQ
,
* ix
Axey =#
} ?

T
,42 =Ai,2iA?=∴
,)cos2(sin22
*
ixxxxixey
ix
=?=∴
pd
Z?+31
,cos2 xxy?=
eZ?Y31
.cos2sincos
21
xxxCxCy?+=

|′?
è
.2cos ¥Y3 pZ? xxyy =+
′′
3 ?
ZY3,sincos
21
xCxCY +=
T£ùZ?
,
2ix
xeyy =+
′′
,2 ?
^+?Z?¥?i=λQ
,)(
2* ix
eBAxy +=
!
} ?£ùZ?
=?
=?
13
034
A
BAi
,
9
4
3
1
iBA?=?=∴ 
,)
9
4
3
1
(
2* ix
eixy=∴
è
)2sin2)(cos
9
4
3
1
( xixix +=
pd
Z?+31
,2sin
9
4
2cos
3
1
xxxy +?=
eZ?Y31
.2sin
9
4
2cos
3
1
sincos
21
xxxxCxCy +?+=
,)2sin
3
1
2cos
9
4
(2sin
9
4
2cos
3
1
ixxxxxx +?+?=

|
L?
?i
xAexAe
xx
ωω
λλ
sin,cos
.
)(
¥
L?′?sY
^
xi
Ae
ωλ+
.tan ¥Y3 pZ? xyy =+
′′
3 ?
ZY3,sincos
21
xCxCY +=
¨è
M^E pd
Z?Y3
,sin)(cos)(
21
xxcxxcy +=
!
,1)( =xw
,
cos)(
tanseclnsin)(
22
11
+?=
++?=
Cxxc
Cxxxxc
eZ?Y31
.tanseclncossincos
21
xxxxCxCy ++=
è
?al2
V[
^ˉ
λ
λ
(),()()1( xPexf
m
x
=
);(xQexy
m
xk λ
=
],sin)(cos)([)()2( xxPxxPexf
nl
x
ωω
λ
+=
];sin)(cos)([
)2()1(
xxRxxRexy
mm
xk
ωω
λ
+=
(??"
E )
oc

TB[3E  T£ùZ?, p+3, |
+3¥
L?′?,¤ed
Z?+3,
± I5
±sZ?
x
exyyy
22
8644 +=+

′′
¥??+3¥?
T,
± I53s
!¥+31
2
644 xyyy =+

′′
*
1
y
x
eyyy
2
844 =+

′′
*
2
y
*
2
y+
*
1
*
yy =
5
p+31
044
2
=+? rrQ
+?? 2
2,1
=r

CBxAxy ++=∴
2*
1
x
eDxy
22*
2
=

×?
*
2
y+
*
1
*
yy =
CBxAx ++=
2
.
22 x
eDx+
Ba p/
±sZ?¥Y3
a
x
eyay =+
′′
2

a
x
xeyyy
=+

+
′′
323 
a xxyy cos4 =+′′ 
a xyy
2
sin=?
′′

=a p/
ò±sZ?
@Xó
SHq¥+3
a 0,1,54
00
=

==

′′
== xx
yyyy 
a
xx
exeyyy?=+

′′
2
 1,1
11
=

=
== xx
yy 
a )2cos(
2
1
4 xxyy +=+
′′

 0,0
00
=

=
== xx
yy 
5
?ac÷ CLR,,1 óè
^?
è? E
]1 ¥è÷
è  è ?  C X 20=E? ?
±E2.0=C
1.0=L
x1000=R
k p
 7a1 K ¥è
#
@ )(ti )(tu
c
èa 
1a
! )(x?f
??
O
@

∫∫
+=
xx
x
dttxdtttex
00
)()()(
 )(x? p 
5s?
Baa
2
21
1
sincos
a
e
axCaxCy
x
+
++= 
a )3
2
3
(
22
21
xxeeCeCy
xxx
++=


a xxxxCxCy sin
9
2
cos
3
1
2sin2cos
21
+++= 
a
2
1
2cos
10
1
21
++=
xeCeCy
xx

=aa xey
x
4
5
)511(
16
1
4
+= 
a
xxx
e
x
e
x
ex
ee
y
26
])
1
2
1
(
6
12
[
23
+?+?= 
a )2sin1(
8
1
2sin
16
1
xxxy ++?= 
?a )105sin(104)(
31052
3
teti
t
××=
×
?

 ]105sin()105[cos(2020)(
33105
3
ttetu
t
c
×+×?=
×?
?

1a )sin(cos
2
1
)(
x
exxx ++=?