1
Elasticity
2
3
Chapter12 Sheet bending
Summarization
§ 12- 1 Basic Hypothesis
§ 12- 2 Basic Functions
§ 12- 3 Internal Force of Cross Section
§ 12- 4 Boundary Condition of Sheet
§ 12- 5 Solution of Sheet Bending under Rectangular
Coordinate
§ 12- 6 Axisymmetric Bending of Circular Sheet
§ 12- 7 Solution of Displacement of Sheet by Calculus
of Variation
4
第十二章 薄板弯曲
概述
第一节 基本假设
第二节 基本方程
第三节 横截面上的内力
第四节 薄板的边界条件
第五节 薄板弯曲的直角坐标求解
第六节 圆形薄板的轴对称弯曲
第七节 变分法求薄板的位移
5
Summarization
Sheet is different from thick board。 Generally,if the ratio of
the thickness of the board and the minimal dimension of the board
face satisfies,
???????????? 81~511 0 01~801 << bt
We call the board sheet,
Choose the ordinate origin as
a point of the middle plane,and
axes of x and y in the middle
plane,z perpendicular to it,
which are shown in fig.,
x
y z
o
We call the plane halves
the thickness of the board
middle plane,
6
概述
薄板区别于厚板。通常情况下,板的厚度 t与板面的最
小尺寸 b的比值满足如下条件,
???????????? 81~511 0 01~801 << bt
则称为薄板。
将坐标原点取于中面
内的一点,x和 y轴在中面
内,z 垂直轴向下,如图
所示。
x
y z
o
我们把平分板厚度的平
面称为中面。
7
When sheet accepts common load,we always divide the load
into two components,One is transverse load,which is
perpendicular to middle plane,one is longitudinal load,which
acts in middle plane,For the latter,we assume its distributing is
even along the thickness of the sheet,and treat it as the plane
stress problem,In this chapter,we just discuss the stress,strain
and displacement when sheet is bent because of transverse load,
8
当薄板受有一般载荷时,总可以把每一个载荷分解
为两个分量,一个是垂直于中面的横向载荷,另一个是
作用于中面之内的纵向载荷。对于纵向载荷,可认为它
沿薄板厚度均匀分布,按平面应力问题进行计算。本章
只讨论由于横向载荷使薄板发生小挠度弯曲所引起的应
力、应变和位移。
9
§ 12- 1 Basic Hypothesis
For small bending problem of sheet,we generally adopt these
assumptions,
( 1) fixity of the board thickness
Namely,any normal which is perpendicular to middle
plane has the same bending,
( 2) fixity of normal of the middle plane
? ?yxww,?
The normal strain perpendicular to middle plane is very
small,thus we can ignore it,Namely, From geometric
equations,we have,thus we get,
0?z?
0??? zw
z?
10
§ 12- 1 基本假设
薄板小挠度弯曲问题,通常采用如下假设,
( 1)板厚不变假设
? ?yxWW,?
即:在垂直于中面的任一条法线上,各点都具有相同的
挠度。
( 2)中面法线保持不变假设
垂直于中面方向的正应变 很小,可以忽略不计。
即,由几何方程得,从而有,0?
z? 0??
?
z
W
z?
11
The beeline which is perpendicular to middle plane before
deformation is still a beeline after deformation,and is still
perpendicular to the bent middle plane,Namely,
0,0 ?? yzxz ??( 3) the board surface is neutrosphere
Namely ? ? ? ? 0,0
00 ?? ?? zz vu
From the geometric functions,
? ? ? ? ? ? 0,0,0 000 ??? ??? zxyzyzx ???
( 4) the stress has very small effect on deformation,thus
can be ignored,Scilicet we think,0?
z?
z?
12
在变形前垂直于中面的直线,变形后仍为直线,并垂
直于弯曲后的中面。即
0,0 ?? yzxz ??
( 3)中面为中性层假设
即 ? ? ? ? 0,0
00 ?? ?? zz vu
由几何方程得
? ? ? ? ? ? 0,0,0 000 ??? ??? zxyzyzx ???
( 4)应力 对变形的影响很小,可以略去不计。亦即认为
0?z?
z?
13
§ 12- 2 Basic Equations
Solving sheet bending problem in terms of displacement,
Choose the sheet bending as the basic unknown quantity,
and express the other physical quantities with,
w
w
( 1) Geometric Function
Fetch a small rectangle ABCD on the
middle plane,as shown in fig.,Its side
lengths are dx and dy,Under action of
the load,the rectangle is bent to flexural
plane A’B’C’D’。 suppose the bending at
point A is,the obliquities of stretch
flexural plane along direction x and y are
and,
w
y
w
x
w
?
?
?
?
dx
xw??
yw??
dy
y
z
D? C?
B?A?
A B x
CD
14
§ 12- 2 基本方程
按位移求解薄板弯曲问题。取薄板挠度 为基本未知
量,把所有其它物理量都用 来表示。
w
w
( 1)几何方程
在薄板的中面上取一微
小矩形 ABCD如图所示。它的
边长为 dx和 dy,载荷作用后,
弯成曲面 A’B’C’D’。设 A点的
挠度为,弹性曲面沿 x和 y
方向的倾角分别为 和,

w
y
w
x
w
?
?
?
?
dx
xw??
yw??
dy
y
z
D? C?
B?A?
A B x
CD
15
The bending at point B is dx
x
ww
?
??
The bending at point D is dy
y
ww
?
??
From and we know 0 0 ?? yzxz ?? 0,0 ?
?
??
?
??
?
??
?
?
y
w
z
v
x
w
z
u
Or can be written as
y
w
z
v
x
w
z
u
?
???
?
?
?
???
?
?,
After integral by z,and using, we get ? ? ? ? 0,0
00 ?? ?? zz vu
zywvzxwu ????????,
zyx wxvyuxy ???????????
2
2?
Then the strain components
can be expressed by as
z
y
w
y
v
z
x
w
x
u
y
x
2
2
2
2
?
?
??
?
?
?
?
?
??
?
?
?
?
?
W
16
B点的挠度为 dx
x
ww
?
??
D点的挠度为 dy
y
ww
?
??
由 和 可知 00 ?? yzxz ?? 0,0 ?
?
??
?
??
?
??
?
?
y
w
z
v
x
w
z
u
或写成
y
w
z
v
x
w
z
u
?
???
?
?
?
???
?
?,
对 z进行积分,并利用,得 ? ? ? ? 0,0
00 ?? ?? zz vu
zywvzxwu ????????,
于是应变分量用 表示为,
z
y
w
y
v
z
x
w
x
u
y
x
2
2
2
2
?
?
??
?
?
?
?
?
??
?
?
?
?
?
zyx wxvyuxy ???????????
2
2?
w
17
Under small deformation,because of weeny bending,the
curvature of stretch flexural plane along the coordinate direction
can approximatively be denoted by bending, w
yx
w
k
y
w
k
x
w
k
xy
y
x
??
?
??
?
?
??
?
?
??
2
2
2
2
2
2
Thus the strain components can also be written as,
zk
zk
zk
xyxy
yy
xx
?
?
?
?
?
?
18
小变形下,由于挠度是微小的,弹性曲面在坐标方向的
曲率可近似地用挠度 表示为, w
yx
w
k
y
w
k
x
w
k
xy
y
x
??
?
??
?
?
??
?
?
??
2
2
2
2
2
2
所以应变分量又可写成
zk
zk
zk
xyxy
yy
xx
?
?
?
?
?
?
19
( 2) Physical Functions
Ignoring the strain caused by,physical functions become,
z?
? ?
? ?
? ?
xyxy
xyy
yxx
E
E
E
?
?
?
????
????
?
?
??
??
12
1
1
Express the stress components with strain components,we have,
? ?
? ?
? ?
xyxy
xyy
yxx
E
E
E
?
?
?
???
?
?
???
?
?
?
?
?
?
?
?
?
?
12
1
1
2
2
20
( 2)物理方程
不计 所引起的应变,物理方程为,z? ? ?
? ?
? ?
xyxy
xyy
yxx
E
E
E
?
?
?
????
????
?
?
??
??
12
1
1
把应力分量用应变分量表示,得,
? ?
? ?
? ?
xyxy
xyy
yxx
E
E
E
?
?
?
???
?
?
???
?
?
?
?
?
?
?
?
?
?
12
1
1
2
2
21
( 3) Differential Equation for Stretch Flexural Plane
Ignoring body force,from the first two formulas of
equilibrium equations,we get,
These formulas indicate,the main stress components
have linear distributing along board thickness,xyyx ???,,
z
yx
wE
z
x
w
y
wE
z
y
w
x
wE
xy
y
x
??
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
2
2
2
2
2
2
2
2
2
2
2
1
1
1
?
?
?
?
?
?
?
?
Express stress components with bending,we have w
22
( 3)弹性曲面微分方程
在不计体力的情况下,由平衡方程的前二式得,
上式说明,主要的应力分量 沿板的厚度线性
分布。 xyyx
???,,
将应力分量用挠度 表示,得,
z
yx
wE
z
x
w
y
wE
z
y
w
x
wE
xy
y
x
??
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
2
2
2
2
2
2
2
2
2
2
2
1
1
1
?
?
?
?
?
?
?
?
w
23
xyz
yxz
xyyzy
yxxzx
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
???
???
Substitute physical functions which stress components are
denoted by bending into the above formulas and cancel
terms,we get w
w
y
Ez
z
w
x
Ez
z
zy
zx
2
2
2
2
1
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
Because the bending doesn’t change along z axis,and the
boundary conditions on top surface and under surface of sheet
are,
w
? ? ? ? 0,0
22
?? ???? tzzytzzx ??
24
xyz
yxz
xyyzy
yxxzx
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
???
???
将应力分量用挠度 表示的物理方程代入上式,并化
简得,
w
w
y
Ez
z
w
x
Ez
z
zy
zx
2
2
2
2
1
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
由于挠度 不随 z 变化,且薄板在上下面的边界条
件为,
w
? ? ? ? 0,0
22
?? ???? tzzytzzx ??
25
Integrating the above two formulas on z,we get,
? ? wxtzEzx 2
2
2
2 412 ??
?
???
?
???
? ?
?? ??
? ? wytzEzy 2
2
2
2 412 ??
?
???
?
???
? ?
?? ??
From the third formula of differential equations
of equilibrium,we get,
yxz
zyzxz
?
??
?
???
?
? ???
Substituting into the expression which are denoted by
Bending,and canceling terms,we get zyzx ??,w
? ? wztEz z 42
2
2 412 ????
?
???
? ?
???
?
?
? ( 1)
26
将前面二式对 z 进行积分,得,
? ? wxtzEzx 2
2
2
2 412 ??
?
???
?
???
? ?
?? ??
? ? wytzEzy 2
2
2
2 412 ??
?
???
?
???
? ?
?? ??
再由平衡微分方程第三式,得,
yxz
zyzxz
?
??
?
???
?
? ???
将 用挠度 表达式代入,并化简得,
zyzx ??,w
? ? wztEz z 42
2
2 412 ????
?
???
? ?
???
?
?
? ( 1)
27
Because the bending doesn’t change along z axis,and we
have the boundary condition,w
? ? 02 ?? tzz?
Integrating formula( 1) on z,we get,
? ? wtztzEtz 4
2
2
3
12116 ??????? ??????? ???? ??
Supposing the load acts on per unit area on top surface of sheet
is q(including transverse surface force and transverse body
force),and the boundary condition on board top surface is
? ? qtzz ???? 2?
Substitute the expression of into the above formula,we get
the differential equation,
z?
D
qw ?? 4
28
由于挠度 不随 z 变化,且薄板有边界条件, w
? ? 02 ?? tzz?
将( 1)式对 z 积分,得,
? ? wtztzEtz 4
2
2
3
12116 ??????? ??????? ???? ??
设在薄板顶面上每单位面积作用的载荷 q(包括横向面
力和横向体力),板上面的边界条件为,
? ? qtzz ???? 2?
将 的表达式代入该边界条件,得薄板挠曲微分方程, z?
D
qw ?? 4
29
where
? ?2
3
112 ???
EtD
We call D bend rigidity of sheet,
The sheet bending differential equation is also called stretch
flexural plane differential equation,which is the basic
differential equation of sheet bending problems,
30
其中
? ?2
3
112 ???
EtD
称为薄板的弯曲刚度。
薄板挠曲微分方程也称为薄板的弹性曲面微分方
程,它是薄板弯曲问题的基本微分方程。
31
§ 12- 3 Internal Force of Cross Section
Fetch a small hexahedron at the cross section of the sheet,Its
three sides’ length are respectively,as shown in fig.,At
the cross section which is perpendicular to x axis,there are normal
stress and shear stress, Because the sum of and
equals to zero along the board thickness,they can only be
synthesized to bending moment
and twisting moment ;while can only be
synthesized to transverse shearing force,
tdydx,,
x? x? xy?
xM
xyM
xzxy ??,
xz?
xQ 2
t
2t
dy
dx
Obviously,at the section perpendicular to
x axis,the values of per unit width are,
32
§ 12- 3 横截面上的内力
在薄板横截面上取一微分六面体,
其三边的长度分别为,如图所
示。在垂直于 x 轴的横截面上,作用着
正应力 和剪应力 。由于 和
在板厚上的总和为零,只能分别合
成为弯矩 和扭矩 ;而 只能合
成横向剪力 。
tdydx,,
x? x?
xy?
xM xyM
xzxy ??,
xz?
xQ
2t
2t
dy
dx
显然,在垂直于 x 轴的横截面上,
每单位宽度之值如下,
33
dzQ
z d zM
z d zM
t
t xzx
t
t xyxy
t
t xx
?
?
?
?
?
?
?
?
?
2
2
2
2
2
2
?
?
?
Similarly
dzQ
z d zM
z d zM
t
t xzy
t
t yxyx
t
t yy
?
?
?
?
?
?
?
?
?
2
2
2
2
2
2
?
?
?
34
dzQ
z d zM
z d zM
t
t xzx
t
t xyxy
t
t xx
?
?
?
?
?
?
?
?
?
2
2
2
2
2
2
?
?
?
同理
dzQ
z d zM
z d zM
t
t xzy
t
t yxyx
t
t yy
?
?
?
?
?
?
?
?
?
2
2
2
2
2
2
?
?
?
35
Substituting into the expression between stress components
and bending,and integrating,we get w
? ?
w
y
DQ
w
x
DQ
yx
w
DMM
x
w
y
w
DM
y
w
x
w
DM
y
x
yxxy
y
x
2
2
2
2
2
2
2
2
2
2
2
1
?
?
?
??
?
?
?
??
??
?
????
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
The above formulas are called elasticity equations between
interior force and deformation of sheet bending problems,
36
将上节给出的应力分量与挠度 之间关系代入,并积分
得,
w
上式称为薄板弯曲问题中内力与变形之间的 弹性方程。
? ?
w
y
DQ
w
x
DQ
yx
w
DMM
x
w
y
w
DM
y
w
x
w
DM
y
x
yxxy
y
x
2
2
2
2
2
2
2
2
2
2
2
1
?
?
?
??
?
?
?
??
??
?
????
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
37
According to the expression between stress components and
bending,and the differential equations and the elasticity
equations,canceling,we get the relations among stress
components,bending moment,twisting moment,load,
w
w
?
?
?
?
?
?
??
?
?
?
?
?
???
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
???
?
??
t
z
t
z
q
z
t
t
Q
z
t
t
Q
z
t
M
z
t
M
z
t
M
y
y
yz
x
xz
xy
xy
y
y
x
x
1
2
1
2
4
6
4
6
12
12
,
12
2
2
2
3
2
2
3
3
33
?
?
?
?
??
38
利用应力分量与挠度 之间的关系、薄板挠曲微分方
程以及内力与形变之间的弹性方程,消去,可以给出各
应力分量与弯矩、扭矩、剪力、载荷之间的关系。
w
w
?
?
?
?
?
?
??
?
?
?
?
?
???
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
???
?
??
t
z
t
z
q
z
t
t
Q
z
t
t
Q
z
t
M
z
t
M
z
t
M
y
y
yz
x
xz
xy
xy
y
y
x
x
1
2
1
2
4
6
4
6
12
12
,
12
2
2
2
3
2
2
3
3
33
?
?
?
?
??
39
Obviously,along the sheet thickness,the max,of stress
components exists at the board surface,the max,of
and exist at the middle plane,while the max,of exists
at the load acting plane,Moreover,among the stress
components caused by certain load,have the bigger
numerical value,thus it is the main stress; and have the
relatively smaller numerical values,they are the secondary
stresses; extrusion stress has the smallest numerical value,
it is the most unimportant stress,Thus,when we calculate the
interior force of sheet,we mainly calculate bending moment
and twisting moment,
xyyx ???,,
xz? yz? z?
xyyx ???,,
xz? yz?
z?
40
显然,沿着薄板的厚度,应力分量 的最大值
发生在板面,和 的最大值发生在中面,而 之最大值
发生在载荷作用面。并且,一定载荷引起的应力分量中,
在数值上较大,因而是主要应力; 及 数值较
小,是次要的应力;挤压应力 在数值上最小,是更次要
的应力。因此,在计算薄板的内力时,主要是计算弯矩和
扭矩。
xyyx ???,,
xz? yz? z?
xyyx ???,,xz? yz?
z?
41
§ 12- 4 Boundary Condition of Sheet
Take the rectangle as shown in fig,for example,
O x
y
A B
a
b
C
1 The Fixed Side
Supposing OA is the fixed supporting
boundary,at which the bending and the
normal slope of stretch plane equal to
zero,namely,
? ? 00 ??xw 0
0
??
?
??
?
?
?
?
?xx
w
2 The Simple Supporting Side
Supposing OC is the simple supposing boundary,at
which the bending and bending moment My
42
§ 12- 4 薄板的边界条件
以图示矩形板为例,
O x
y
A B
a
b
C
1 固定边
假定 OA 边是固支边界,则边
界处的挠度和曲面的法向斜率等于
零。即,
? ? 00 ??xw 0
0
??
?
??
?
?
?
?
?xx
w
2 简支边
假设 OC 边是简支边界,则边界处的挠度和弯矩 My
43
equal to zero,Namely,? ? ? ?
0,0 00 ?? ?? yyy Mw
from
???
?
???
?
?
??
?
???
2
2
2
2
xyDM y
???
Even at OC side,? ? 0
0 ??yw
namely
02
2
??? xw
Then the boundary conditions of simple supposing side OC can
be written as,
? ? 00 ??yw 0
0
2
2
???
?
?
???
?
?
?
?yy
w
44
等于零。 即,? ? ? ? 0,0
00 ?? ?? yyy Mw
由于
???
?
???
?
?
??
?
???
2
2
2
2
x
w
y
wDM
y ?
且在 OC上 ? ? 0
0 ??yw

02
2
??? xw
则简支边 OC 边界条件可写成,
? ? 00 ??yw 0
0
2
2
???
?
?
???
?
?
?
?yy
w
45
3 The Free Side
CB side is the free boundary,along which the bending
moment,twisting moment and transverse shearing stress equal
to zero,namely,
? ?
? ?
? ? 0
0
0
?
?
?
?
?
?
axx
axxy
axx
Q
M
M
Because the twisting moment can be switched to equivalent
shearing force,the second and the third conditions can be united
into,
0???
?
?
???
?
?
??
? ax
xy
x y
MQ
46
3 自由边
板边 CB 为自由边界,则沿该边的弯矩、扭矩和横向
剪应力都为零,即,
? ?
? ?
? ? 0
0
0
?
?
?
?
?
?
axx
axxy
axx
Q
M
M
由于扭矩可以变换为等效的剪力,故第二及第三个条件可
合并为,
0???
?
?
???
?
?
??
? ax
xy
x y
MQ
47
Substituting into the expressions among Mx,Qx,Mxyand
we get the boundary conditions of free boundary CB,
w
? ? 02
0
2
3
3
3
2
2
2
2
?
?
?
?
?
?
?
?
?
??
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
ax
ax
yx
w
x
w
y
w
x
w
?
?
48
将 Mx,Qx,Mxy与 的关系代入,得自有边界 CB 的边界条
件为,
w
? ? 02
0
2
3
3
3
2
2
2
2
?
?
?
?
?
?
?
?
?
??
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
ax
ax
yx
w
x
w
y
w
x
w
?
?
49
§ 12- 5 Solution of Sheet Bending
under Rectangular Coordinate
When solving sheet bending problems in terms of displacement,we
always adopt half converse solution,First we enact a expression
which coefficient is under confirm for sheet bending; then from
differential function and boundary conditions,we confirm the
coefficient;at last,from the expression between the bending and stress
components,we get the stress components,
Example 1 Try to seek the maximal bending
and maximal bending moment of the fixed
elliptic sheet which is under even
distributing load q,
a
b
o
x
y
Solution,under coordinate as shown
in fig.,the boundary function
of elliptic sheet is 1
2
2
2
2
?? byax
50
§ 12- 5 薄板弯曲的直角坐标求解
用位移法求解薄板弯曲问题,通常采用半逆解法。首
先设定具有待定系数的薄板挠度的表达式;其次利用薄板
曲面微分方程和边界条件,确定待定常数;最后由挠度与
应力分量的关系,求得应力分量。
例 1 试求边界固定的椭圆形薄
板在承受均布载荷 q 后的最大
挠度和最大弯矩。
a
b
o
x
y
解:在图示坐标下,椭圆薄板
的边界方程为,
12
2
2
2
?? byax
51
Enacting the expression of bending is,
2
2
2
2
2
1 ??
?
?
???
? ???
b
y
a
xCw
Where C is a constant,Supposing n is the outside normal of
sheet boundary,then at the sheet boundary,we have
0,0 ???? nww
Notice that ? ? ? ?yn
y
wxn
x
w
n
w,c o s,c o s
?
??
?
??
?
?
0s inc o s14 222
2
2
2
??
?
??
?
? ?
???
?
???
? ????
b
y
a
x
b
y
a
xC ??
Obviously the expression of bending satisfies the fixed
boundary condition,
w
52
设挠度的表达式为,
2
2
2
2
2
1 ??
?
?
???
? ???
b
y
a
xCw
其中 C为常数。设 n为薄板边界外法线,则在薄板的边界
上应有,
0,0 ???? nww
注意到 ? ? ? ?yn
y
wxn
x
w
n
w,c o s,c o s
?
??
?
??
?
?
0s inc o s14 222
2
2
2
??
?
??
?
? ?
???
?
???
? ????
b
y
a
x
b
y
a
xC ??
显然所设挠度 的表达式满足固定边界条件。 w
53
Substituting the expression of bending into the
differential equation,w
D
qw ?? 4
We get,
?
?
??
?
? ??
?
4224
0
3238
bbaa
D
qC
thus
?
?
?
?
?
?
??
??
?
?
??
?
?
??
?
4224
2
2
2
2
2
0
323
8
1
bbaa
D
b
y
a
x
q
w
The interior force
???
?
???
?
?
??
?
???
2
2
2
2
yxDM x
???
??
?
??
?
???
?
???
? ???????
24
2
22
2
222
2
4
2 1313
4 bb yba xaba ya xCD ?
54
将挠度 的表达式代入弹性曲面微分方程 w
D
qw ?? 4
得,
?
?
??
?
? ??
?
4224
0
3238
bbaa
D
qC
从而
?
?
?
?
?
?
??
??
?
?
??
?
?
??
?
4224
2
2
2
2
2
0
323
8
1
bbaa
D
b
y
a
x
q
w
内力
???
?
???
?
?
??
?
???
2
2
2
2
yxDM x
???
??
?
??
?
???
?
???
? ???????
24
2
22
2
222
2
4
2 1313
4 bb yba xaba ya xCD ?
55
???
?
???
?
?
??
?
???
2
2
2
2
x
w
y
wDM
y ?
?
?
?
?
?
?
???
?
???
? ???????
24
2
22
3
222
2
4
2 1313
4 aa xba ybba xb yCD ?
? ? yx wDM xy ?????? 21 ?
? ? 2218 ba xyCD ????
The maximal deflection is,? ?
Cw yx ??? 0,0m ax
The maximal flexural torque is
( suppose a>b),? ? 2,0m a x 8 bCDMM byxy ??? ??
where
? ?2
3
4224
0
112
,323
8 ??
?
?
?
??
?
? ??
? EtD
bbaa
D
qC
56
???
?
???
?
?
??
?
???
2
2
2
2
x
w
y
wDM
y ?
?
?
?
?
?
?
???
?
???
? ???????
24
2
22
3
222
2
4
2 1313
4 aa xba ybba xb yCD ?
? ? yx wDM xy ?????? 21 ?
? ? 2218 ba xyCD ????
最大挠度为,
? ? Cw yx ??? 0,0m ax
最大弯矩为(设 a>b),? ?
2,0m a x
8
b
CDMM
byxy ??? ??
其中
? ?2
3
4224
0
112
,323
8 ??
?
?
?
??
?
? ??
? EtD
bbaa
D
qC
57
Example 2 Try to solve the
maximal deflection of rectangular
sheet,which is quadrangular freely-
supported and beared uniform load,
Solution,select the coordinate system as the figure shown
Assuming ? ?
a
xmyYw
m
m
?s in
1
??
?
?
thus at the boundary where x=0
and x=a,the boundary conditions
0,0 2
2
???? x ww
is satisfied naturally,
Substituting the expression of into the differential equation of
elastic curved face
w
D
qw ?? 4
2b
2b
a
o
x
y
o
0q
x
z
58
例 2,试求图示四边简支,
承受均布载荷 的矩形薄
板之最大挠度。
0q
解:取图示坐标系
设 ? ?
a
xmyYw
m
m
?s in
1
??
?
?
则在 x=0及 x=a边界上,边
界条件
0,0 2
2
???? x ww
自然满足。
将 的表达式代入弹性曲面微分方程 w
D
qw ?? 4
2b
2b
a
o
x
y
o
0q
x
z
59
yields
? ?
D
qx
a
mY
a
mY
a
mY
m
mmm
0
1
42
4 s in2 ?
?
?
?
?
?
?
?
?
?????????????????
?
?
???
Expanding by Fourier series 0q
? ? a xmyFq
mm
?s in
1
0 ?
?
?
?
where ? ?
?? ? dxa xmqayF am ?s i n2 0 0
0
m
q
?
04
m is even number
m is odd number
thus
Choosing the particular solution of differential equation yields,
? ? ? ? ? ? ? ??5,3,142 0424 ?????????????????? mmDqyYamyYamyY mmm ???
? ? ? ??5,3,14 55 40 ?? mmD aqyY m ?★
60

? ?
D
qx
a
mY
a
mY
a
mY
m
mmm
0
1
42
4 s in2 ?
?
?
?
?
?
?
?
?
?????????????????
?
?
???
将 展为傅立叶级数 0q
? ? a xmyFq
mm
?s in
1
0 ?
?
?
?
其中 ? ? ?? ? dx
a
xmq
ayF
a
m
?s i n2
0 0
0
m
q
?
04
m为偶数
m为奇数

取微分方程的特解为,
? ? ? ? ? ? ? ??5,3,142 0424 ?????????????????? mmDqyYamyYamyY mmm ???
? ? ? ??5,3,14 55 40 ?? mmD aqyY m ?★
61
and noticing the deflection is even function of y,thus general
solution of inhomogeneous linear ordinary differential equation is,
w
? ? ? ??5,3,14 55 40 ???? mmD aqa ymsha ymBa ymchAyY mmm ????
yields
Using the boundary conditions (symmetrical characteristic)
At 2
by ?
0,0 2
2
???? y ww
0
2
2
55
4
0
?
?
m
m
B
a
bm
chDm
aq
B
?
?
? ??5,3,1?k
? ??6,4,2?k0
2
22
22
55
4
0
?
?
?
?
?
?
?
?
??
m
m
A
a
bm
chDm
aq
a
bm
th
a
bm
A
?
?
??
62
并注意到挠度 是 y 的偶函数,则非齐次线性常微分方程
的一般解为,
w
? ? ? ??5,3,14 55 40 ???? mmD aqa ymsha ymBa ymchAyY mmm ????
2
by ?利用边界条件 (已用对称性)处,

0,0 2
2
???? y ww
0
2
22
22
55
4
0
?
?
?
?
?
?
?
?
??
m
m
A
a
bm
chDm
aq
a
bm
th
a
bm
A
?
?
??
0
2
2
55
4
0
?
?
m
m
B
a
bm
chDm
aq
B
?
?
? ??5,3,1?k
? ??6,4,2?k
63
The expression of deflection gives,
a
xm
a
bm
ch
a
ym
sh
b
ym
a
ym
ch
a
bm
th
a
bm
mD
aq
w
m
?
?
?????
?
s in
2
224
1
1
14
5,3,1
55
4
0
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
??
?
?
?
?
?
? ?
?
? ?
? ? ? ?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?? ?
?
?
?
??
a
bm
ch
a
bm
th
a
bm
mD
aq
w
m
m
y
a
x
2
2
22
2
1
14
,
5,3,1
5
2
1
5
4
0
0
2
m a x ?
??
?
?
?
if a=b,thus
? ????? 0 0 4.03 1 4.04 5 40m a x ?D aqw
It is obvious that we can achieve high precision only
by choosing two term in series,
64
挠度的表达式,
a
xm
a
bm
ch
a
ym
sh
b
ym
a
ym
ch
a
bm
th
a
bm
mD
aq
w
m
?
?
?????
?
s in
2
224
1
1
14
5,3,1
55
4
0
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
??
?
?
?
?
?
? ?
?
? ?
? ? ? ?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?? ?
?
?
?
??
a
bm
ch
a
bm
th
a
bm
mD
aq
w
m
m
y
a
x
2
2
22
2
1
14
,
5,3,1
5
2
1
5
4
0
0
2
m a x ?
??
?
?
?
若 a=b,则
? ????? 0 0 4.03 1 4.04 5 40m a x ?D aqw
可见,在级数中仅取两项,就可以达到较高的精度。
65
§ 12- 6 Axisymmetric Bending of Circular Sheet
w
When solving the problems of bending of circular sheet,it will be
more convenience to choose polar coordinates,If the transverse load
of circular sheet is about z axis symmetry (axis z is vertical to sheet
and towards underside),thus the displacement of elastic sheet is also
about z axis symmetry,i.e,is only the function of r and don’t
change according to, ?
1,Differential Equation of Elastic Curved Face
Referring to the differential equation of elastic curved face in
rectangular coordinate,In polar coordinate,when it is the axisymmetric
bend of circular sheet,differential equation of elastic curved face can be
written as,
D
qw ??? 22
or
D
q
dr
dw
rdr
wd
dr
d
rdr
d ?
???
?
???
? ?
???
?
???
? ? 11
2
2
2
2
66
§ 12- 6 圆形薄板的轴对称弯曲
求解圆板弯曲问题时,采用极坐标较方便。如果圆形
薄板所受的横向载荷是绕 z 轴对称的( z 轴垂直板面向
下),则该弹性薄板的位移也将是绕 z 轴对称的,即 只
是 r 的函数,不随 而变。
w
?
一、弹性曲面微分方程
参照直角坐标下的弹性曲面微分方程。极坐标下,圆
形薄板轴对称弯曲时,曲面微分方程可写成,
D
qw ??? 22

D
q
dr
dw
rdr
wd
dr
d
rdr
d ?
???
?
???
? ?
???
?
???
? ? 11
2
2
2
2
67
2.Internal Force
expanding yields,
so the general solution of differential equation is
D
q
dr
dw
rdr
wd
rdr
wd
rdr
wd ????
32
2
23
3
4
4 112
★1423221 lnln wcrcrrcrcw ?????
where is a arbitrary particular solution,★
1w
From the sheet,take out a differential cell,
as the figure shown,In the cross-section where
r is constant,moment of flexion and transverse
shear are Mr and respectively; In the
cross-section where is constant,they are
and, Because it is axisymmetric problem,
there is not moment of torsion,
rQ
? ?M
?Q
y
x
z
o
x
y
z
rQ
rM
?Q
?M
drr?d
?
68
二、内力
展开后得,
该微分方程的通解为
D
q
dr
dw
rdr
wd
rdr
wd
rdr
wd ????
32
2
23
3
4
4 112
★?????? 423221 lnln crcrrcrcw
其中 是任意一个特解。 ★w
从薄板内取出一个微分单
元体,图示。在 r 为常量的横
截面上,弯矩和横向剪力分别
为 Mr 和 ;在 为常量的横截
面上,则为 和 。由于是轴
对称问题,故没有扭矩。
r? ?
?M ?Q
y
x
z
o
x
y
z
rQ
rM
?Q
?M
drr?d
?
69
Evolve x axis and y axis to the direction of r and the direction of of
this differential cell respectively,and using coordinate transformation
formula,we have,
?
? ? ??
?
?
???
? ???
???
?
???
?
?
??
?
????
?
? dr
dw
rdr
wdD
y
w
x
wDMM
xr
??
?
? 2
2
0
2
2
2
2
0
? ? ??
?
?
???
? ???
???
?
???
?
?
??
?
????
?
? 2
2
0
2
2
2
2
0
1
dr
wd
dr
dw
rDx
w
y
wDMM
y ??
?
??
? ?
? ? 0
1
0
0
2
0
2
2
3
3
0
2
0
???
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
??
?
?
?
w
y
DQQ
dr
wd
rdr
wd
Dw
x
DQQ
M
y
xr
r
70
把 x 轴和 y 轴分别转到这个微分单元体的 r 和 方向,则利
用坐标转换公式,有,
?
? ? ??
?
?
???
? ???
???
?
???
?
?
??
?
????
?
? dr
d
rdr
dD
yxDMM xr
??????
?
? 2
2
0
2
2
2
2
0
? ? ??
?
?
???
? ???
???
?
???
?
?
??
?
????
?
? 2
2
0
2
2
2
2
0
1
dr
d
dr
d
rDxyDMM y
??????
?
??
? ?
? ? 0
1
0
0
2
0
2
2
3
3
0
2
0
???
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
??
?
?
?
?
??
?
y
DQQ
dr
d
rdr
d
D
x
DQQ
M
y
xr
r
71
3.Stress Component
Using coordinate transformation formula,similarly gives,? ?
? ?
? ? 0
1
1
1
0
2
2
20
2
2
20
??
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
???
?
?
?
??
??
?
??
?
?
??
?
?
??
xyr
y
xr
dr
wd
dr
dw
r
E
dr
dw
rdr
wdE
Using internal force to denote stress component gives
0
12
12
3
3
??
?
?
rr
r
z
z
t
M
z
t
M
??
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
??
?
?
?
?
?
?
?
?
??
t
z
t
z
q
z
t
t
Q
z
zz
r
zr
1
2
1
2
0
4
6
2
2
2
3
?
??
?
??
72
三、应力分量
利用坐标转换公式,同理有,? ?
? ?
? ? 0
1
1
1
0
2
2
20
2
2
20
??
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
???
?
?
?
??
??
?
??
?
?
??
?
?
??
xyr
y
xr
dr
wd
dr
dw
r
E
dr
dw
rdr
wdE
将应力分量用内力表示有,
0
12
12
3
3
??
?
?
rr
r
z
z
t
M
z
t
M
??
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
???
??
?
?
?
?
?
?
?
?
??
t
z
t
z
q
z
t
t
Q
z
zz
r
zr
1
2
1
2
0
4
6
2
2
2
3
?
??
?
??
73
Example 3 Given solid circular sheet,radius is a,circumference is
fixed and it is under uniform load and concentrated force p where it
is in centre of circle,0
q
Solution,According to the known condition,this is axisymmetric
bend of Circular Sheet,line of deflection function is
D
q
dr
dw
rdr
wd
dr
d
rdr
d 0
2
2
2
2 11
???
?
?
???
? ?
???
?
???
? ?
special solution is 40
64 rD
qw ?★
we find general solution is E
a
rc
a
rBrArr
D
qw ????? lnln
64
2240
For the flexivity of center of solid circular sheet,we know w 0?c
From the sheet,take out a small sheet whose radius is r,for the
equilibrium condition of z direction gives
02 02 ??? qrPrQ r ??
74
例 3,半径为 a的实心圆板,周边固支,受均布载荷 及圆心
处的集中力 P 作用,求挠度。
0q
解,由题意知,本题为圆板轴对称弯曲,挠曲线方程为,
D
q
dr
d
rdr
d
dr
d
rdr
d 0
2
2
2
2 11
???
?
?
???
? ?
???
?
???
? ? ??
取特解
40
64 rD
qw ?★
知通解为
EarcarBrArrDqw ????? lnln64 2240
由实心圆板中心处的挠度 应有界知,w 0?c
从板中取出半径为 r 的部分圆板,由 z方向的平衡条件给出
02 02 ??? qrPrQ r ??
75
so
22 0
rq
r
PQ
r ??? ?
Furthermore we have
2
41 0
2
2
3
3 rq
r
DB
dr
wd
rdr
wdDQ
r ??????
?
???
? ???
so DPB ?8?
For yields ? ? 0?
?arw 2206416 aaD
q
D
PE ?
?
??
?
? ??
?
0???????
?ardr
dwfor yields
D
aq
D
PA
3216
2
0???
?
So the deflection of sheet is
? ? ? ? ?????? ????? arrraDPraDqw ln21864 2222220 ?
76

22 0
rq
r
PQ
r ??? ?
而又有
2
41 0
2
2
3
3 rq
r
DB
dr
wd
rdr
wdDQ
r ??????
?
???
? ???
故 DPB ?8?
由 得 ? ? 0?
?arw 2206416 aaD
q
D
PE ?
?
??
?
? ??
?
0???????
?ardr
dw由 得
D
aq
D
PA
3216
2
0???
?
故板的挠度 ? ? ? ?
??
?
??
? ?????
a
rrra
D
Pra
D
qw ln
2
1
864
2222220
?
77
§ 12- 7 Solution of the Displacement
of Sheet by Calculus of Variation
When sheet is at bending of small deflection,is paucity,
which can be omitted,So deformation energy of elastic sheet is
zxyzz ???,,
? ?d x d y d zU xyxyyyxx??? ??? ??????21
? ? d x d y d zEE xyyxyx??? ?????? ????? 222 122 1 ???????
Using deflection to denote,w
? ? d x d y
yx
w
y
w
x
w
y
wwDU
A
?? ??
?
?
?
?
?
?
???
?
???
?
??
???
?
?
?
??
???
?
???
?
?
??
???
?
???
?
?
?? 22
2
2
2
22
2
22
2
2
122
2
??
?
? ???
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
???
?
???
?
??
??
?
?
?
???
???
?
???
?
?
??
?
??
A
d x d y
yx
w
y
w
x
w
y
w
x
wD
22
2
2
2
22
2
2
2
2
12
2
?
78
§ 12- 7 变分法求薄板的位移
薄板小挠度弯曲时,为微量,可略去不计。此
时弹性薄板的变形能,
zxyzz ???,,
? ?d x d y d zU xyxyyyxx??? ??? ??????21
? ? d x d y d zEE xyyxyx??? ?????? ????? 222 122 1 ???????
用挠度 表示, w
? ? d x d y
yx
w
y
w
x
w
y
wwDU
A
?? ??
?
?
?
?
?
?
???
?
???
?
??
???
?
?
?
??
???
?
???
?
?
??
???
?
???
?
?
?? 22
2
2
2
22
2
22
2
2
122
2
??
?
? ???
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
???
?
???
?
??
??
?
?
?
???
???
?
???
?
?
??
?
??
A
d x d y
yx
w
y
w
x
w
y
w
x
wD
22
2
2
2
22
2
2
2
2
12
2
?
79
where A is the area of sheet,
To arbitrary shape sheet whose edges are fixed and polygon
(not hole in the sheet) where at the boundary of sheet,for
integration by parts formulas yields,
0?w
????? ?? ????????????????
AsA
d x d yyx wxwdxxwyx wd x d yyx wyx w 3
3222
???? ????????????????
Ass
d x d yy wx wdyy wxwdxxwyx w 2
2
2
2
2
22
To fixed sheet,i.e,
0?????? swnw 0?????? ywxw
To rectangular sheet where along the boundary,always
have or
0?w
02
2
?????? ywyw 02
2 ?
?
??
?
?
x
w
x
w
thus
0
22
2
2
2
2
?
?
?
?
?
?
?
?
?
???
?
???
?
??
??
?
?
?
??? d x d y
yx
w
y
w
x
w
80
其中 A为薄板面积。
对于板边固定的任意形状板,以及板边界处 的多
边形(板中无孔洞),由分步积分公式得,
0?w
????? ?? ????????????????
AsA
d x d yyx wxwdxxwyx wd x d yyx wyx w 3
3222
???? ????????????????
Ass
sd x d yy wx wdyy wxwdxxwyx w 为薄板边界)(2
2
2
2
2
22
对于固定板,即
0?????? swnw 0?????? ywxw
对于沿板边 的矩形板,总有 或 0?w
02
2
?????? ywyw 022 ?????? xwxw
因此
0
22
2
2
2
2
?
?
?
?
?
?
?
?
?
???
?
???
?
??
??
?
?
?
??? d x d y
yx
w
y
w
x
w
81
so deformation energy of elastic sheet is simplified as
d x d yy wx wPU ?? ??
?
?
???
?
?
??
?
??
2
2
2
2
2Example 4 Evaluate the deflection of simply supported rectangular
sheet,that is under uniform load, ? ?byax ???? 0,0
0q
Solution,Using Ritz method,The deflection of plate is
trigonometric series as follows,
b
yn
a
xmAw
m n
mn
?? s ins in
1 1
? ??
?
?
?
?
It is obvious,every term of this series is satisfied with the boundary
conditions of quadrilateral simply supported,
The elastic deformation energy of plate is,
? ???
?
?
?
?
???
?
???
? ??
???
?
???
?
?
??
?
??
1 1
2
2
2
2
2
2
42
2
2
2
2
82 m n mnA b
n
a
mAD a bd x d y
y
w
x
wDU ?
82
即弹性板的变形能简化为,
d x d yy wx wPU ?? ??
?
?
???
?
?
??
?
??
2
2
2
2
2
例 4 求四边简支矩形板 在均布载荷 作用
下的挠度。
? ?byax ???? 0,0 0q
解:用里兹法。取板的挠度为如下重三角级数
b
yn
a
xmAw
m n
mn
?? s ins in
1 1
? ??
?
?
?
?
显然,该级数的每一项都满足四边简支的边界条件。
板的弹性变形能,
? ???
?
?
?
?
???
?
???
? ??
???
?
???
?
?
??
?
??
1 1
2
2
2
2
2
2
42
2
2
2
2
82 m n mnA b
n
a
mAD a bd x d y
y
w
x
wDU ?
83
Under the uniform load,potential energy V of external force gives 0q
d x d yb yna xmAqV
m n
mn
b a ?? s ins in
1 10 0
0 ? ?? ?
?
?
?
?
??
? ??
?
?
?
??
? ?5,3,1 5,3,1
2
04
m n
mn
mn
Aabq
?
Total potential energy,
? ?
? ?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
????
? ?5,3,1 5,3,1
2
0
2
1 1
2
2
2
2
2
4
4
8
m n
mn
m n
mn
mn
Aabq
b
n
a
m
A
D a b
VU
?
?

For the conditions of Ⅱ achieving the extreme value,yields
04
4 2
0
2
2
2
2
24
?
?
?
?
?
?
?
?
?
???
?
?
???
? ??
mnmn Amn
abq
b
n
a
mAD a b ?
?
?? Ⅱ ( m,n are odd)
84
在均布载荷 作用下,外力势能 V 为 0q
d x d yb yna xmAqV
m n
mn
b a ?? s ins in
1 10 0
0 ? ?? ?
?
?
?
?
??
? ??
?
?
?
??
? ?5,3,1 5,3,1
2
04
m n
mn
mn
Aabq
?
总位能,
? ?
? ?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
????
? ?5,3,1 5,3,1
2
0
2
1 1
2
2
2
2
2
4
4
8
m n
mn
m n
mn
mn
Aabq
b
n
a
m
A
D a b
VU
?
?

由 Ⅱ 取极值的条件得出,
04
4 2
0
2
2
2
2
24
?
?
?
?
?
?
?
?
?
???
?
?
???
? ??
mnmn Amn
abq
b
n
a
mAD a b ?
?
?? Ⅱ ( m,n均为奇数)
85
thus we get
so
? ?
?
?
?
?
???
?
???
?
?
?
?5,3,1 5,3,1
2
2
2
2
2
6
0 s i ns i n16
m n b
yn
a
xm
b
n
a
mmnD
qw ??
?
0
16
2
2
2
2
2
6
0
?
??
?
?
??
?
?
?
?
mn
mn
A
b
n
a
m
mnD
q
A
?
( m,n are odd)
(m or n is even)
86
由此得出

? ?
?
?
?
?
???
?
???
?
?
?
?5,3,1 5,3,1
2
2
2
2
2
6
0 s i ns i n16
m n b
yn
a
xm
b
n
a
mmnD
qw ??
?
0
16
2
2
2
2
2
6
0
?
??
?
?
??
?
?
?
?
mn
mn
A
b
n
a
m
mnD
q
A
?
( m,n均为奇数)
(m或 n为偶数时)
87
Exercise 12.1 Given rectangular sheet,OA is fixed,OC is simply
supported,AB and BC are free,Angular point B is supported by
chain bar,the load applied to the edges of sheet is as the figure
shown,Try to use deflection to denote the boundary condition of
the edges of sheet,
x
y
z
M
0
q
o
A
C
B
a
b
Solution:( 1) OA edge
? ? 0,0
0
0 ???
??
?
?
?
??
?
?
x
x x
ww
( 2) OC edge
? ? ? ? 000,0 MMw yyy ??? ??
the latter equation is denoted by deflection,gives
88
练习 12.1 矩形薄板具有固定边 OA,简支边 OC及自由边 AB
和 BC,角点 B处有链杆支承,板边所受荷载如图所示。试将
板边的边界条件用挠度表示。
x
y
z
M
0
q
o
A
C
B
a
b
解:( 1) OA边
? ? 0,0
0
0 ???
??
?
?
?
??
?
?
x
x x
ww
( 2) OC边
? ? ? ? 000,0 MMw yyy ??? ??
后一式用挠度表示为
89
0
0
2
2
2
2
Mx wy wD
y
???
?
?
??
?
?
??
?
??
?
?
( 3) AB edge
? ? ? ? 0,0 qQM byybyy ??? ??
use deflection
to denote,gives
? ?
02
3
3
3
2
2
2
2
2
0
q
yx
w
y
w
D
x
w
y
w
by
by
???
?
?
?
?
?
??
?
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
( 4) BC edge
90
0
0
2
2
2
2
Mx wy wD
y
???
?
?
??
?
?
??
?
??
?
?
( 3) AB边
? ? ? ? 0,0 qQM byybyy ??? ??
用挠度表示为
? ?
02
3
3
3
2
2
2
2
2
0
q
yx
w
y
w
D
x
w
y
w
by
by
???
?
?
?
?
?
??
?
??
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
( 4) BC边
91
? ? ? ? 0,0 ?? ?? axxaxx QM
use deflection to denote,gives
? ? 02
0
2
3
3
3
2
2
2
2
??
?
?
?
?
?
??
?
??
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
ax
ax
yx
w
x
w
y
w
x
w
?
?
( 5) At B pivot
? ? 0,??? byaxw
92
? ? ? ? 0,0 ?? ?? axxaxx QM
用挠度表示为
? ? 02
0
2
3
3
3
2
2
2
2
??
?
?
?
?
?
??
?
??
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
ax
ax
yx
w
x
w
y
w
x
w
?
?
( 5)在 B支点
? ? 0,??? byaxw
93
Exercise 12.2 Given simply supported rectangular sheet,its length
of side are a and b,the coordinate is as the figure shown,Under the
face load,try to prove is
satisfied with all conditions,and evaluate deflection,moment of
flexion and counterforce,
b
y
a
xqq ?? s i ns i n
0?
b
y
a
xmw ?? s i ns i n?
x
y
z
o a
b
Solution,It is not difficult to verify
is satisfied with all the conditions of
boundary of simply supported edges,
for deflection surface equation
D
qw ??? 22
We can determine,thus evaluate deflection,monent of flexion
and counterforce
w
m
94
练习 12.2 有一块边长分别为 a 和 b 的四边简支矩形薄板,
坐标如图所示。受板面荷载 作用,试
证 能满足一切条件,并求出挠度、弯
矩和反力。
b
y
a
xqq ?? s i ns i n
0?
b
y
a
xmw ?? s i ns i n?
x
y
z
o a
b
解,不难验证 能满足所有简支边
的边界条件,由挠曲面方程
D
qw ??? 22
w
可确定,从而求出挠度、弯矩和反力。 m
95
b
y
a
x
D
q
b
y
a
x
baba
mw
??
?????
s i ns i n
s i ns i n2
0
22
444
4
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
??
?
?
?
?
?
??
2
2
2
4
4
0
1 ??
?
?
??
?
?
?
?
b
a
D
aq
m
?
b
y
a
x
b
a
D
aq
w
??
?
s i ns i n
1
2
2
2
4
4
0
??
?
?
??
?
?
?
?
96
b
y
a
x
D
q
b
y
a
x
baba
mw
??
?????
s i ns i n
s i ns i n2
0
22
444
4
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
??
?
?
?
?
?
??
2
2
2
4
4
0
1 ??
?
?
??
?
?
?
?
b
a
D
aq
m
?
b
y
a
x
b
a
D
aq
w
??
?
s i ns i n
1
2
2
2
4
4
0
??
?
?
??
?
?
?
?
97
? ?
2
2
2
4
4
0
2
,
2
m a x
1 ??
?
?
??
?
?
?
?? ??
b
a
D
aq
ww byax
?
b
y
a
x
ba
DmM
b
y
a
x
ba
DmM
y
x
????
?
???
?
?
s i ns i n
s i ns i n
2
2
2
2
2
2
2
2
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
? ?
b
y
a
x
ab
mDR ???? c o sc o s12 2???
98
? ?
2
2
2
4
4
0
2
,
2
m a x
1 ??
?
?
??
?
?
?
?? ??
b
a
D
aq
ww byax
?
b
y
a
x
ba
DmM
b
y
a
x
ba
DmM
y
x
????
?
???
?
?
s i ns i n
s i ns i n
2
2
2
2
2
2
2
2
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
? ?
b
y
a
x
ab
mDR ???? c o sc o s12 2???
99
b
y
a
x
abb
Dm
Q
b
y
a
x
baa
Dm
Q
y
x
????
????
c o ss in
21
s inc o s
21
22
3
22
3
?
?
?
?
?
? ?
??
?
?
?
?
?
? ?
??
Exercise 12.3 Given a circular plate,its radius is a and it is
simply supported at r=b,the load is as the figure shown,
Evaluate the maximal deflection,q q
r
z
b
a
Solution,The deflection function of plate
can be divided into two parts
? ? DrCrwbr ???? 211,0
100
b
y
a
x
abb
Dm
Q
b
y
a
x
baa
Dm
Q
y
x
????
????
c o ss in
21
s inc o s
21
22
3
22
3
?
?
?
?
?
? ?
??
?
?
?
?
?
? ?
??
练习 12.3 有一半径为 a 的圆板,在 r=b 处为简支,荷载
如图所示。求其最大挠度。 q q
r
z
b
a
解,板的挠度函数可分两部分表达
? ? DrCrwbr ???? 211,0
101
? ? DqrDrCrrBrArwarb 16lnln,32222222 ???????
Every-order derivative of and are as follows,
1w 2w
0,2,2 3 1
3
12
1
2
1
1 ???
dr
wdC
dr
wdrC
dr
dw
D
qr
r
B
r
A
dr
wd
D
qr
CBrB
r
A
dr
wd
D
qr
rCrBrrB
r
A
dr
dw
8
322
16
3
23ln2
16
2ln2
2
3
2
3
2
3
2
2222
2
2
2
2
3
222
22
???
??????
?????
102
? ? DqrDrCrrBrArwarb 16lnln,32222222 ???????
和 的各阶导数如下,
1w 2w
0,2,2 3 1
3
12
1
2
1
1 ???
dr
wdC
dr
wdrC
dr
dw
D
qr
r
B
r
A
dr
wd
D
qr
CBrB
r
A
dr
wd
D
qr
rCrBrrB
r
A
dr
dw
8
322
16
3
23ln2
16
2ln2
2
3
2
3
2
3
2
2222
2
2
2
2
3
222
22
???
??????
?????
103
The boundary condition or continuous condition at r=a and r=b
gives
? ? ? ? ? ? ? ? 0,0,0,0 2122 ???? ???? brbrarrarr wwMQ
? ? ? ? brrbrr
brbr
MMdrdwdrdw ??
??
??????????????
21
,21
Substituting deflection and its derivative into the above six
equations,we can get six constants as follows
D
qaBab
D
qbA
8,216
2
2
2
22
2 ?????
?
???
? ??
? ? ?
?
?
?
?
? ????
???
?
???
? ??
D
qbBbC
b
a
D
qbC
16
1ln221
82
1 2
222
22
1
104
在 r=a 及 r=b 处的边界条件或连续条件为
? ? ? ? ? ? ? ? 0,0,0,0 2122 ???? ???? brbrarrarr wwMQ
? ? ? ? brrbrr
brbr
MMdrdwdrdw ??
??
??????????????
21
,21
将挠度及其导数代入上述六式,可解出六个常数如下,
D
qaBab
D
qbA
8,216
2
2
2
22
2 ?????
?
???
? ??
? ? ?
?
?
?
?
? ????
???
?
???
? ??
D
qbBbC
b
a
D
qbC
16
1ln221
82
1 2
222
22
1
105
? ? ? ? ? ?? ? ? ???
?
?
?
? ????????
??? ???
?
? 3161ln23
1
12
1 2
2222 D
qaaBA
aC
D
qbbbBbCbADbCD
64lnln,
4
2
2
2
222
2
11 ???????
Substituting the solved constants into the expression of,
and compare and,the larger one is the maximal
deflection of circular plate,
21,ww
? ? 01 ?rw ? ? arw ?2
106
? ? ? ? ? ?? ? ? ???
?
?
?
? ????????
??? ???
?
? 3161ln23
1
12
1 2
2222 D
qaaBA
aC
D
qbbbBbCbADbCD
64lnln,
4
2
2
2
222
2
11 ???????
把求出的常数代入 的表达式,并将 与
进行比较,较大者即为圆板的最大挠度。
21,ww ? ? 01 ?rw ? ? arw ?2
107
108