1
材料导论第三章聚合物材料
A Polymer is a substance composed of
molecules characterized by the multiple
repetition of one or more species of atoms or
groups of atoms (constitutional repeating
units) linked to each other in amounts
sufficient to provide a set of properties that
do not vary markedly with the addition of
one or a few of the constitutional repeating
units.
聚合物材料=高分子材料高分子材料的来源二、合成高分子——聚合反应聚合反应:将小分子(单体)连接成高分子的反应。
一、天然高分子纤维素、木质素、天然橡胶、蛋白质、蚕丝
?Insulation
?Easy molding
?Low mech properties
?Extremely light weight
?Transparency
?Colorability
General Characteristics
?Difficult recycling
?Static accumulation
?Low service T
?Aging
?Chemical resistance
?Flammable
?Contain mainly carbon in their
backbone
?Covalent bonds
?Long chain molecules
Origin of the Characteristics
聚合物产生年代表
2
聚合物材料的分类涂料粘合剂弹性体热塑性塑料热固性塑料塑料合成纤维天然聚合物生物系统聚合物材料
3.2塑料通用塑料工程塑料先进工程塑料热塑性塑料热固性塑料塑料
Plastic group Typical member Relative
price
Commodity Polystyrene (PS) 1
Intermediate Polyethylene terephthalate 2
Engineering Polyamide (PA) 6
High performance Polyetheretherketone 83
General categories of plastics
通用塑料聚乙烯聚丙烯聚氯乙烯聚苯乙烯
CH
2
CH
2
CH
2
CH?
CH
3
CH
2
CH?
Cl
CH
2
CH?
3.2.1 通用塑料氟塑料聚酰胺(尼龙)
聚碳酸酯苯乙烯-丙烯腈共聚物
CF
2
CF
2
CH
2
3.2.2
聚甲醛有机玻璃
CH
3

O
CH
3
CH?OO-C-
O-
CH
2
C?
COOCH
3
CH
3
N-(CH
2
)
n
-N?C-(CH
2
)
n
-C?

OH
H

O
SAN,
ABS,
MBS,
OSA,ASA
工程塑料
Styrene-Acrylonitriles
CH
2
CH?
CN
CH
2
CH?
+
SAN
CH
2
CH?
CN
CH
2
CH?
+
+ CH
2
= CH-CH=CH
2 ABS
CH
2
CH?
CN
CH
2
CH?
+
CH
2
C?
COOCH
3
CH
3
+
MBS
3
CH
2
CH?
CN
CH
2
CH?
+
+
CH
2
CH?
COOR
ASA
Styrene-Acrylonitriles
CH
2
CH?
CN
CH
2
CH?
+
+
OSA乙丙橡胶
Family Characteristics
Superior processibility and appearance
Good dimensional stability
Low creep
High strength and rigidity
Property
SAN
(30%)
ABS
OSA ASA
Density,g/cm
3
1.07-
1.08
1.02
1.05-
1.06
Tensile
strength,MPa
57-75 32-39 39 36-39
Tensile
modulus,GPa
3.4-3.6 1.8-2.2 1.1 2.3
Elongation at
yield,%
2.0-4.5 30 -
Notched Izod
impact
strength,J/m
13-24
270-
400
750
500-
550
Rockwell
hardness
78-85 90-113 102 96
3.2.3 Advanced thermoplastics
Processing Yield Modulus Strain Notched
Polymer Temperature Strength MPa at break Izod J/m
°CMPa
Polyetheretherketone ~400 100 3.10 >40 85
Polyarylene ketone―81.6 2.48 13―
Polyphenylene sulfide ~343 82.1 4.34 5 160
Polyarylene sulfide ~329 100 3.24 7.3 42
PAI(Torlon) ~400 63.4 4.60 1.4 144
Polyether-imide ~343 105 2.96 60 53
Polyimide ~343 120 3.12 4.8―
Polyimde sulfone ~343 62.7 4.96 1.3―
Polysulfone ~300 70.3 2.48 >50 64
Polyaryl sulfone ~330 71.7 2.14 60 64
Polyarylether sulfone ~300 84.1 2.62 >40 85
Polyester ~400 138 16.5 4.9 128
A good heat resistance,with decomposition
temperatures of the order of 400°C
The polymer is brittle,insoluble and infusible.
POLYPHENYLENE Polyphenylene oxide (PPO)
n
O-
CH
3
CH
3
---
4
High moisture resistance,
Heat-deflection temperatures range from 80 to 155
°C
Notched Izod impact,106 to 530 J/m
Excellent insulators
Excellent dimensional stability,heat resistance,
Low creep values with long-term continuous load,
Family Characteristics
Polyphenylene Sulfides (PPS)
SClCl
+
Na
2
S
n
Good thermal stability and unusual insolubility,
resistance to chemical environments,
Inherent flame resistance,
Good resistance to thermal degradation at up to
370 °C,
Insoluble in organic solvents below 200 °C
A high oxygen index of 44
Polymer Properties
Mechanical and Chemical,Pump housings,impeller
diffusers,pump vanes,end plates,oil field hardware,heat
shields,boiler sensor
Applications
Appliance,microwave oven components,computer disk
drives
Automotive,Emission-control system,sensoring devices,
fuel,ignition and braking systems,light sockets,cooling
system,air-conditioning
Electrical and Electronic,integrated-circuit and capacitor
encapsulations,switches,electronic watch bases,and
relay components
A clear,rigid,tough thermoplastic
capable of continuous use at
temperatures up to 160 °C
Polysulfones (PSU)
SO
2
n

CH
3
CH
3
CH?O O-
Resistance to burning,does not require the
addition of flame retardants,
Family Characteristics
Transparent,rigid,ductile
T
g
= 185 °C heat-deflection temperature of 174 °C
Excellent thermal stability and chemical
inertness,Superior resistance to thermal
degradation
Impact resistance and ductility that are
retained to temperatures below 0°C
5
Property Value Test
method
Tensile suength at yield,MPa 70.3 D
638
Tensilemodulus,GPa 2.48 D
638
Tensile elongation at break,% 75 D
638
Tensile impact,kJ/m
2
420 D
1822
Poisson's ratio at 0.5% strain 0.37,..
Notched Izod at 6 2 mm 64 D
PSU mechanical properties
Microwave cookware
Electrical and electronic
Membrane support
Applications
Polyaryl Sulfones (PAS)
SO
2
n
-O--O-
Mechanical properties
Flexural modulus of 2.75 GPa
Outstanding impact strength
high tensile strength.
Thermal Properties
high T
g
,210 °C
heat-deflection temperature,205 °C
Family Characteristics
Polyether Sulfones (PES)
n
S
O
O
O
General Characteristics
Thermal Stability,can be used for many thousands of
hours up to 200 °C without significant loss of strength.
Dimensional Stability,Changes in dimensions at up to
200 °C are negligible.
Creep Resistance,can carry substantial loads for long
periods at up to 180 °C
The chemical resistance is excellent in the case of most
solvents,gasoline,oils,acids,and alkalis.
Electrical,Variations are small between -75 to 200 ° C
Flammability,Inherently flame retardant and emits very
low levels of toxic gases and smoke when burned.
6
Applications
Electrical and Electronic,High-temperature
performance with dimensional stability
Automotive,Resistance to oils and gasoline at
elevated temperatures,low flammability
Aerospace,good rain erosion resistance and
microwave transparency
Medical,ability to withstand repeated sterilization,
its resistance to chemicals and its transparency.
Fluid Handling,excellent long-term hydrolysis
resistance
Polyketones (PEEK,PEK,PEKK,
PAEK,PEEKK)
O
-?COCl
AlCl
3
in
CH
2
Cl
2
20°C
CO-?O
CO

F?KO
CO

O
CO

OCO

O
KO OK F F+
CO

O-
CO

O

O-
CO

CO

O-
CO

CO
-?O-?O-
-O
CO

O-
PEEKK
160,-
PAEK -,416
PEKK -,384
PEEK(1977)
144,335
PEK(1986)
154,361
Property Neat 30% glass 30% carbon
Tensile strength,MPa
At 23 °C 100 160 215
At 100 °C 66 130 185
At 150 °C 35 75 l00
Elongation to break,% >40,..,..
Izod impact strength,kJ/mm
Notched 0.09 0.12 0.06
Unnotched No break,.,0.64
Heat-deflection
temperature °C 152 >300 >300
Properties of PEEK
Property E-1000 E-1130 EP3140
Tensile strength,MPa
At 23 °C 93.1 163 155
At 250 °C 8.62 32.4 28.1
Tensile elongation,% 50 2.2 1.5
Heat-deflection temperame,°C 306 340 340
Izod impact,J/m
Notched 85 96 64
Unnotched No break 720 530
Tensile impact,kJ/m
2
115 135 525
Properties of PAEK
Family Characteristics
(1) high degree of oxidative stability
(2) extremely low flammability
(3) Extremely low smoke emission
(4) A high softening point
7
Other notable features
(1) Excellent toughness and wear resistance
(2) Excellent fatigue resistance
(3) Excellent hydrolytic stability
(hot water at 125°C,under which polyimides are liable to fail.)
(4) Good radiation resistance
(5) Very good low-friction properties of bearing grad
Aircraft/aerospace applications such as engine
components,cabin interior material,air ducts,and
nonstructural exterior parts,Other applications
include wire and cable in the electrical/electronics
market,pump components in the chemical
processing market.
Applications
Thermoplastic Polyimides (TPI)
+
NH
2
—X—NH
2
C
C
O

O

O
C?
C?
O

O

O
COOH
C-NH-X-

O

O
~X-NH-C?
HOOC?

O

O
COOH
C-N~

O

O
NH-C?
HOOC?

O

O H
C
C

O

O
C?
C?

O

O
N-X-N~X-N
C
C

O

O
C?
C?

O

O
N ~
Avimid K-III Ultem l000 Torlon4203
Density,g/cm
3
1.31 1.27 1.38
Tensile strength,MPa 102 104 186
Tensile modulus,GPa 3.8 3.0 4.4
notched Izod,J/m -- 53.4 133.5
strain-to-failure,% 14 60 20
T
g
°
C 250 210 267
Physical and mechanical properties of TPIs
Polyamide-imides (PAI)
C

O
C?
C?
N

O

O
H
N
Ar
8
Exceptional dimensional stability,(high T
g
,no
crystallinity)
Wide range of temperature capability,(from –170 to 260
°C)
Retention of properties after thermal aging
Family Characteristics of PAI
Radiation stability
Ultraviolet stability
Inherent flame resistance
Exceptional mechanical strength
Low coefficient of thermal expansion
Outgassing characteristics
Outstanding wear characteristics
Polyether-imide
O C
CH
3
CH
3
O
O
O
N
O
O
N
1982
Amorphous structure,excellent dimensional
stability,low shrinkage,and highly isotropic
mechanical properties
Tg = 217°C At 180 °C,tensile modulus
remain in excess of 41 MPa
Family Characteristics
Liquid
crystalline
polymers
O
O-(CH
2
)
2
–CH
3
N=NCH
3
-(CH
2
)
2
-O
O-(CH
2
)
2
–CH
3
CN
Core
Tail Tail
Core
Tail
O-(CH
2
)
2
–CH
3
CH
3
-(CH
2
)
2
-O
CH
3
-(CH
2
)
2
-O
CH
3
-(CH
2
)
2
-O O-(CH
2
)
2
–CH
3
O-(CH
2
)
2
–CH
3
Core
Tail
9
Nematic
N
Smectic A
S
A
α
Smectic C
S
C
Discotic Nematic
D
N
Discotic Hexagonal Ordered
D
ho
Discotic Hexagonal Disordered
D
hd
10
Crystal smectic C smectic A Nematic isotropic
152.3 176.0 180.8 194.8 T/°C
56.2 0.3 0.9 1.7?H/kJmol-1
OCH
3
(CH2)
6
O C
O
C
OO
O O(CH2)
6
CH
3
bis-(p-heptyloxyphenyl) terephthalate
P
Chiral Nematic
N*
Cholesteric
c
n
Chiral Smectic
S
c
*
n
z
n
y
n
P
z
n
y
n
θ
2d sin θ = n λ
Bragg equation
d
d
d
d =P temperature sensible
Polymerized liquid
crystals (PLCs)
Liquid crystal
polymers (LCPs)
Main-chain Side-chain lyotropic Thermotropic
Macromolecular
liquid crystal
Main chain PLCs from calamitic cores
Spacer
11
Main chain PLCs from discotic cores
Spacer
Side chain PLCs
Spacer
Nomex
Poly(m-phenyleneisophthalamide
NH
2
H
2
NCOOHHOOC?
+
NH~~HNCO ~~OC?
Lyotropic LCP Kevlar
-COClH
2
N--NH
2
+
ClOC-
~~HN--NH OC--CO ~~
Lyotropic LCP
2-phase regime
Nematic
η
η*
Φ
Φ*
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5
isotropic
Lyotropic LCP
SE images of fractured fibers shows the long fibrils in
an aramid fiber (a) and the shorter,more sheet-like
fibrils (b-c) in these Vectran fibers
a
b
c
12
HBA,hydroxy benzoic acid; HNA,hydroxy napthoic acid
Vectra
Hoechst Celanese Corporation
OC
O
C
O
O
x
y
HBA HNA
Thermotropic LCP Aromatic copolyeste
C
HBA
C
TA
O
O
O
C
O
OO
C
IA
O
C
O
BP
HBA,hydroxy benzoic acid; TA,terephthalic acid;
BP,biphenol; IA,isophthalic acid
Dartco Manufacturing,and Nippon
Petrochemical
Xydar
Thermotropic LCP Aromatic copolyeste
OCH
2
CH
2
O
OC
n
HBA
C
O
n
TA
C
n
OOO O
EG
HBA,hydroxy benzoic acid; TA,terephthalic acid; EG,
ethylene glycol
Eastman Kodak Company
X7G and WH
Thermotropic LCP Aromatic copolyeste
Family Characteristics
Easy precision moldability,in terms of repeatability,tight
tolerances,easy flow for thin-wall parts,low mold
shrinkage,and fast cycles
Exceptional strength,stiffness,and toughness
Excellent chemical resistance
Inherent resistance to burning low smoke generation
Minimal change of dimensions with exposure to high
temperatures
Properties VectraAl30 Xydar RC210
Spenfic gravity,g/cm
3
1.6 1.6
Water ahtorption,% <0.04 <0.1
Tensile strength,MPa 180 140
Tensile modulus,GPa 15 16
Tensile elongation,% 2.3 1.7
Notched Izod,J/m 110 110
Heat-deflection T,
at 18 MPa,°C 230 346
Oxygen index,% 37 46
Properties of aromatic copolyesters
3.2.4热固性塑料酚醛树脂不饱和聚酯脲醛树脂蜜胺树脂聚氨酯热固性塑料聚酰亚胺
13
Thermoset Polyimides
Bismaleimide
s
O
O
+
NH
2
—R—NH
2
CH
CH
O
O
C
N —R— N
C
O
O
C
C
Bismaleimide
CNH—R--NHC
O
O
HOC
O
O
COH
Bismaleamic acid
General
scheme for
preparation of
bismaleimides
O O
N
R
O O
N
O N
R
O
N
O
O
O N
R
O
N
O
O
O N
R
O
N
O
O
Homopolymerization of bismaleimides
Michael reaction of bismaleimides
O
O
N
R’
O
O
N
+ NH
2
—R—NH
2
O
O
N R’
O
O
N
RN
H
H
H
O
O
N
N
H
H
H
O
O
N
R N
H
H
H
HH
H
O
O
N
n
R’
Reaction of bismaleimides with
olefins
O O
N
R
O O
N
+ C C
R
1
R
2
R
4
R
3
O N
R
O
N
O
O
CC
R
1
R
2
R
3
R
4
CC
R
3
R
4
R
1
R
2
property value
Density,g/cm
3
1.32
Glass-transition temperature 340
Tensile strength at RT,MPa 38.5
Tensile modulus at RT,GPa 39
Tensile strain-to-failure,% 1.1
notched Izod,J/m 53.37
Properties of PMR-15 polyimide
14
3.3弹性体构成弹性体的三个条件:
(1)必须由长链聚合物构成
(2)聚合物链必须具有高度柔性
(3)聚合物链必须为交联网络
3.3弹性体天然橡胶
3.3弹性体丁苯橡胶
3.3弹性体3.3弹性体
15
3.3弹性体3.3弹性体全世界1991年橡胶用量(万吨)
0
50
100
150
200
250
300
350
400
450
天然橡胶顺丁橡胶丁腈橡胶其它橡胶热塑性弹性体
(a) 聚氨酯弹性体
(b) 嵌段共聚物
(c) 共混型热塑性弹性体聚丙烯与乙丙橡胶共混而成
16
3.4聚合物的加工
3.4.1 挤出成型
3.4.1 挤出成型:挤出吹塑3.4.2 注射成型
3.4.2 注射成型:反应注射压制成型3.4.3 压制成型
17
3.4.3 压制成型:转移模压3.4.4 真空成型压延成型
3.4.5
3.4.6 浇铸成型
3.5聚合物涂料3.5.1成膜机理
18
高分子涂料成膜机理溶剂挥发成膜反应交联成膜粉末熔融成膜熔体冷却成膜油类氧化成膜微粒凝聚成膜高分子涂料成膜机理纤维素漆乙烯基漆丙烯酸漆烷基漆虫胶漆氯化橡胶环氧树脂聚酯酚醛清漆聚氨酯有机硅多种热塑性树脂聚乙烯蜡沥青油类漆清漆烷基釉乳胶漆油溶胶水溶胶氟碳釉油:动、植物油-甘油的三脂肪酸酯
CH
2
OCOR
2
CH
2
OCOR
1
CH
2
OCOR
3
3.5.2 干性油与油性涂料
3.5.2 干性油与油性涂料脂肪酸大多为18碳酸硬脂酸:CH
3
(CH
2
)
16
COOH
油酸:CH
3
(CH
2
)
7
CH=CH(CH
2
)
7
COOH
亚油酸:
CH
3
(CH
2
)
4
CH=CH CH
2
CH=CH (CH
2
)
7
COOH
亚麻酸:
CH
3
CH
2
CH=CH CH
2
CH=CH CH
2
CH=CH (CH
2
)
7
COOH
3.5.2 干性油与油性涂料活泼亚甲基:两个双键中的亚甲基
~CH
2
-CH=CH-CH
2
-CH=CH-CH
2
~
3.5.2 干性油与油性涂料活泼亚甲基数>2.2即为干性油平均活泼亚甲基数=
(双烯酸百分含量+三烯酸百分含量×2) ×3
计算公式:
3.5.2 干性油与油性涂料脂肪酸含量(%)

饱和酸 单烯酸 双烯酸 三烯酸
亚麻油 10 22 16 52
葵花子油 14 14 72 0
橄榄油 16 66 16 2
亚麻油=3(0.16+0.52×2)=3.6干性油葵花子油=3 ×0.72=2.16半干性油橄榄油=3 ×0.16=0.48非干性油
19
3.5.3.1 醇酸树脂醇酸树脂是一种含油的聚酯,也可视作大分子干性油,由多元醇、多元酸、脂肪酸缩聚而成:
多元醇:主要为甘油,亦可为季戊四醇等多元酸:主要是邻苯二甲酸或其酸酐(苯酐)
脂肪酸:主要是亚麻油、豆油、桐油中所含的酸
3.5.3 聚酯涂料3.5.3 聚酯涂料
3.5.3.1 醇酸树脂平均活泼亚甲基数=0.51×4+0.09 ×4 ×2=2.04+0.72=2.76
苯酐:甘油:豆油脂肪酸=1:2:4
-
O
-
C=O
-
R
COCH
2
-CH-CH
2
O-C-R
R-C-O-CH
2
-CH-CH
2
OC
=
O
=
O
-
O
-
C=O
-
R
=
O=O
3.5.3 聚酯涂料
3.5.3.1 醇酸树脂平均活泼亚甲基数=0.51×5+0.09 ×5 ×2=3.45
苯酐:甘油:豆油脂肪酸=2:3:5
COCH
2
-CH-CH
2
O-CR-C-O-CH2-CH-CH2OC
=
O
-
O
-
C=O
-
R
= O
=
O
-
O
-
C=O
-
R
=
O
C-OCH
2
-CH-CH
2
O-C-R
=
O
-
O
-
C=O
-
R
3.5.3 聚酯涂料
3.5.3.2 聚酯树脂与醇酸树脂的区别在于饱和,通过氨基树脂或多异氰酸酯与端羟基的反应交联由二元醇、三元醇、二元酸等缩聚制得,
即不含油的醇酸树脂
3.5.3 聚酯涂料
3.5.3.2 聚酯树脂配方1 配方2
摩尔数当量数摩尔数当量数三羟甲基丙烷1.1 3.3 1.9 5.8
新戊二醇4.4 8.8 3.6 7.3
间苯二甲酸3.0 6.0 3.0 6.0
已二酸2.0 4.0 2.0 4.0
羟基过量20%羟基过量30%
3.5.3 聚酯涂料
3.5.3.3 不饱和聚酯主链中含不饱和双键的聚酯与作为溶剂的单体共聚固化。
采用二元酸与二元醇缩聚而成。二元酸一般用马来酸酐与苯酐,比例为1/3到3/1。利用马来酸酐引入双键。交联单体一般用苯乙烯。
20
3.5.3 聚酯涂料
3.5.3.3 不饱和聚酯
CH
2
=CH?

O?CH
2
CH
2
O?C?CH?CH?C?O?

O

O
O?CH
2
CH
2
O?C?CH?CH?C?O?

O
O?CH
2
CH
2
O?C?CH=CH?C?O?

O

O
CH
2
HC
 ̄ ̄





O


氨基树脂是胺或酰胺与甲醛反应的产物:
氨基树脂一般不单独用作涂料,而与醇酸、
聚酯、丙烯酸树脂等配合使用,作为交联剂。
R-NH
2
+HCHO
R-NH-CH
2
-OH R-NH-CH
2
-OR’
R’OH
3.5.4 氨基树脂
3.5.4 氨基树脂氨基树脂与醇、酸、酰胺酯交换的反应:
NH-CH
2
-OR +
R’
P
-OH NH-CH
2
-O-
R’
+ R-OH
NH-CH
2
-OR +
R’
-C-OH NH-CH
2
-O-C-
R’
+ R-OH
=
O
=
O
NH-CH
2
-OR +
R’
-C-NH NH-CH
2
-NH-C-
R’
+ R-OH
=
O
=
O
M
M
M
M
M
M
P
P
P
P
P
3.5.4 氨基树脂三聚氰胺甲醛树脂三聚氰胺+过量甲醛六羟甲基三聚氰胺六甲氧基甲基三聚氰胺
pH9-10
过量甲醇
3.5.4 氨基树脂三聚氰胺甲醛树脂制备
N
NN
NH
2
NH
2
H
2
N
N
NN
N
N
N
HOH
2
C
HOH
2
C
CH
2
OH
CH
2
OH
CH
2
OHHOH
2
C
HCHO(过量)
pH9~10
六羟甲基三聚氰胺三聚氰胺三聚氰胺甲醛树脂制备
N
NN
N
N
N
HOH
2
C
HOH
2
C
CH
2
OH
CH
2
OH
CH
2
OHHOH
2
C
六羟甲基三聚氰胺
N
NN
N
N
N
CH
3
OH
2
C
CH
3
OH
2
C
CH
2
OCH
3
CH
2
OCH
3
CH
2
OCH
3
H
3
COH
2
C
CH
3
OH(过量)
pH2~3
六甲氧基甲基三聚氰胺
3.5.4 氨基树脂
21
3.5.4 氨基树脂三聚氰胺甲醛树脂制备
N
NN
N
N
HOH
2
C
CH
2
OH
CH
2
OH
三羟甲基三聚氰胺
CH
3
OH(过量)
pH2~3
三甲氧基甲基三聚氰胺
N
N
NN
N
N
H
3
COH
2
C
CH
2
OCH
3
CH
2
OCH
3
N
H
H
H
H
H
H
丙烯酸酯甲基丙烯酸酯甲酯乙酯丁酯
CH
2
=CHCOOCH
3
CH
2
=C-COOCH
3
CH
3
CH
2
=CHCOOC
2
H
5
CH
2
=CHCOOC
4
H
9
CH
2
=C-COOC
2
H
5
CH
3
CH
2
=C-COOC
4
H
9
CH
3
3.5.5 丙烯酸树脂
3.5.5 丙烯酸树脂拉伸强度伸长率T
g
(MPa) (%)
丙烯酸甲酯7 750 9
丙烯酸乙酯2.3 1800 -22
丙烯酸丁酯0.23 2000 -56
甲基丙烯酸甲酯63 4 105
甲基丙烯酸乙酯35 7 65
甲基丙烯酸丁酯7 230 20
聚丙烯酸酯的性质
3.5.5 丙烯酸树脂
T
g
性质的加和公式
T
g
= W
1
T
g1
+ W
2
T
g2
1
T
g
T
g
W
1
W
2
+
=
3.5.5 丙烯酸树脂热固性丙烯酸树脂典型配方
MMA / BA / HEMA / AA
50 39 10 1
St / MMA / BA / HEMA / AA
25 25 39 10 1
CH
2
=CHCOC
2
H
4
OHHEMA:
=
O
3.5.5 丙烯酸树脂丙烯酸树脂的交联反应
-NHCH
2
OR
P
-OH+
-NHCH
2
O-
+ ROH
-NCO-OH+
-OCNH-
=
O
羟基的交联反应:
P
PP
PP
PP
22
3.5.5 丙烯酸树脂含N-羟甲基丙烯酰胺的丙烯酸树脂的交联反应
-C-NHCH
2
OH+
=
O
羟甲基与羟基的反应:
HO-
-C-NHCH
2
O-
=
O
-C-NHCH
2
OH+
=
O
羟甲基与羧基的反应:
HO-C-
-C-NHCH
2
O-C-
=
O
=
O
=
O
PPP
PPPP
P
3.5.5 丙烯酸树脂含N-羟甲基丙烯酰胺的丙烯酸树脂的交联反应
-C-NHCH
2
OH+
=
O
羟甲基与羟甲基的反应:
-C-NHCH
2
OH
=
O
-C-NHCH
2
OCH
2
NH-C-
=
O
=
O
-C-NHCH
2
NH-C-
=
O
=
O
PP
PP
PP
环氧树脂:从环氧化合物衍生的聚合物或低聚物环氧化合物:含氧杂环丙烷的化合物
-CH
2
-CH-CH
2
O
3.5.6 环氧树脂
3.5.6 环氧树脂双酚A型环氧树脂
2ClCH
2
-CH-CH
2
O
HO C
CH
3
OH
CH
3
+
NaOH
O C
CH
3
O
CH
3
CH
2
-CH-CH
2
O
CH
2
-CH-CH
2
O
3.5.6 环氧树脂双酚A型环氧树脂
OO-
C
CH
3
CH
3
-CH
2
-CH-CH
2
O
CH
2
-CH-CH
2
O
CH
2
CHCH
2
OO-
C
CH
3
CH
3
OH n
3.5.6 环氧树脂环氧树脂的固化:胺固化
CH
2
-CH-CH
2
O~~
O
RNH
2
+RNH-CH
2
CH-CH
2
O~~
OH
CH
2
-CH-CH
2
O~~
O
RN-CH
2
CH-CH
2
O~~
OH
[]
2
23
3.5.6 环氧树脂环氧树脂的固化:胺固化常用固化剂:
二亚乙基三胺(DETA):H
2
N-CH
2
CH
2
NH-CH
2
CH
2
NH
2
二苯硫砜二胺,H
2
NNH
2
SO
2
聚酰胺:C
34
H
x
-C-NHCH
2
CH
2
NHCH
2
CH
2
NH
2
)
2
(
=
O
3.5.6 环氧树脂环氧树脂的固化:酸酐固化
C
C
=
O
=O
O
+HO-CH
C
C
=
O
= O
O
OH
CH
CH
2
-CH-CH
2
O
O
C
C
=
O
= O
O
CH
CH
2
-CH-CH
2
O
OH
3.5.6 环氧树脂环氧树脂的固化:合成树脂固化酚醛树脂:含羟基氨基树脂:含胺基聚氨酯:含相当量氨基甲酸酯键的聚合物
-N-C-O-R-

O
H

由异氰酸酯与羟基作用生成:
R-N=C=O + R’OH R-N-C-OR’

OH

3.5.7 聚氨酯
3.5.7 聚氨酯异氰酸酯与其它基团的反应与胺反应生成取代脲:
R-N=C=O + R’NH
2
R-N-C-N-R’

OH

H

与水先生成胺,进一步反应生成取代脲:
R-N=C=O + H
2
O

OH

R-N-C-OH RNH
2
+CO
2
3.5.7 聚氨酯异氰酸酯与其它基团的反应与羧酸反应生成酰胺:
R-N=C=O + R’COOH R-N-C-O-C-N-R’

OH

H
-=
O
R-N-C-R’

OH

+ CO
2
与脲反应生成缩二脲:
R-N=C=O + R’NHCONHR” R-N-C-N-C-N-R”

OH

H
-=
O
R’

24
3.5.7 聚氨酯常用的异氰酸酯甲苯二异氰酸酯(TDI)
二甲苯甲烷二异氰酸酯(MDI)

CH
3

NCO
-NCO-
CH
3
-NCOOCN-
2,4 (80%) 2,6 (20%)
OCN NCOCH
2
3.5.7 聚氨酯常用的异氰酸酯对苯二亚甲基二异氰酸酯(XDI)
己二异氰酸酯(HDI)
OCN-CH
2
CH
2
NCO
OCN-(CH
2
)
6
-NCO
二环己基甲烷二异氰酸酯(H
12
MDI)
OCN NCOCH
2
HH
3.5.7 聚氨酯封闭型异氰酸酯:用苯酚封闭
R-N=C=O + ArOH R-N-C-OAr

O
H

R-N-C-OAr

O
H

R’OH
R-N-C-OAr
H


OH

OR’
R-N-C-OR’

O
H

+ArOH
R-N-C-OAr

O
H

ArOH + R-N=C=O
R’OH
R-N-C-OR’
H

封闭型异氰酸酯:用丁酮肟封闭
R-N=C=O +C=NOH
R’
R”
R-N-
H

O
C-ON=C
R’
R”
R-N-
H

O
C-ON=C
R’
R”
+P-OH R-N-
H

O
C-O-P
+C=NOH
R’
R”
3.5.7 聚氨酯含羟基组分
(1)聚酯
(2)聚醚
(3)环氧树脂
(4)蓖麻油
(5)丙烯酸树脂
OH
CH
2
O
--HCH
2
---
OH
--CH
2
--OH-
m=2~5
m+n=4~10
A阶树脂
3.5.8 酚醛树脂
mn
25
3.5.8 酚醛树脂
OH
--CH
2
--
固化后的C阶树脂
CH
2
-CH
2
---
OH
OH
--CH
2
---
-CH
2
--
OH
OH
--CH
2
--
CH
2
-CH
2
---
OH
OH
--CH
2
---
-CH
2

OH
--
3.6粘合剂
An adhesive is a substance
capable of holding materials
together in a functional manner
by surface attachment,
Adherend,A body held to another body by an
adhesive
Substrate,A material upon the surface of which
an adhesive-containing substance is spread for
any purpose,such as bonding or coating (a
broader term than adherend)
Primer,A coating applied to a surface,prior to
the application of an adhesive,to improve the
performance of the bond
Adherend or substrate
surface
region
Primer
Adhesive
Idealized adhesively band assembly
?Provides more uniform distribution of stress and
larger stress-bearing area than conventional
mechanical fasteners
?Joins thick or thin materials of any shape
?Joins any combination of similar or dissimilar
materials
?Minimizes or prevents electrochemical corrosion
between dissimilar metals
Advantages I
?Resists fatigue and cyclic loads
?Provides smooth contours
?Seals joint,insulates (heat and electricity),and
damps vibration
?Frequently faster and less expensive than
conventional fastening
Advantages II
26
?Requires careful surface preparation of adherends
?Relatively long times are sometimes required for
setting adhesive
?Limitation on upper service temperature
?Heat and pressure may be required for assembly
?Jigs and fixtures may be required for assembly
Disadvantages
? In a molten state and solidified after the
components of the joint are assembled
? As a solution or dispersion,with the carrier
liquid allowed to evaporate,leaving the high-
molecular-weight polymer behind
? As a low-viscosity fluid containing reactive
groups that undergo polymerization in the
bond line to build the molecular weight
sufficiently to carry a load
Bond formation
Mechanical interlocking
The formation of covalent chemical bonds
Electrostatic
Diffusion
Bonding Mechanisms
粘合剂的分类矿物动物植物天然粘合剂热塑型热固型橡胶型合成粘合剂有机粘合剂无机粘合剂粘合剂沥青骨胶皮胶血胶虫胶淀粉糊精松香桃胶聚乙烯醇丙烯酸酯尼龙
EVA
酚醛树脂环氧树脂聚氨酯不饱和聚酯丁腈橡胶氯丁橡胶聚硫橡胶丁苯橡胶磷酸盐硅酸盐硫酸盐硼酸盐
? Structural (结构胶)
? Hot melt (热熔胶)
? Pressure sensitive (压敏胶)
? Water based (水基胶)
? Ultraviolet (UV) and electron beam cured
(光固胶)
Types of Adhesives 3.6.1 Structural Adhesives (结构胶)
?Bonds can be stressed to a high proportion of
maximum failure load under service environments
?Most are thermosets
?One- or two-component systems
?Room- or elevated-temperature cures
?Wide range of costs
?Various chemical families with varying
strengths and flexibilities
27
? High strength
? Capable of resisting loads
? Good elevated-temperature resistance
? Good solvent resistance
? Good creep resistance
? Some available in film form (cross-linked)
? Two-component systems require careful
? Proportioning and mixing
? Some have poor peel strength
? Some are difficult to remove and repair
? Some require heat to cure
? Some yield byproducts upon cure (condensation)
Advantages and Limitations
? High strength
? Good solvent resistance
? Good gap-filling capabilities
? Good elevated-temperature resistance
? Wide range of formulations
? Relatively low cost
? Exothermic reaction
? Exact proportions needed for optimum properties
? Two-component formulations require
? Exact measuring and mixing
? One-component formulations often Require
refrigerated storage and an short pot life
? Elevated-temperature cure
Epoxy (环氧树脂)
? Varying cure times
? Tough
? Excellent flexibility even at low temperatures
? Moderate cost
? One or two component,room- or elevated-
temperature cure
? Both uncured and cured are moisture sensitive
? Poor elevated-temperature resistance
? May revert with heat and moisture
? Short pot life
? Special mixing and dispensing equipment required
Polyurethane (聚氨酯)
? Good flexibility
? Good peel and shear strengths
? No mixing required
? Will bond dirty (oily) surfaces
? Room-temperature cure
? Moderate cost
? Low hot-temperature strength
? Slower cure
? Toxic
? Flammable
? Odor
? Limited open time
? Dispensing equipment required
Modified acrylic (改性丙烯酸酯)
open time is the time after
application of adhesive to one
surface during which the
adhesive remains sufficiently
liquid for the second surface to
be bonded,
? Rapid room-temperature cure
? One component
? High tensile strengths
? Long pot life
? Good adhesion to metal
? Dispenses easily from package
? High cost
? Limited solvent resistance
? Limited elevated-temperature resistance
? Bonds skin
? Poor durability on some surfaces
Cyanoacrylate(氰基丙烯酸酯)
? Rapid room-temperature cure
? Good solvent resistance
? Good elevated-temperature resistance
? No mixing
? Indefinite pot life
? Nontoxic
? High strength on some substrates
? Moderate cost
? Not recommended far permeable surfaces
? Will not cure in air as a wet fillet
? Limited gap cure
Anaerobic (厌氧胶)
Fillet,A narrow strip of
ribbon or similar material,
often worn as a headband
28
3.6.2 Hot-Melt Adhesives (热熔胶)
?100% solid thermoplastics
?Melt sharply to a low-viscosity liquid,which is
applied to surface
?Rapid setting,no cure
?Melt viscosity is an important property
?Nonpressure sensitive and pressure sensitive
?Compounded with additives for tack and
wettability
? 100% solids,no solvents
? Can bond impervious surfaces
? Rapid bond formation
? Good gap-filling capability
? Rigid to flexible bonds
? Good barrier properties
? Thermoplastics have limited elevated temperature resistance.
? Poor creep resistance
? Little penetration due to fast viscosity increase upon cooling
? Limited toughness at usable viscosities
Advantages and Limitations
Polymers and diluents
Diluents,waxes,plasticizers,tackifiers,
stabilizers,extenders,and pigments,
Functions of the diluents:
Lowering viscosity for ease of application
Enhancing wettability
Enhancing adhesive strength
Increasing rigidity or flexibility
Components
Ethylene/vinyl acetate copolymer
Polyethylene
Polyvinylacetates
Polybutene
Thermoplastic elastomers
Polyamides (nylons),and polyesters
Chemical Families
3.6.3 Pressure-Sensitive Adhesives (压敏胶)
?Hold substrates together upon brief application
of pressure at room temperature
?Available as organic-solvent-based,water-based,
or hot-melt systems
?Some require extensive compounding (rubber
base) to achieve tackiness,whereas others
(polyacrylates) do not
?Available supported (most) or unsupported on a
substrate
?Primarily used in tapes and labels
Advantages and Limitations
? Labels and tapes have uniform thickness
? Permanent tack at room temperature
? No activation required by heat,water or solvents
? Cross-linking of some formulations possible
? Soft or firm tapes and labels
? Easy to apply
? Many are based on rubbers,requiring
compounding
? Poor gap fillers
? Limited heat resistance
29
?Good flexibility
? High initial adhesion (better than acrylics)
? Ease of tackification (with additives)
? Lowest cost
? Good shear strength
? Good adherence to low-,and high-energy
surfaces
? Suitable for temporary or permanent holding
? Low tack and adhesion (without additives)
? Poor aging,subject to yellowing
? Limited upper service temperature use
? Moderate service life
Chemical family I,Rubbers
? Good UV resistance
? Good hydrolysis resistance (better than rubbers)
? Excellent adhesion buildup
? Good solvent resistance
? Good temperature use range (-45 to 121°C)
? Good shear strength
? Good service life
? Poor creep resistance (compared to rubbers)
? Fair initial adhesion
? Moderate cost (compared to rubbers,silicones)
Chemical family II,Acrylates
Advantages
? Excellent chemical and solvent resistance
? Wide temperature use range (-71 to 260 °C)
? Good oxidation resistance
? Good adherence to low- and high-energy
surfaces
Limitations
? Highest cost (compared to rubbers,acrylates)
? Lack of aggressive behavior
Chemical family III,Silicones
3.6.4 Water-Based Adhesives (水基胶)
A water-based adhesive formulation can be
classified as a solution in which the polymer is
totally soluble in water or alkaline water,or as a
latex,which consists of a stable dispersion of
polymer in an essentially aqueous medium
?Dispersions consist of a continuous liquid
phase into which particles of solid are
suspended to form the dispersed phase,
?Surfactants are used to stabilize the system.
?Solids content in water-based dispersions
can be as high as 50% by volume.
? On porous substrates,water is absorbed or
evaporated in order to bond
? On nonporous substrates,water must be removed
prior to bonding
? Some are bonded following reactivation of dried
adhesive film under heat and pressure
? Many are based on natural (vegetable or animal)
adhesives
? Nonpressure sensitive (most) or pressure-sensitive
applications
Characteristics
30
? Low-cost,nonflammable,nonhazardous solvent
? Long shelf life
? Easy to apply
? Good solvent resistance
? Cross-linking of some formulations possible
? High-molecular-weight dispersions at high solids content
with low viscosity
? Poor water resistance
? Slow drying
? Tendency to freeze
? Low strength under loads
? Poor creep resistance
? Limited heat resistance
? Shrinkage of certain substrates in supported films and tapes
Advantages and Limitations
Usually unsuitable for hydrophobic surfaces,
such as plastics,in addition,water shrinks some
substrates,such as paper,textiles,and cellulosics,
and is corrosive to selected metals,such as copper,
In dispersions containing a solids content greater
than 30% by volume,the viscosity of the system
increases significantly with an increasing
sensitivity to shear forces
Shear sensitivity includes pseudoplasticity and
dilatancy,the latter is often an indication of an
unstable system
Overall desirable properties,high molecular
weight,high solids content,low viscosity,and
Newtonian flow
Properties
Natural adhesive family,casein(酪朊),cellulose,
rosin(松香),natural rubber,starch,dextrin(糊精
C
6
H
10
O
5
)
n
),sodium silicate water solutions,and
animal glues
Before 1960,polyvinyl alcohol,polyvinyl
acetate,urea formaldehyde,melamine
formaldehyde,phenol formaldehyde,styrene-
butadiene rubber,neoprene (氯丁橡胶),
reclaimed rubber,nitrile rubber,and polyvinyl
methyl ether
After 1960,largely based on acrylics.
Chemical Families
Multicomponent systems based on acrylated
silicones,acrylated urethanes,and acrylated
silicone urethanes are also available,
The addition of silicone results in adhesives with
improved therma1 stability,tensile strength,and
resistance to oil and grease,UV rays,and solvents.
The addition of urethane results in an increase in
toughness,thermal stability,and resistance to
solvents,abrasions,and UV rays,
In particular,the silicone- and urethane-based
acrylates have noticeably improved adhesion to
ceramics,fiberglass,and metals.
3.6.5 UV/EB-Cured Adhesives (光固胶)
? 100% reactive liquids cured to solids
? One substrate must be transparent for UV cure,
except when dual-curing adhesives are used
? Some UV-curable formulations are dual curing;
a second cure mechanism introduces heat or
moisture or eliminates oxygen (anaerobics)
31
? Fast cure(some in 2 to 60s)
? One component liquid,no mixing,no solvents
? Heat-sensitive substrates can be bonded,cure is,cool”
? Many are optically clear
? High production rates
? Good tensile strength
? Equipment is expensive
? High material cost
? UV cures only through transparent materials (or secondary
cure required)
? Difficult curing on parts with complex shapes
? Many UV cures have poor weatherability because they
continue to absorb UV rays
Advantages and Limitations
Oligomers,acrylated epoxy resins and
aromatic urethanes.
Monomeric diluents,monofunctional
methacrylates,and acrylates.
Cross-linking monomers contain two or more
reactive groups
Free radical initiators,trigger the cross-linking
reaction,(In EB-cured adhesives,no initiator
needed),
An adhesion promoter
A stabilizer to prevent premature
polymerization by functioning as a free radical
scavenger.(清除)
Components of UV/EB-cured adhesives
Addition polymerization,acrylic acid esters of
various forms or combinations of acrylates with
aliphatic or aromatic epoxies,urethanes,
polyesters,or polyethers.
Cationic polymerization are based on epoxies
with reactive diluents and cyclic monomers,
Chemical Families
1.减少来源(治本)
2.回收利用
3.焚烧发电
4.堆肥与填埋
3,7 聚合物的回收处理聚合物垃圾的措施
6.5
18
7.9
4
10
13
17.9
11
8.7
14
40
38
8.7
2
0
5
10
15
20
25
30
35
40
塑料食物其它庭院金属纸张玻璃重量%
体积%
美国垃圾成分
3,7 聚合物的回收容器编号