1
材料导论第九章电性能
Ohm’s Law,V = IR
Resistivity,
Conductivity,σ = 1/ρ (?-m)
-1
Il
VA
l
RA
==ρ
9-1 电阻与电导欧姆定律电阻率电导率
(?-m)
Materials
Conductors ~10
7
(?-m)
-1
Semiconductor 10
-6
~10
4
(?-m)
-1
Insulators 10
-10
~10
-20
(?-m)
-1
半导体绝缘体导体防静电材料:10
-5
~10
-9
(?-m)
-1
Silver (银) 6.8 × 10
7
Copper (铜) 6.0 × 10
7
Gold (金) 4.3 × 10
7
Aluminum (铝) 3.8 × 10
7
Brass(70Cu-30Zn) 1.6 × 10
7
Iron (铁) 1.0 × 10
7
Platinum (铂) 0.94 × 10
7
Plain carbon steel (碳钢) 0.6 × 10
7
Stainless steel (不锈钢) 0.2 × 10
7
一些金属的室温电导率
Metal Electrical conductivities (?-m)
-1
Material Electrical Conductivity
[(?-m)
-1
]
Graphite(石墨)3 × 10
4
-2 × 10
5
Concrete (dry) (混凝土)10
-9
Soda-Lime glass(钠玻璃)10
-10
-10
-11
Porcelain (陶土)10
-10
-10
-12
Borosilicate glass (硼玻璃)~ 10
-13
Aluminum oxide (氧化铝)<10
-13
Fused silica (熔硅)<10
-18
一些陶瓷的电导率一些聚合物的电导率
Material Electrical Conductivity
[(?-m)
-1
]
Phenol-formaldehyde(酚醛)10
-9
-10
-10
Polymethyl methacrylate (有机玻璃)<10
-12
Nylon 6,6 (尼龙)10
-12
-10
-13
Polystyrene (聚苯乙烯)<10
-14
Polyethylene (聚乙烯)10
-15
-10
-17
Polytetraftuoroethylene (聚四氟乙烯)< 10
-17
2
2s Electron state
1s Electron state
Electron Energy Band (电子能带)
2sElectron
energy band
(12 states)
1sElectron
energy band
(12 states)
E
n
erg
y
Individual allowed energy states
Interatomic separation(原子间距)
12个原子的情况原子间距
Energy band
Energy band gap
Energy band
En
e
r
gy
En
e
r
gy
平衡间距
Empty
band
(b)
(a)
E
f
E
f
Filled states
Empty states
Band gap
Empty
band
Filled
band
代表:一价金属(铜)
代表:二价金属(镁)
Empty
conduction
band
Empty
conduction
band
Band gap
Band gap
Filled
valence
band
Filled
valence
band
(d)
(c)
Band gap > 2eV Band gap < 2eV
半导体绝缘体
E
f
Ene
r
gy
Fi
lle
d
s
t
at
es
Em
pty
s
t
at
es
Electron
excitation
E
f
Free
Electron
E
E
g
Ene
r
gy
Conduc
t
i
on
ba
nd
Val
e
n
ce
ba
nd
B
a
nd
ga
p
Hole in
valence
band
Electron
excitation
3
E
Scattering events
(散射)
电子净运动电子迁移性
Drift velocity,V
d
= μ
e
E
Conductivity:
e
en μσ =
Electron mobility,μ
e
(m
2
/V-s)
迁移速率电子迁移率电导率
t – thermal(热)
i – impurity(杂质)
d – deformation(形变)
Mathiessen’s Law
ρ
total
= ρ
t
+ ρ
i

d
ρ
t
= ρ
0
+ aT
INFLUENCE OF TEMPERATURE
(温度的影响)
ρ
0
与a为材料常数两相体系:ρ
i=
ρ
α
V
α
+ ρ
β
V
β
For a two-phase alloy consisting of α and β phases
ρ
i
= Ac
i
(1-c
i
)
impurity concentration c
i
in terms of the atom fraction
杂质浓度为原子分数
INFLUENCE OF IMPURITIES
(杂质的影响)
INFI.UENCE OF PI.ASTIC DEFORMATION
(塑性形变的影响)
–250 –200 –150 –100 –50 0 +50
Cu + 3.32 at % Ni
Cu+2.16 at % Ni
Deformed
Cu+1.12 at % Ni
“Pure” copper
Temperature (°C)
E
l
ectri
cal
res
i
s
tiv
ity
(
-m
×
10
-8
)
6
5
4
3
2
1
0
ρ
d
ρ
i
ρ
t
4
El
e
c
tr
ic
a
l
r
e
sistiv
it
y
(
10
-8
-m
)
Composition (wt% Ni)
0 10 20 30 40 50
50
40
30
20
10
0
铜镍合金的室温电阻率与组成的关系
Intrinsic,电性能由电子结构所决定
Extrinsic:电性能受杂质原子控制
9-2 半导体
Elemental
Si 1.11 4 × 10
-4
0.14 0.05
Ge 0.67 2.2 0.38 0.18
III-V Compounds
GaP 2.25 - 0.05 0.002
GaAs 1.42 10
-6
0.85 0.45
InSb 0.17 2 × 10
4
7.7 0.07
II-VI Compounds
CdS 2.40 - 0.03 -
ZnTe 2.26 - 0.03 0.01
Material
Band Gap
(eV)
Electrical
Conductivity
[(?-m)
-1
]
Electron
Mobility
(m
2
/V-s)
Hole
Mobility
(m
2
/V-s)
材料带隙电导率电子迁移率空穴迁移率
INTRINSIC CONDUCTION
(本征电导)
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Si Si Si Si
Free
electron
Hole
E
Field
)()(
hehe
epen μμμμσ +=+=
he
epen μμσ +=
本征电导率纯硅室温电导率为4 × 10
-4
(?-m)
-1; 电子与空穴迁移率分别为0.14和0.048 m
2
/ V-s。求室温下的电子与空穴浓度。
EXAMPLE PROBLEM
SOLUTION
因材料为纯质,电子与空穴浓度应相等。故:
316
219
14
m1033.1
)V/m048.014.0)(C106.1(
)m(104
)(

×=

×
=
+
==
s
e
pn
he
μμ
σ
5
EXTRINSIC SEMICONDUCTION
所有工业化的半导体都是extrinsic; 其电性质由杂质所决定。
Extrinsic 半导体(both n- and p-type) 都由高纯度单质制得,杂质浓度约10
-7
at%,制备过程中人为掺入预定量的电子供体或受体。这种掺混称为
doping(掺杂),
Si
(4+)
P
(5+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
n-Type EXTRINSIC SEMICONDUCTOR
Si
(4+)
P
(5+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
E
Field
E
g
Conduc
t
i
on
ba
nd
Val
e
n
ce
ba
nd
B
a
nd
ga
p
Ene
r
gy
供体态传导带中的自由电子
E’
g
e
en
pn
μσ?
>>
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
B
(3+)
Hole
p-Type EXTRINSIC SEMICONDUCTOR
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
Si
(4+)
B
(3+)
E
Field
空穴价
E
g
Conduc
t
i
on
ba
nd
Val
e
n
ce
ba
nd
B
a
nd
ga
p
Ene
r
gy
受体态
6
p
ep
np
μσ?
>>
高纯硅中掺入磷使产生室温下浓度为10
23
m
-3
的载流子。
(a) 掺杂后的材料为n型还是p型?
(b) 假设材料中电子与空穴的迁移率分别为0.14
和0.048 m
2
/ V -s,求其室温电导率。
EXAMPLE PROBLEM 2
(a) 磷为VA族元素,在硅中为电子供体,故10
23
m
-3
浓度的载流子应全为电子,这一电子浓度远大于纯材料的情况(1.33 × 10
16
m
-3
,前例)。故此材料为掺杂的n型。
1
219323
)m(2240
)V/m14.0)(C106.1)(m10(

=
×== sen
e
μσ
SOLUTION
(b) 计算电导率时只考虑电子即可:
-200 –100 0 100 400 1000
50 100 200 400 600 1000 1500
Temperature (°C)
Temperature (K)
10,000
1,000
100
10
1
0.1
0.01
E
l
ect
ri
cal co
n
d
u
c
tivit
y
(
-m
)
-1
温度对电导率的影响
Intrinsic
Intrinsic
0.0052 at%
0013 at%
0 0.002 0.004 0.006 0.008 0.010 0.012 0.014
ln
n,
p (
m
-3
)
温度(°C)
电子与空穴(Intrinsic)
空穴(Extrinsic)
电子与空穴(Intrinsic)
空穴(Extrinsic)
0.0052 at% B
0.0013 at% B
温度
-1
(K
-1
)
载流子浓度
(
数目
/m
3
)
60
58
56
54
52
50
48
10
26
10
25
10
24
10
23
10
22
10
21
10
20
700 100 0 –100 –150 –200
温度对载流子浓度的影响
kT
E
C
g
2
lnσ
C为与温度无关的常数,E
g
为带隙能,k 为
Boltzmann’s 常数
kT
E
Cpn
g
2
'lnln=
由于n 或p 大幅度增加,μ
e
和μ
h
降低很少,

e
en
pn
μσ?
>>
p
ep
np
μσ?
>>
7
)/1(
ln
2
)/1(
ln
2
T
n
k
T
p
kE
g
=
=
Intrinsic
Extrinsic
Saturation
ln
p
1/T
k
E
T
p g
2)/1(
ln
=
kT
E
Cpn
g
2
'lnln=
EXAMPLE PROBLEM 3
纯锗的25°C电导率为2.2 (?-m)
-l
,估算其150 °C 的电导率。
锗的E
g
值为0.67 eV,代入公式
kT
E
C
g
2
lnσ
83.13
)K298)(K/eV1062.8)(2(
eV67.0
)2.2ln(
2
ln
5
=
×
+=
+=
kT
E
C
g
σ
SOLUTION
150°C下:
64.4
)K423)(K/eV1062.8)(2(
eV67.0
83.13
2
ln
5
=
×
=
=
kT
E
C
g
σ
1
)m(8.103

纯硅室温电导率为4 × 10
-4
(?-m)
-l
。现欲得到一种室温电导率为150 (? -m)
-l
的n型硅材料。确定一种杂质物并求其所需浓度(原子百分比)。假定电子与空穴的迁移率相同,杂质达到饱和。
设计例题:
使硅成为n型半导体的杂质元素在周期表中必然处于硅的右侧,如氮,磷,砷,锑等。
又因在n型材料中n? p,电导率只是自由电子浓度的函数。由杂质原子全部有效的条件,自由电子数就等于杂质原子数:
d
Nn ~
SOLUTION
321
219
1
m107.6
)V/m14.0)(C106.1(
)m(150
×=
×

=
==
s
e
Nn
e
d
μ
σ
查表得到电子迁移率为(0.14 m
2
/V-s),代入所要求的
150 (?-m)
-1

8
单位体积中的硅原子数N
Si
为:
328
323
Si
Si
Si
m105
g/mol09.28
)(2.33Mg/matoms/mol)10023.6(
×=
×
=
=
A
N
N
A
ρ
5
328321
321
Si
1034.1
100
)m105()m10(6.7
m107.6
100'

×=
×
×+×
×
=
×
+
=
NN
N
C
d
d
d
故杂质原子的百分比为:
x
I
x
B
z
c
d
z
y
+

V
H
Hall Effect
d
BIR
V
zxH
H
=
R
H
为材料常数,可用上式测定金属的电子传导:
en
R
H
1
=
n亦可测
en
R
H
1
=
en
e
σ
μ =
σμ
He
R=
μ
e
亦可测
EXAMPLE PROBLEM 4
铝的电导率和电子迁移率分别为3.8 × 10
7
(?-m)
-1
和0.0012
m
2
/V-s。在电流为25A,磁场为0.6 tesla条件下求厚度为15
mm 铝样品的Hall电压。
SOLUTION
所用公式为
d
BIR
V
zxH
H
=
首先应求出Hall系数R
H
9
teslaAmV
m
sVm
R
e
H
×?=
×
=?=
/1016.3
)(108.3
/0012.0
11
17
2
σ
μ
V1016.3
m1015
)tesla6.0)(A25)(teslam/AV1016.3(
8
3
11
×?=
×
×?
=
=
d
BIR
V
zxH
H
再求出V
H
p-side n-side
9-3 半导体器件空穴流电子流
Battery
结合区
P型N型
Battery
空穴流电子流
C
u
rren
t
,
I +
-
Breakdown
Reverse bias
–V
0
0
I
F
Forward bias
I
R
+V
0
Voltage,V
+
-
P-N结的电流-电压关系
V
o
l
t
ag
e,
V
R
e
v
e
rse F
o
rw
ar
d
+V
0
0
–V
0
I
F
0
I
R
C
u
rre
nt,
I
R
e
v
e
rse F
o
rw
ar
d
Time
Time
(a)
(b)
P-N结的整流作用
10
p-Type n-Type p-Type
n-Type p-Type n-Type
PNP型三极管
NPN型三极管基极收集极发射极基极收集极发射极
p
Forward-biasing voltage
Reverse-biasing voltage 反向偏压
Load
Output
voltage
Emitter Base Collector
nn
三极管的放大作用正向偏压基极收集极发射极三极管的放大原理
p
Load
Emitter Base Collector
nn
基极收集极发射极
I
e
I
b
I
c
I
e
= I
rb
+ I
c
I
rb
<< I
c
BV
c
e
eII
/
0
=
p-Type channel
p-Type Si p-Type Si
n- Type Si substrate
Source Gate Drain
SiO
2
insulating
layer
MOSFET
(metal-oxide-semiconductor field-effect transistor )
Resist
Glass mask
SiO
2
Si Si
Si Si Si
Resist
SiO
2
紫外线光降解隔层
Resist
Glass mask
紫外线
Si Si
Si Si
Resist
Si
Metal
Metal
Exposed
resist
光固化隔层
11
Ion beam,100 keV As
+
SiO
2
SiO
2
Si
Si
Implanted region
9.4 介电行为
l
A
V
Q
C
0
0
0
ε==
Vacuum
l
D= εE= ε
0
E + P
E = V/l
Dielectric
D
0
= ε
0
E
V
P
V
l
A
V
Q
C ε==
0000
D
D
C
C
Q
Q
r
====
ε
ε
ε
EEDDP
r
)1()(
000
=?=?= εεεε
介电常数电荷密度(介电位移)
真空电容率
ε
0
=8.85×10
12
F/m
D
0
= ε
0
E
l
A
V
Q
C
0
0
0
ε==
Q
0
=D
0
A= ε
0
EA
E = V/l
D= εE= ε
0
E + P
l
A
V
Q
C ε==
Q =DA = εEA
0000
D
D
C
C
Q
Q
r
====
ε
ε
ε
EEDDP
r
)1()(
000
=?=?= εεεε
一平板电容的面积为6.45 × 10
-4
m
2
,相距2 × 10
-3
m,板间电压为10 V。两板间填充材料的介电常数为6.0。求:
(a) 电容
(b) 平板的电荷量
(c) 介电位移D(电荷密度)
(d) 极化率P
EXAMPLE PROBLEM
(a) 先求电介质的电容率ε,
F1071.1
m102
m106.45
F/m)1031.5(
11
3
24
11
×=
×
×
×==
l
A
C ε
F/m1031.5
)F/m1085.8)(0.6(
11
12
0
×=
×== εεε
r
故电容为:
SOLUTION
12
C101.71
F)(10V)1071.1(
10
11
×=
×== CVQ
(b)电荷量:
27
11
C/m1066.2
)F/m)(10V1031.5(V
×
×
===
l
ED εε
(c) 介电位移:
27
3
12
27
00
C/m1022.2
m102
F/m)(10V)10(8.85
C/m1066.2
×=
×
×
×=
=?=
l
V
DEDP εε
(d) 极化率:
-q
+q
p
d
Ε Ε
Force
Force
-q +q
+q
-q
p = qd
偶极矩
V
+ + + + + +
+
_
_ _ _ _ _ _
Area of plate,A
–Q
0
+Q
0
Vacuum
l
V
+ + + + + + +
+
_
_ _ _ _ _ _ _
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
Q
0
+ Q’
–Q
0
–Q’
P
表面上的净负电荷为-Q’
无净电荷区域表面上的净负电荷为+Q’= PA
+
+
No field
Applied
E Field
电子极化
13
---
--
---
+
++
++
++
--
+
++
---
--
---
+
++
++
++
--+++
离子极化取向极化
ii
qdp =
oie
PPPP ++=
E

+

+

+

+
+ + + + + +
------
------
E
(a) (b)

+

+

+

+
+ + + + + +
交变电场
D
i
el
ect
ric co
nst
a
n
t
,
ε
r
10
4
10
8
10
12
10
16
Frequency (Hz)
Electronic
Ionic
Orientation
介电常数与频率的关系
0 10
4
10
8
10
12
10
16
10
20
D
i
electri
c los
s
Molecular
Ionic
Electronic
Frequency (Hz)
介电损耗
14
0.403nm
0.398nm
0.398nm
0.006nm
0.006nm
0.009nm
Ti
4+
Ba
2+
O
2-
9.5 压电性与电致伸缩

+

+
--
+

+

+
--
+
+ + + + + +
------

+

+

+

+

+

+
+ + + + + +
------
(b)
σ
V
(a)
σ

+

+
--
+

+

+

+

+
+ + + + + + + +
--------
(c)
+

应力产生的电场= ξ = gσ
电场产生的应变= ε = dξ
ξ – the electric field strength (V-m
-1
)
σ – the applied stress (N-m
-2
)
ε –strain
g and d – constants
E – modulus of elasticity
gd
E
1
=
Material 压电常数
d (m-V
-1
)
Quartz 2.3 × 10
-12
BaTiO
3
100 × 10
-12
PbZrTiO
6
250 × 10
-12
PbNb
2
O
6
80 × 10
-12
例题设计压力限制装置在直径2.5 mm 的探头上设计安装一片0.25 mm
厚的钛酸钡。当片材受力超过200 N时,即产生电流停止施力。钛酸钡模量为69 GN-m
-2。
Solution
限制受力为200N,则最大应力为:
2
23
7.40
)105.2)(4/(
200
=
×
== mMN
N
A
F
π
σ
由于E = 69 GN-m
-2
,应变为:
m/m1090.5
1069
107.40
4
9
6
×=
×
×
==
E
σ
ε
15
查表,d = 100 × 10
-12
m-V
-1
V
VV
V
d
1475
)m1025.0)(m1090.5(
m1090.5
10100
1090.5
316
16
12
4
=
×?×=×=
×=
×
×
==

厚度ξ
ε
ξ
所以,所设计电路应在电压为1475V时启动。