1
Elasticity
2
3
Chapter8 Space Problem
§ 8-4 The Spherical Symmetric Problem of Space
§ 8-3 The Axially Symmetric Problem of Space
§ 8-2 The Basic Equation unde Rectangular Coordinate
§ 8-1 Introduction
4
第八章 空间问题
§ 8-4 空间球对称问题
§ 8-3 空间轴对称问题
§ 8-2 直角坐标下的基本方程
§ 8-1 概 述
5
In this chapter we first give out the equations of equilibrium,the geometric
equations and the physical equations under rectangular coordinate for spatial
problems,For the analytic solutions of spatial problems can only be obtained
under peculiar boundary conditions,we discuss the axial symmetric problems
and the ball symmetric problems of space emphatically,
§ 8-1 Introduction
Ball Symmetric Problem
x
z y
Axial Symmetric Problem
x
z
y
P
6
本章首先给出空间问题直角坐标下的平衡方程、几何
方程和物理方程。针对空间问题的解析解一般只能在特殊
边界条件下才可以得到,我们着重讨论空间轴对称问题和
空间球对称问题。
§ 8-1 概 述
球对称问题
x
z y
轴对称问题
x
z
y
P
7
§ 8-2 Basic Equations under Rectangular Coordinate
One,Differential Equations of Equilibrium
Consider an arbitrary point inside the body
and fetch a small parallel hexahedron,which
stress components on each side are shown as
figure,
If ab denotes the line which joins the
centers of two faces of the hexahedron,then
from we get ? ? 0
abm
22
dyd x d zdyd x d zdy
y yz
yz
yz ?
?? ?
???????? ?
??
022 ?????????? ???? dzd x d ydzd x d ydzz zyzyzy ???
Canceling terms and neglecting higher order small variables,we get
8
§ 8-2 直角坐标下的基本方程
一 平衡微分方程
在物体内任意一点 P,取图
示微小平行六面体。微小平行六
面体各面上的应力分量如图所示。
若以连接六面体前后两面中
心的直线为 ab,则由 得 ? ? 0abm
22
dyd x d zdyd x d zdy
y yz
yz
yz ?
?? ?
???????? ?
??
022 ?????????? ???? dzd x d ydzd x d ydzz zyzyzy ???
化简并略去高阶微量,得
9
yxxy
xzzx
zyyz
??
??
??
?
?
?Similarly,we
get
Here we prove the relation of the equality
of cross shears again
from ? ? ? ??? 0,0,0 ZYX
List the equations,cancel terms,we get
These are differential equations of equilibrium
under rectangular coordinate of space
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
0
0
0
Z
yxz
Y
xzy
X
zyx
yzxzz
xyzyy
zxyxx
???
???
???
Two,Geometric Equations
For spatial problems,deformation components and displacement components
should satisfy following geometric equations
z
w
y
v
x
u
z
y
x
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
v
x
w
z
u
z
v
y
w
xy
zx
yz
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
Of which the first two and the last have been obtained among plane problems,
the other three can be led out with the same method,
10
yxxy
xzzx
zyyz
??
??
??
?
?
?
同理可得 这只是又一次证明了剪应力的互等关系。
由 ? ? ? ??? 0,0,0 ZYX
立出方程,经约简后得
这就是空间直角坐标下的
平衡微分方程。 ?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
0
0
0
Z
yxz
Y
xzy
X
zyx
yzxzz
xyzyy
zxyxx
???
???
???
二 几何方程 在空间问题中,形变分量与位移分量应当满足下列 6 个几何
方程
z
w
y
v
x
u
z
y
x
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
v
x
w
z
u
z
v
y
w
xy
zx
yz
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
其中的第一式、第二式和第六式已在平面问题中导出,其余三式
可用相同的方法导出。
11
Three,Physical Equations
For an isotropic body,the relations between deformation components and stress
components are as follows,? ?? ?
? ?? ?
? ?? ?yxzz
xzyy
zyxx
E
E
E
?????
?????
?????
???
???
???
1
1
1
xyxy
zxzx
yzyz
G
G
G
??
??
??
1
1
1
?
?
?
These are physical equations for spatial problems,
If stress components are denoted by strain components,physical equations can be
written as,
zz
yy
xx
Ge
Ge
Ge
???
???
???
2
2
2
??
??
??
xyxy
zxzx
yzyz
G
G
G
??
??
??
?
?
?
where,
zyxe ??? ???
? ?? ??? ?? 211 ??? E
12
三 物理方程
对于各向同性体,形变分量与应力分量之间的关系如下,? ?? ?
? ?? ?
? ?? ?
yxzz
xzyy
zyxx
E
E
E
?????
?????
?????
???
???
???
1
1
1
xyxy
zxzx
yzyz
G
G
G
??
??
??
1
1
1
?
?
?
这就是空间问题的物理方程。
将应力分量用应变分量表示,物理方程又可表示为,
zz
yy
xx
Ge
Ge
Ge
???
???
???
2
2
2
??
??
??
xyxy
zxzx
yzyz
G
G
G
??
??
??
?
?
?
其中,
zyxe ??? ???
? ?? ??? ?? 211 ??? E
13
Four Equations of Compatibility
Differentiate the second and the third formula of geometric equations at the
left.Adding these two,we get
???
?
???
?
?
??
?
?
??
??
??
??
??
??
?
??
?
?
y
w
z
v
zyyz
w
zy
v
yz
zy
2
2
3
2
3
22
2 ??
Substitute the fourth formula of geometric equations into the above
equation,we get
zyyz
yzzy
??
??
?
??
?
? ???
2
2
2
2 ( a)
Similarly
?
?
?
??
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
yxxy
xzzx
xyyx
zxxz
???
???
2
2
2
2
2
2
2
2
2
2
( b)
14
四 相容方程
将几何方程第二式左边对 z的二阶导数与第三式左边对
y的二阶导数相加,得
???
?
???
?
?
??
?
?
??
??
??
??
??
??
?
??
?
?
y
w
z
v
zyyz
w
zy
v
yz
zy
2
2
3
2
3
22
2 ??
将几何方程第四式代入,得
zyyz
yzzy
??
??
?
??
?
? ???
2
2
2
2 ( a)
同理
?
?
?
??
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
yxxy
xzzx
xyyx
zxxz
???
???
2
2
2
2
2
2
2
2
2
2
( b)
15
Differentiate the late three formulas of geometric equations separately for
X,Y,Z,we get
zy
u
zx
v
z
yx
w
yz
u
y
xz
v
xy
w
x
xy
zx
yz
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
22
22
22
?
?
?
From the above equations,we get
zyx
u
zy
zy
u
xzyxx
x
xyzxyz
??
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
??
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
22
2
22
2
16
将几何方程中的后三式分别对 x,y,z求导,得
zy
u
zx
v
z
yx
w
yz
u
y
xz
v
xy
w
x
xy
zx
yz
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
22
22
22
?
?
?
并由此而得
zyx
u
zy
zy
u
xzyxx
x
xyzxyz
??
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
??
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
22
2
22
2
17
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yxyxzz
xzxzyy
zzxyzxy
yyzxyzx
????
????
2
2
2
2Similarly
( d)
The equations of (a),(b),(c),(d)are called compatibility conditions of deformation,
also known as equations of compatibility,
Substituting physical equations into the above equations,and canceling terms
according to differentiate equations of equilibrium,we get the compatibility
equations which are expressed with stress components,
Namely
zyzyxx
xxyzxyz
??
??
???
?
???
?
?
??
?
??
?
??
?
? ???? 22( c)
18
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yxyxzz
xzxzyy
zzxyzxy
yyzxyzx
????
????
2
2
2
2同理
( d)
方程 (a),(b),(c),(d)称为变形协调条件,也称相容方
程。
将物理方程代入上述相容方程,并利用平衡微分方程
简化后,得用应力分量表示的相容方程,
即
zyzyxx
xxyzxyz
??
??
???
?
???
?
?
??
?
??
?
??
?
? ???? 22( c)
19
We call them Michel compatibility equations,
? ? ? ?
? ? ? ?
? ? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
y
Y
x
X
z
Z
z
x
X
z
Z
y
Y
y
z
Z
y
Y
x
X
x
z
y
x
???
?
?
??
???
?
?
??
???
?
?
??
2
1
1
1
2
1
1
1
2
1
1
1
2
2
2
2
2
2
2
2
2
? ? ? ?
? ? ? ?
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
y
X
x
Y
yx
x
Z
z
X
xz
z
Y
y
Z
zy
xy
zx
yz
???
???
???
11
11
11
2
2
2
2
2
2
20
称其为密切尔相容方程。
? ? ? ?
? ? ? ?
? ? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
y
Y
x
X
z
Z
z
x
X
z
Z
y
Y
y
z
Z
y
Y
x
X
x
z
y
x
???
?
?
??
???
?
?
??
???
?
?
??
2
1
1
1
2
1
1
1
2
1
1
1
2
2
2
2
2
2
2
2
2
? ? ? ?
? ? ? ?
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
y
X
x
Y
yx
x
Z
z
X
xz
z
Y
y
Z
zy
xy
zx
yz
???
???
???
11
11
11
2
2
2
2
2
2
21
Among spatial problems,if the elasticity body’s geometric shape,restraint
condition and any external factors are symmetrical in a certain axis(any plane
which passes this axis is all symmetrical one),then all stresses,deformations
and displacements are symmetrical in this axis,This kind of problem is called
axial symmetry problem of space,
The forms of elastomers of axial symmetry problem are generally
divided into two kinds,cylinder or half space body,
According to the characteristic of axial symmetry,we should adopt the
cylindrical coordinates,if we take z axis as the axis of symmetry,then
all the stress components,strain components and displacement components will
be only the function of r and z,with the coordinate have nothing to do with,
? ?zr,,?
?
§ 8-3 Axially Symmetric Problems for Space
22
在空间问题中,若弹性体的几何形状、约束情况
以及所受的外来因素,都对称于某一轴(通过这个轴
的任一平面都是对称面),则所有的应力、形变和位
移也对称于这一轴。这种问题称为空间轴对称问题。
根据轴对称的特点,应采用圆柱坐标 表示。
若取对称轴为 z 轴,则轴对称问题的应力分量、形变
分量和位移分量都将只是 r 和 z 的函数,而与 坐标
无关。
? ?zr,,?
轴对称问题的弹性体的形状一般为圆柱体或半空
间体。
?
§ 8-3 空间轴对称问题
23
One,Differential Equations of Equilibrium
Consider a small element as shown in figure,
For axial symmetry,the element’s two cylindrical
planes exist only normal stresses and axial shear
stresses;its two horizontal planes exist only
normal stresses and radial shear stresses;its two
perpendicular planes exist only round normal
stresses,which are shown in figure,
According to the assumption of continuity,stress
components of the small element ‘s positive
planes have a small increase compared with the
negative ones.Attention:the increase of round
normal stresses are zero at this moment,
For equilibrium at radial direction and axial
direction and from,
canceling terms and ignoring the high order
small values,we get
12c o s,22s i n ?? ??? ddd
24
一 平衡微分方程
取图示微元体。由于轴对
称,在微元体的两个圆柱面上,
只有正应力和的轴向剪应力;
在两个水平面上只有正应力和
径向剪应力;在两个垂直面上
只有环向正应力,图示。
根据连续性假设,微元体
的正面相对负面其应力分量都
有微小增量。注意:此时环向
正应力的增量为零。
由径向和轴向平衡,并利
用,经约简
并略去高阶微量,得,
12c o s,22s i n ?? ??? ddd
25
0???????? Zrrz rzrzz ??? 0????????? rrzrr Krzr ?????
These are the differential equations of equilibrium for axial symmetry problems in
terms of cylindrical coordinates,
Two, Geometric Equations
Similar to the analysis of plane problem in term of polar coordinates,we get,the
strain components caused by radial displacement are,
z
u
r
u
r
u r
zrrrr ?
???
?
?? ???
?,,
The strain components caused by axial displacement are,
r
w
z
w
zrz ?
??
?
?? ??,
From the principle of superposing,namely we get the geometric equations for
spatial axial symmetry problems,
z
w
r
u
r
u
z
r
r
r
?
?
?
?
?
?
?
?
?
?
? r
w
z
u r
zr ?
??
?
???
26
0???????? Zrrz rzrzz ??? 0????????? rrzrr Krzr ?????
这就是轴对称问题的柱坐标平衡微分方程。
二 几何方程
通过与平面问题及极坐标中同样的分析,可见,由径向位
移引起的形变分量为,
z
u
r
u
r
u r
zr
rr
r ?
???
?
?? ???
?,,
由轴向位移引起的形变分量为,
r
w
z
w
zrz ?
??
?
?? ??,
由叠加原理,即得空间轴对称问题的几何方程,
z
w
r
u
r
u
z
r
r
r
?
?
?
?
?
?
?
?
?
?
? r
w
z
u r
zr ?
??
?
???
27
Three,Physical Equations
Because the cylindrical coordinates are orthogonal coordinates as the
rectangular ones,we can get the physical equations directly from Hooke’s law,? ?? ?
? ?? ?
? ?? ??
??
?
?????
?????
?????
???
???
???
rzz
rz
zrr
E
E
E
1
1
1
? ?
zrzrzr EG ?
??? ??? 121
If stress components are expressed with strain components,the above
equations can be written as,
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
zz
rr
e
E
e
E
e
E
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
211
211
211
? ? zrzr E ??? ?? 12
Where,
zre ??? ? ???
28
三 物理方程
由于圆柱坐标,是和直角坐标一样的正交坐标,所以可直
接根据虎克定律得物理方程,? ?? ?
? ?? ?
? ?? ??
??
?
?????
?????
?????
???
???
???
rzz
rz
zrr
E
E
E
1
1
1
? ?
zrzrzr EG ?
??? ??? 121
应力分量用形变分量表示的物理方程,
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
zz
rr
e
E
e
E
e
E
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
211
211
211
? ? zrzr E ??? ?? 12
其中,
zre ??? ? ???
29
Four,Solution of Axial Symmetry Problems
Substitute the geometric equations into the physical equations which stress
components are expressed with strain components,we get the elastic equations,
??
?
?
??
?
?
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
?
?
??
?
z
w
e
E
r
u
e
E
r
u
e
E
z
r
r
r
r
?
?
?
?
?
?
?
?
?
?
?
?
11
11
11
? ? ?????? ??????? rwzuE rzr ?? 12
Where,
zwrurue rr ??????? Substitute the above equations into the differential equations of equilibrium,and use
the notation,
2
2
2
22 1
zrrr ??????????
We get
? ? 021 112 22 ?????????? ??????? rrr KruureE ?? ? ? 021 112 2 ?????????? ?????? ZwzeE ??
These are known as basic differential equations for solving the spatial axial
symmetry problems in terms of displacement components,
Obviously,the displacement components in above equations are functions
coordinates r and z,they can’t be solved directly,So we introduce the following
method,
30
四 轴对称问题的求解
将几何方程代入应力
分量用应变分量表示的物
理方程,得弹性方程,
??
?
?
??
?
?
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
?
?
??
?
z
w
e
E
r
u
e
E
r
u
e
E
z
r
r
r
r
?
?
?
?
?
?
?
?
?
?
?
?
11
11
11
? ? ?????? ??????? rwzuE rzr ?? 12
其中,
z
w
r
u
r
ue rr
?
???
?
??
再将弹性方程代入平衡微分方程,并记,22222 1 zrrr ??????????
得到
? ? 021
1
12 2
2 ????
?
?
???
? ???
?
?
?? r
r
r Kr
uu
r
eE
?? ? ? 021
1
12
2 ????
?
?
???
? ?
?
?
?? Zwz
eE
??
这就是按位移求解空间轴对称问题所需要的基本微分方程。
显然,上述基本微分方程中的位移分量是坐标 r,z 的函数,
不可能直接求解,为此介绍下列方法,
31
Five,Displacement Tendency Function
For simplicity,ignoring the body force,the basic differential equations in term of
displacement components can be simplified as,
021 1 22 ??????? ruure rr? 021 1 2 ?????? wze?
Supposing now the displacement has tendency,we use displacement tendency
function to denote the displacement components,? ?zr,?
zGwrGu r ?
??
?
?? ??
2
1,
2
1
Thus we get,?2
2
1 ??
?
???
?
??
Gz
w
r
u
r
ue rr
?
?
2
2
2
1
2
1
?
?
??
?
?
?
?
??
?
?
zGz
e
rGr
e
?222 2 1 ?????? rGruu rr
?22 21 ????? zGw
0,0 22 ???????? ?? zr
C?? ?2
Substitute with the basic differential equations which ignoring the body
force,we get,
Namely
32
五 位移势函数
为简单起见,不计体力。位移分量的基本微分方程简化为,
021 1 22 ??????? ruure rr? 021 1 2 ?????? wze?
现在假设位移是有势的,把位移分量用位移势函数 表示
为,
? ?zr,?
zGwrGu r ?
??
?
?? ??
2
1,
2
1
从而有
?22 1 ????????? Gzwrurue rr
?
?
2
2
2
1
2
1
?
?
??
?
?
?
?
??
?
?
zGz
e
rGr
e
?222 2 1 ?????? rGruu rr
?22 21 ????? zGw
0,0 22 ???????? ?? zr
C?? ?2
代入不计体力的基本微分方程,得
即
33
is a mediation function,The solving representations of stress components
from displacement tendency function are,
If only,we get,
Namely 02 ?? ?0?C?
rrrr ?
??
?
?? ????
?
1,
2
2
zrz rzz ??
??
?
?? ???? 2
2
2,
So for an axial symmetry problem,if we find a suitable mediation
function,from which the displacement components and stress components
satisfy the boundary conditions,then we get the correct solution of the problem,
? ?zr,?
In order to solve axial symmetry problems,Lame introduces a displacement function
? ?zr,?
Attention,not all the displacement functions of spatial problems have tendency,But
if they have,the volumetric strain, Ce ??? ?2
Six Lame Displacement Function
Define
zrGu r ??
??? ?2
2
1
? ? ?? ?????? ??????? 222122 1 zGw
Where
2
2
2
22 1
zrrr ?
??
?
??
?
???
34
02 ?? ?取,则 。即 0?C ? 为调和函数,由位移势函数求应力
分量的表达式为,
rrrr ?
??
?
?? ????
?
1,
2
2
zrz rzz ??
??
?
?? ???? 2
2
2
,
为求解轴对称问题,拉甫引用一个位移函数 ? ?zr,?
这样,对于一个轴对称问题,如果找到适当的调和函数,
使得由此给出的位移分量和应力分量能够满足边界条件,就得到
该问题的正确解答。
? ?zr,?
注:并不是所有问题中的位移函数都是有势的。若位移势函数
有势,则体积应变 。 Ce ??? ?2
六 拉甫位移函数
令
zrGu r ??
??? ?2
2
1 ? ? ??
?????? ??????? 2
2212
2
1
zGw
其中
2
2
2
22 1
zrrr ?
??
?
??
?
???
35
Substitute the above functions into the basic differential functions which in the
absence of body force,we get,
04 ???
???
???
? ?
?
?
?
?
?
?
?
??
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
rrz
rz
r
12
2
2
2
Namely is a repeated mediation function,we call it Lame displacement
function,The representations of stress components from this function are,
?
? ?
? ? ???
???
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
2
2
2
2
2
2
1
2
zr
zz
zr
z
So for an axial symmetry problem,if we find a suitable repeated mediation
function,from which the displacement components and stress
components satisfy the boundary conditions,then we get the correct solution
of the problem,
? ?zr,?
36
将上式代入不计体力位移分量的基本微分方程,可见,
04 ???
???
???
? ?
?
?
?
?
?
?
?
??
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
rrz
rz
r
12
2
2
2
即 是重调和函数,称为拉甫位移函数。由拉甫位移函数求应力
分量的表达式为,
?
? ?
? ? ???
???
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
2
2
2
2
2
2
1
2
zr
zz
zr
z
可见,对于一个轴对称问题,只须找到恰当的重调和的拉
甫位移函数,使得该位移函数给出的位移分量和应力分
量能够满足边界条件,就得到该问题的正确解答。
? ?zr,?
37
Seven Example,half space body which is under the action of outward drawn
concentrated forces in the boundary
Consider a half space body,which body forces are ignored,It receives
outward drawn concentrated forces in the boundary,as shown in figure,
Please solve its stresses and displacements,
Solution:choose the coordinate system as fig,
Through the dimensional analysis,Lame’s
displacement function is positive one order
power of length coordinate of which F
multiplies R,z,ρ,After preliminary
calculation,we set displacement function as,
? ?? ?
? ? ? ?zzrzAzrAA
zRzRARA
??????
????
22
2
22
21
21
ln
ln?
According to the relations of displacement components and stress
components and displacement function,
??????? ?? ?
?
?
??
? ??????
2
2
2
2
)1(22 1,2 1 zGzrGu r
x
z
y
P
R
z
38
七 举例:半空间体在边界上受法向集中力
设有半空间体,体力不计,在其边界上受有法向集
中力,如图所示。试求其应力与位移。
解:取坐标系如图。通过量纲
分析,拉甫位移函数应是 F乘
以 R,z,ρ等长度坐标的正一
次幂,试算后,设位移函数为
? ?? ?
? ? ? ?zzrzAzrAA
zRzRARA
??????
????
22
2
22
21
21
ln
ln?
根据位移分量和应力分量与位移函数的关系,
??????? ?? ?
?
?
??
? ??????
2
2
2
2
)1(22 1,2 1 zGzrGu r
x
z
y
P
R
z
39
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
? ?
?
?
?
?
?
?
?????
?
?
?
?
?
????
?
?
?
?
?
?
????
?
?
?
?
?
???
2
2
2
2
2
2
2
2
2
2
)1(,)2(
1
,
zrzz
rrzrz
zrz
r
We can obtain the displacement components and the stress components
3
2
5
2
31
3
2
5
3
31
2
3
1
325
3
31
2
3
2
12
3
1
3)21(
3)21(
,
)(
)21(
,
)(
13)21(
,
2
43
2
,
)(22
R
rA
R
rz
R
r
A
R
zA
R
z
R
z
A
zRR
A
R
zA
zRRR
z
A
R
zr
R
z
A
GR
A
R
z
RG
A
zRGR
rA
GR
rzA
u
zr
z
r
r
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
40
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
? ?
?
?
?
?
?
?
?????
?
?
?
?
?
????
?
?
?
?
?
?
????
?
?
?
?
?
???
2
2
2
2
2
2
2
2
2
2
)1(,)2(
1
,
zrzz
rrzrz
zrz
r
可以求得位移分量和应力分量
3
2
5
2
31
3
2
5
3
31
2
3
1
325
3
31
2
3
2
12
3
1
3)21(
3)21(
,
)(
)21(
,
)(
13)21(
,
2
43
2
,
)(22
R
rA
R
rz
R
r
A
R
zA
R
z
R
z
A
zRR
A
R
zA
zRRR
z
A
R
zr
R
z
A
GR
A
R
z
RG
A
zRGR
rA
GR
rzA
u
zr
z
r
r
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
41
The boundary conditions are
0)(
0)(
0,0
0,0
?
?
??
??
rzrz
rzz
?
?
(a)
(b)
According to the Saint-Venant’s Principle,we have
?? ??0 0)d2( Prr z??
(c)
The boundary condition (a) is satisfied,From boundary condition (b),we get
0)21( 21 ??? AAr
(d)
From condition (c),we get
? ? PAA ??? 21 214 ?? (e)
Solving in terms of (d) and (e),we get
PAPA ? ?? 2 )21(,2 21 ????
42
边界条件是
0)(
0)(
0,0
0,0
?
?
??
??
rzrz
rzz
?
?
(a)
(b)
根据圣维南原理,有
?? ??0 0)d2( Prr z??
(c)
边界条件 (a)是满足的。由边界条件 (b)得
0)21( 21 ??? AAr
(d)
由条件 (c)得
? ? PAA ??? 21 214 ?? (e)
由 (d)及 (e)二式的联立求解,得
PAPA ? ?? 2 )21(,2 21 ????
43
Substitute the obtained A1 and A2 into the forgoing representations,we get
5
2
5
3
2
3
2
2
2
Pr3
,
2
3
2
)21(
3)21(
2
R
z
R
Pz
zR
R
R
z
R
P
R
zr
zR
R
R
P
rzzrz
r
?
??
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
2
2
2
)1(2
2
)1(
)21(
2
)1(
R
z
ER
P
zR
r
R
rz
ER
P
u r
?
?
?
?
?
?
?
44
将得出的 A1及 A2回代,得
5
2
5
3
2
3
2
2
2
Pr3
,
2
3
2
)21(
3)21(
2
R
z
R
Pz
zR
R
R
z
R
P
R
zr
zR
R
R
P
rzzrz
r
?
??
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
2
2
2
)1(2
2
)1(
)21(
2
)1(
R
z
ER
P
zR
r
R
rz
ER
P
u r
?
?
?
?
?
?
?
45
Among spatial problems,if the elasticity body’s geometric shape,restraint
condition and any external factors are symmetrical in a certain point (any
plane which passes this point is all symmetrical one),then all stresses,strains
and displacements are symmetrical in this point,This kind of problem is
called spherically symmetry problem of space,
According to the characteristic of spherically symmetry,we should adopt
the spherical coordinates,if we take elasticity body’s symmetrical
point as the coordinate’s origin,then all the stress components,strain
components and displacement components will be only the function of
radial coordinate r,with the other two coordinates have nothing to do with,
? ???,,r
O
Obviously,spherically symmetric problems can only exist in hollow
or solid round spheroid,
§ 8-4 Spherically Symmetric Problem For Space
46
在空间问题中,如果弹性体的几何形状、约束情况
以及所受的外来因素,都对称于某一点(通过这一点的
任意平面都是对称面),则所有的应力、形变和位移也
对称于这一点。这种问题称为空间球对称问题。
根据球对称的特点,应采用球坐标 表示。若
以弹性体的对称点为坐标原点,则球对称问题的应力
分量、形变分量和位移分量都将只是径向坐标 r 的函数,
而与其余两个坐标无关。
? ???,,r
O
显然,球对称问题只可能发生于空心或实心的圆球
体中。
§ 8-4 空间球对称问题
47
One,Differential Equations of Equilibrium
For symmetry,the small element only
has radial volume force, From radial
equilibrium,and
considering,Neglecting the
higher order small variables,we get the
differential equations of equilibrium for
spherically symmetric problems,
rK
22sin ?? dd ?
Fetch a small element,Fetch a
small hexahedron from the elastomer,
It is formed by two pellet faces,
which distance is,and two pairs of
radial planes,which angle is
respectively,
For spherical symmetry,each plane
only has normal stress,Its stress
situations are shown in fig,
dr
?d
? ? 02 ???? rrr Krdrd ????
48
一 平衡微分方程
取微元体。用相距 的
两个圆球面和两两互成 角
的两对径向平面,从弹性体
割取一个微小六面体。由于
球对称,各面上只有正应力,
其应力情况如图所示。
dr
?d
由于对称性,微元体只
有径向体积力 。由径向平
衡,并考虑到,再
略去高阶微量,即得球对称
问题的平衡微分方程,
rK
22sin ?? dd ?
? ? 02 ???? rrr Krdrd ????
49
Two Geometric Equations
dr
du r
r ??
For symmetry,it can only exist radial displacement ; for the same reason,it
can only exist radial normal strain and tangent normal strain,it can’t exist
shear strain along the coordinate direction,The geometric equations for spherically
symmetric problems are,
ru
r? t?
r
u r
t ??
Three Physical Equations
The physical equations for spherically symmetric problems can directly be led
out from Hooke’s law
? ?trr E ???? 21 ?? ? ?? ?
rtt E ????? ??? 1
1
If stress components are expressed with strain components,we get
? ?? ? ? ?? ?trr
E ????
??? 21211 ????? ? ?? ? ? ?rtt
E ???
??? ???? 211
50
二 几何方程
由于对称,只可能发生径向位移 ;又由于对称,只可能
发生径向正应变 及切向正应变,不可能发生坐标方向的剪
应变。球对称问题的几何方程为,
ru
r? t?
dr
du r
r ?? r
u r
t ??三 物理方程
球对称问题的物理方程可直接根据虎克定律得来,
? ?trr E ???? 21 ?? ? ?? ?rtt E ????? ??? 11
将应力用应变表示为,
? ?? ? ? ?? ?trr E ??????? 21211 ????? ? ?? ? ? ?rtt E ?????? ???? 211
51
Four,The Basic Differential Equation in Terms of Displacement
Substitute the geometric equations into the physical equations,we get the elastic
equations,
? ?? ?
? ?
? ?? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
??
?
r
u
dr
duE
r
u
dr
duE
rr
t
rr
r
?
??
?
??
??
?
211
21
211
Substitute the above equations into the differential equations of equilibrium,we get
? ?
? ?? ? 0
22
211
1
22
2
????
?
?
???
? ??
??
?
rr
rr Ku
rdr
du
rdr
udE
??
?
This is known as the basic differential equations for solving the spherically
symmetric problems in terms of displacement,
52
四 位移法求解的基本微分方程
将几何方程代入物理方程,得弹性方程
? ?? ?
? ?
? ?? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
??
?
r
u
dr
duE
r
u
dr
duE
rr
t
rr
r
?
??
?
??
??
?
211
21
211
再代入平衡微分方程,得
? ?
? ?? ? 0
22
211
1
22
2
????
?
?
???
? ??
??
?
rr
rr Ku
rdr
du
rdr
udE
??
?
这就是按位移求解球对称问题时所需要用的基本微分方
程。
53
Example,a hollow pellet which is under action of the even distributed pressure
consider a hollow pellet,Its interior radius is a,the exterior is b,the inner
pressure is qa,outer pressure is qb,At the absence of body force,please find its
stresses and displacements,
Its solution is
And the stress components are,
2
22
22 0rr
r
d u d u u
r d rd r r? ? ?
Solution,for ignoring the body force,the differential equation for spherically
symmetric problems can be simplified as
2r
Bu Ar
r??
3
3
2
1 2 1
1 2 1
r
t
E E B
A
r
E E B
A
r
?
??
?
??
??
??
??
??
x
z y
Five
54
五 举例:空心圆球受均布压力
设有空心圆球,内半径为 a,外半径为 b,内压为 qa,
外压为 qb,体力不计,试求其应力及位移。
其解为
得应力分量
022 22
2
??? rrr urdrdurdr ud
解,由于体力不计,球对称问题的微分方程简化为
2r
BAru
r ??
3
3
121
1
2
21
r
BEAE
r
BEAE
t
r
??
?
??
?
?
?
?
?
?
?
?
?
x
z y
55
Substitute the boundary conditions ? ? ? ?
r a r br a r bqq????? ? ? ?
into the above formulas,we get
? ? ? ?
? ?
? ? ? ?
3333
3 3 3 31 2,12
abab a b q qa q b qAB
E b a E b a
?? ??? ? ? ?
??
And then we get the radial displacement of the problem,
The stress expressions are,
? ?
33
33
1 2 1 2
1 1122
11
r a b
ba
r rr
u q q
E ba
ab
??
?
????
?????
??
??
??
??
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
1 1 1 1
22,
1 1 1 1
r a b t a b
b a b a
r r r rq q q q
b a b a
a b a b
??
? ? ? ?
? ? ? ? ?
? ? ? ?
56
将边界条件 ? ? ? ? bbrraarr qq ???? ?? ?? 代入上式解得
? ? ? ? ? ?? ? ? ??? ???????? 12,21 33
33
33
33
abE
qqbaB
abE
qbqaA baba
于是得问题的径向位移
应力表达式
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? bar q
b
a
r
a
q
a
b
r
b
E
r
u
3
3
3
3
3
3
3
3
1
1
21
2
1
1
21
21 ?
?
?
?
?
batbar q
b
a
r
a
q
a
b
r
b
q
b
a
r
a
q
a
b
r
b
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
2
1
1
1
2,
1
1
1
1
?
?
?
?
?
?
?
?
?
?
?
?? ??
57
Exercise 8.1 suppose there is a equal section pole with arbitrary shape,
its density is,with its upper end hung and lower end free,which is
shown as fig,
Try to prove the stress components
0, 0,, 0, 0, 0x y z x y y z y zz? ? ? ? ? ? ?? ? ? ? ? ?
be suitable for any condition,
?
z
y
Solution, the stress components are,
0, 0,,
0, 0, 0
xyz
x y y z y z
z? ? ? ?
? ? ?
? ? ?
???
The body force components are,
0,X Y Z ?? ? ? ?
58
练习 8.1 设有任意形状的等截面杆,密度为,上端悬
挂,下端自由,如图所示。试证明应力分量
00000 ?????? yzyzxyzyx z ???????,,,,,
能满足所有一切条件。
?
z
y
解,已知应力分量为
000
00
???
???
yzyzxy
zyx z
???
????
,,
,,,
体力分量为
????? ZYX,0
59
One· The Inspection of Differential Equations of Equilibrium
Obviously they are satisfied,
0
0
0
yxx zx
xy y zy
yzxz z
X
x y z
Y
x y z
Z
x y z
???
? ? ?
???
???
? ? ? ?
? ? ?
? ? ?
? ? ? ?
? ? ?
???
? ? ? ?
? ? ?
Two,The Inspection of Compatibility
Because the body force is a constant,the compatibility equations are
60
一 · 检验平衡微分方程
显然满足。
0
0
0
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
Z
zyx
Y
zyx
X
zyx
zyzxz
zyyxy
zxyxx
???
???
???
二, 检验相容性
因为体力为常量,相容方程为,
61
? ? ? ?
? ? ? ?
? ? ? ?
22
22
2
22
22
2
22
22
2
1 0,1 0
1 0,1 0
1 0,1 0
x y z
y z x
z x y
zyx
xzy
yxz
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ? ? ? ? ?
???
? ? ? ?
? ? ? ? ? ? ? ?
???
? ? ? ?
? ? ? ? ? ? ? ?
???
Substitute into the stress components,obviously they are satisfied,
Three,The Inspection of Boundary Conditions
On the lower end 0,0,1; 0z l m n X Y Z? ? ? ? ? ? ? ?
Substitute into the boundary conditions,
62
? ? ? ?
? ? ? ?
? ? ? ? 01,01
01,01
01,01
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
?
??
??
????
?
??
???
?
??
??
????
?
??
???
?
??
??
????
?
??
???
xyz
zxy
yzx
xyz
zxy
yzx
????
????
????
将应力分量代入,显然均能满足。
三, 检验边界条件
下端面,0;1,0,0 ???????? ZYXnmlz
代入边界条件
63
? ?
x x y x z
x y y z y
x z y z z
l m n X
l m n Y a
l m n Z
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
They are all satisfied,
On the left,right profile,0,1; 0l n m X Y Z? ? ? ? ? ? ?
On the front,back profile 0,1; 0m n l X Y Z? ? ? ? ? ? ?
Substitute them into formula (a),obviously they are satisfied,
In sum,the given stress components satisfy the equations of
equilibrium,the compatibility equations and boundary conditions under
the action of extern forces
64
? ?
Znml
aYnml
Xnml
zyzxz
zyyxy
xzxyx
???
???
???
???
???
???
均满足。
左、右侧面,0;1,0 ??????? ZYXmnl
前、后侧面,0;1,0 ??????? ZYXlnm
代入 (a)式显然满足。
综上所述,所给应力分量满足平衡方程、相容方程
及外力边界条件。
65
Exercise 8.2 Try using the Love stress function to
solve the column pole’s stress components,The column pole’s two ends are
under the action of even distributed forces
? ?2221 zcrcz ???
z
x
y
L
Solution,first we inspect whether the stress function
satisfies the compatibility condition
? ? 022 ??? ?
Differentiating the function,we get ?
zc
z
zc
r
rzc
r
22
2
12
2
1
6
,2,2
?
?
?
?
?
?
?
?
?
?
??
66
练习 8.2 试用 Love应力函数 求解圆柱
杆的两端受均匀分布作用的各应力分量。
? ?2221 zcrcz ???
z
x
y
L
解,首先检查应力函数是否满足
相容条件 ? ? 0
22 ??? ?
对函数 进行求导,得 ?
zc
z
zc
r
rzc
r
22
2
12
2
1
6
,2,2
?
?
?
?
?
?
?
?
?
?
??
67
? ? zcc
zc
r
rzc
zc
zrrr
21
2
1
12
2
2
2
2
64
6
2
2
1
??
???
?
?
?
?
?
?
?
?
??
???
?
Obviously ? ?
022 ??? ?
The stress components
? ? ? ?16212 21
2
2
2
cc
rzr
??
?
???
????
??
?
?
??
?
?
?
?
??
?
?
?
? ? ? ?26212
1
21
2
cc
rrz
??
?
??? ?
????
?
?
?
?
?
?
?
?
??
?
?
?
68
? ? zcc
zc
r
rzc
zc
zrrr
21
2
1
12
2
2
2
2
64
6
2
2
1
??
???
?
?
?
?
?
?
?
?
??
???
?
显然 ? ? 0
22 ??? ?
应力分量
? ? ? ?16212 21
2
2
2
cc
rzr
??
?
???
????
??
?
?
??
?
?
?
?
??
?
?
?
? ? ? ?26212
1
21
2
cc
rrz
??
?
??? ?
????
?
?
?
?
?
?
?
?
??
?
?
?
69
? ?
? ? ? ? ? ?31624
2
21
2
2
2
??
?
???
????
?
?
?
?
?
?
?
?
???
?
?
?
cc
zz
z
? ? ? ?401 2
2
2 ??
?
?
?
?
?
?
????
?
??
zrzr
????
The constants of stress components are determined by the boundary conditions
? ? ? ?
? ? ? ?6
50
qlzz
arr
?
?
?
?
?
?
Substitute the stress expressions into the boundary conditions,we get
70
? ?
? ? ? ? ? ?31624
2
21
2
2
2
??
?
???
????
?
?
?
?
?
?
?
?
???
?
?
?
cc
zz
z
? ? ? ?401 2
2
2 ??
?
?
?
?
?
?
????
?
??
zrzr
????
应力分量中的常数由边界条件决定
? ? ? ?
? ? ? ?6
50
qlzz
arr
?
?
?
?
?
?
将应力表达式代入边界条件,得
71
? ? ? ?706212 21 ???? ?? cc
? ? ? ? ? ?81624 21 qcc ???? ??
From formulas (7),(8),we get
? ?
? ?
qc
qc
?
?
?
?
?
?
?
?
?
16
21
12
2
1
Substitute c1,c2 into the stress components expressions(1),(2),(3)and(4),we get
0,
0,0
??
??
zrz
r
q ??
?? ?
72
? ? ? ?706212 21 ???? ?? cc
? ? ? ? ? ?81624 21 qcc ???? ??
由式 (7),(8)得
? ?
? ?
qc
qc
?
?
?
?
?
?
?
?
?
16
21
12
2
1
将 c1,c2代入应力分量表达式 (1),(2),(3)和 (4),得
0,
0,0
??
??
zrz
r
q ??
?? ?
73
74
Elasticity
2
3
Chapter8 Space Problem
§ 8-4 The Spherical Symmetric Problem of Space
§ 8-3 The Axially Symmetric Problem of Space
§ 8-2 The Basic Equation unde Rectangular Coordinate
§ 8-1 Introduction
4
第八章 空间问题
§ 8-4 空间球对称问题
§ 8-3 空间轴对称问题
§ 8-2 直角坐标下的基本方程
§ 8-1 概 述
5
In this chapter we first give out the equations of equilibrium,the geometric
equations and the physical equations under rectangular coordinate for spatial
problems,For the analytic solutions of spatial problems can only be obtained
under peculiar boundary conditions,we discuss the axial symmetric problems
and the ball symmetric problems of space emphatically,
§ 8-1 Introduction
Ball Symmetric Problem
x
z y
Axial Symmetric Problem
x
z
y
P
6
本章首先给出空间问题直角坐标下的平衡方程、几何
方程和物理方程。针对空间问题的解析解一般只能在特殊
边界条件下才可以得到,我们着重讨论空间轴对称问题和
空间球对称问题。
§ 8-1 概 述
球对称问题
x
z y
轴对称问题
x
z
y
P
7
§ 8-2 Basic Equations under Rectangular Coordinate
One,Differential Equations of Equilibrium
Consider an arbitrary point inside the body
and fetch a small parallel hexahedron,which
stress components on each side are shown as
figure,
If ab denotes the line which joins the
centers of two faces of the hexahedron,then
from we get ? ? 0
abm
22
dyd x d zdyd x d zdy
y yz
yz
yz ?
?? ?
???????? ?
??
022 ?????????? ???? dzd x d ydzd x d ydzz zyzyzy ???
Canceling terms and neglecting higher order small variables,we get
8
§ 8-2 直角坐标下的基本方程
一 平衡微分方程
在物体内任意一点 P,取图
示微小平行六面体。微小平行六
面体各面上的应力分量如图所示。
若以连接六面体前后两面中
心的直线为 ab,则由 得 ? ? 0abm
22
dyd x d zdyd x d zdy
y yz
yz
yz ?
?? ?
???????? ?
??
022 ?????????? ???? dzd x d ydzd x d ydzz zyzyzy ???
化简并略去高阶微量,得
9
yxxy
xzzx
zyyz
??
??
??
?
?
?Similarly,we
get
Here we prove the relation of the equality
of cross shears again
from ? ? ? ??? 0,0,0 ZYX
List the equations,cancel terms,we get
These are differential equations of equilibrium
under rectangular coordinate of space
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
0
0
0
Z
yxz
Y
xzy
X
zyx
yzxzz
xyzyy
zxyxx
???
???
???
Two,Geometric Equations
For spatial problems,deformation components and displacement components
should satisfy following geometric equations
z
w
y
v
x
u
z
y
x
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
v
x
w
z
u
z
v
y
w
xy
zx
yz
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
Of which the first two and the last have been obtained among plane problems,
the other three can be led out with the same method,
10
yxxy
xzzx
zyyz
??
??
??
?
?
?
同理可得 这只是又一次证明了剪应力的互等关系。
由 ? ? ? ??? 0,0,0 ZYX
立出方程,经约简后得
这就是空间直角坐标下的
平衡微分方程。 ?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
0
0
0
Z
yxz
Y
xzy
X
zyx
yzxzz
xyzyy
zxyxx
???
???
???
二 几何方程 在空间问题中,形变分量与位移分量应当满足下列 6 个几何
方程
z
w
y
v
x
u
z
y
x
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
v
x
w
z
u
z
v
y
w
xy
zx
yz
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
其中的第一式、第二式和第六式已在平面问题中导出,其余三式
可用相同的方法导出。
11
Three,Physical Equations
For an isotropic body,the relations between deformation components and stress
components are as follows,? ?? ?
? ?? ?
? ?? ?yxzz
xzyy
zyxx
E
E
E
?????
?????
?????
???
???
???
1
1
1
xyxy
zxzx
yzyz
G
G
G
??
??
??
1
1
1
?
?
?
These are physical equations for spatial problems,
If stress components are denoted by strain components,physical equations can be
written as,
zz
yy
xx
Ge
Ge
Ge
???
???
???
2
2
2
??
??
??
xyxy
zxzx
yzyz
G
G
G
??
??
??
?
?
?
where,
zyxe ??? ???
? ?? ??? ?? 211 ??? E
12
三 物理方程
对于各向同性体,形变分量与应力分量之间的关系如下,? ?? ?
? ?? ?
? ?? ?
yxzz
xzyy
zyxx
E
E
E
?????
?????
?????
???
???
???
1
1
1
xyxy
zxzx
yzyz
G
G
G
??
??
??
1
1
1
?
?
?
这就是空间问题的物理方程。
将应力分量用应变分量表示,物理方程又可表示为,
zz
yy
xx
Ge
Ge
Ge
???
???
???
2
2
2
??
??
??
xyxy
zxzx
yzyz
G
G
G
??
??
??
?
?
?
其中,
zyxe ??? ???
? ?? ??? ?? 211 ??? E
13
Four Equations of Compatibility
Differentiate the second and the third formula of geometric equations at the
left.Adding these two,we get
???
?
???
?
?
??
?
?
??
??
??
??
??
??
?
??
?
?
y
w
z
v
zyyz
w
zy
v
yz
zy
2
2
3
2
3
22
2 ??
Substitute the fourth formula of geometric equations into the above
equation,we get
zyyz
yzzy
??
??
?
??
?
? ???
2
2
2
2 ( a)
Similarly
?
?
?
??
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
yxxy
xzzx
xyyx
zxxz
???
???
2
2
2
2
2
2
2
2
2
2
( b)
14
四 相容方程
将几何方程第二式左边对 z的二阶导数与第三式左边对
y的二阶导数相加,得
???
?
???
?
?
??
?
?
??
??
??
??
??
??
?
??
?
?
y
w
z
v
zyyz
w
zy
v
yz
zy
2
2
3
2
3
22
2 ??
将几何方程第四式代入,得
zyyz
yzzy
??
??
?
??
?
? ???
2
2
2
2 ( a)
同理
?
?
?
??
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
yxxy
xzzx
xyyx
zxxz
???
???
2
2
2
2
2
2
2
2
2
2
( b)
15
Differentiate the late three formulas of geometric equations separately for
X,Y,Z,we get
zy
u
zx
v
z
yx
w
yz
u
y
xz
v
xy
w
x
xy
zx
yz
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
22
22
22
?
?
?
From the above equations,we get
zyx
u
zy
zy
u
xzyxx
x
xyzxyz
??
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
??
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
22
2
22
2
16
将几何方程中的后三式分别对 x,y,z求导,得
zy
u
zx
v
z
yx
w
yz
u
y
xz
v
xy
w
x
xy
zx
yz
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
??
?
?
?
?
22
22
22
?
?
?
并由此而得
zyx
u
zy
zy
u
xzyxx
x
xyzxyz
??
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
??
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
22
2
22
2
17
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yxyxzz
xzxzyy
zzxyzxy
yyzxyzx
????
????
2
2
2
2Similarly
( d)
The equations of (a),(b),(c),(d)are called compatibility conditions of deformation,
also known as equations of compatibility,
Substituting physical equations into the above equations,and canceling terms
according to differentiate equations of equilibrium,we get the compatibility
equations which are expressed with stress components,
Namely
zyzyxx
xxyzxyz
??
??
???
?
???
?
?
??
?
??
?
??
?
? ???? 22( c)
18
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
yxyxzz
xzxzyy
zzxyzxy
yyzxyzx
????
????
2
2
2
2同理
( d)
方程 (a),(b),(c),(d)称为变形协调条件,也称相容方
程。
将物理方程代入上述相容方程,并利用平衡微分方程
简化后,得用应力分量表示的相容方程,
即
zyzyxx
xxyzxyz
??
??
???
?
???
?
?
??
?
??
?
??
?
? ???? 22( c)
19
We call them Michel compatibility equations,
? ? ? ?
? ? ? ?
? ? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
y
Y
x
X
z
Z
z
x
X
z
Z
y
Y
y
z
Z
y
Y
x
X
x
z
y
x
???
?
?
??
???
?
?
??
???
?
?
??
2
1
1
1
2
1
1
1
2
1
1
1
2
2
2
2
2
2
2
2
2
? ? ? ?
? ? ? ?
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
y
X
x
Y
yx
x
Z
z
X
xz
z
Y
y
Z
zy
xy
zx
yz
???
???
???
11
11
11
2
2
2
2
2
2
20
称其为密切尔相容方程。
? ? ? ?
? ? ? ?
? ? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
??
???
y
Y
x
X
z
Z
z
x
X
z
Z
y
Y
y
z
Z
y
Y
x
X
x
z
y
x
???
?
?
??
???
?
?
??
???
?
?
??
2
1
1
1
2
1
1
1
2
1
1
1
2
2
2
2
2
2
2
2
2
? ? ? ?
? ? ? ?
? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
??
???
y
X
x
Y
yx
x
Z
z
X
xz
z
Y
y
Z
zy
xy
zx
yz
???
???
???
11
11
11
2
2
2
2
2
2
21
Among spatial problems,if the elasticity body’s geometric shape,restraint
condition and any external factors are symmetrical in a certain axis(any plane
which passes this axis is all symmetrical one),then all stresses,deformations
and displacements are symmetrical in this axis,This kind of problem is called
axial symmetry problem of space,
The forms of elastomers of axial symmetry problem are generally
divided into two kinds,cylinder or half space body,
According to the characteristic of axial symmetry,we should adopt the
cylindrical coordinates,if we take z axis as the axis of symmetry,then
all the stress components,strain components and displacement components will
be only the function of r and z,with the coordinate have nothing to do with,
? ?zr,,?
?
§ 8-3 Axially Symmetric Problems for Space
22
在空间问题中,若弹性体的几何形状、约束情况
以及所受的外来因素,都对称于某一轴(通过这个轴
的任一平面都是对称面),则所有的应力、形变和位
移也对称于这一轴。这种问题称为空间轴对称问题。
根据轴对称的特点,应采用圆柱坐标 表示。
若取对称轴为 z 轴,则轴对称问题的应力分量、形变
分量和位移分量都将只是 r 和 z 的函数,而与 坐标
无关。
? ?zr,,?
轴对称问题的弹性体的形状一般为圆柱体或半空
间体。
?
§ 8-3 空间轴对称问题
23
One,Differential Equations of Equilibrium
Consider a small element as shown in figure,
For axial symmetry,the element’s two cylindrical
planes exist only normal stresses and axial shear
stresses;its two horizontal planes exist only
normal stresses and radial shear stresses;its two
perpendicular planes exist only round normal
stresses,which are shown in figure,
According to the assumption of continuity,stress
components of the small element ‘s positive
planes have a small increase compared with the
negative ones.Attention:the increase of round
normal stresses are zero at this moment,
For equilibrium at radial direction and axial
direction and from,
canceling terms and ignoring the high order
small values,we get
12c o s,22s i n ?? ??? ddd
24
一 平衡微分方程
取图示微元体。由于轴对
称,在微元体的两个圆柱面上,
只有正应力和的轴向剪应力;
在两个水平面上只有正应力和
径向剪应力;在两个垂直面上
只有环向正应力,图示。
根据连续性假设,微元体
的正面相对负面其应力分量都
有微小增量。注意:此时环向
正应力的增量为零。
由径向和轴向平衡,并利
用,经约简
并略去高阶微量,得,
12c o s,22s i n ?? ??? ddd
25
0???????? Zrrz rzrzz ??? 0????????? rrzrr Krzr ?????
These are the differential equations of equilibrium for axial symmetry problems in
terms of cylindrical coordinates,
Two, Geometric Equations
Similar to the analysis of plane problem in term of polar coordinates,we get,the
strain components caused by radial displacement are,
z
u
r
u
r
u r
zrrrr ?
???
?
?? ???
?,,
The strain components caused by axial displacement are,
r
w
z
w
zrz ?
??
?
?? ??,
From the principle of superposing,namely we get the geometric equations for
spatial axial symmetry problems,
z
w
r
u
r
u
z
r
r
r
?
?
?
?
?
?
?
?
?
?
? r
w
z
u r
zr ?
??
?
???
26
0???????? Zrrz rzrzz ??? 0????????? rrzrr Krzr ?????
这就是轴对称问题的柱坐标平衡微分方程。
二 几何方程
通过与平面问题及极坐标中同样的分析,可见,由径向位
移引起的形变分量为,
z
u
r
u
r
u r
zr
rr
r ?
???
?
?? ???
?,,
由轴向位移引起的形变分量为,
r
w
z
w
zrz ?
??
?
?? ??,
由叠加原理,即得空间轴对称问题的几何方程,
z
w
r
u
r
u
z
r
r
r
?
?
?
?
?
?
?
?
?
?
? r
w
z
u r
zr ?
??
?
???
27
Three,Physical Equations
Because the cylindrical coordinates are orthogonal coordinates as the
rectangular ones,we can get the physical equations directly from Hooke’s law,? ?? ?
? ?? ?
? ?? ??
??
?
?????
?????
?????
???
???
???
rzz
rz
zrr
E
E
E
1
1
1
? ?
zrzrzr EG ?
??? ??? 121
If stress components are expressed with strain components,the above
equations can be written as,
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
zz
rr
e
E
e
E
e
E
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
211
211
211
? ? zrzr E ??? ?? 12
Where,
zre ??? ? ???
28
三 物理方程
由于圆柱坐标,是和直角坐标一样的正交坐标,所以可直
接根据虎克定律得物理方程,? ?? ?
? ?? ?
? ?? ??
??
?
?????
?????
?????
???
???
???
rzz
rz
zrr
E
E
E
1
1
1
? ?
zrzrzr EG ?
??? ??? 121
应力分量用形变分量表示的物理方程,
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
??
?
zz
rr
e
E
e
E
e
E
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
211
211
211
? ? zrzr E ??? ?? 12
其中,
zre ??? ? ???
29
Four,Solution of Axial Symmetry Problems
Substitute the geometric equations into the physical equations which stress
components are expressed with strain components,we get the elastic equations,
??
?
?
??
?
?
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
?
?
??
?
z
w
e
E
r
u
e
E
r
u
e
E
z
r
r
r
r
?
?
?
?
?
?
?
?
?
?
?
?
11
11
11
? ? ?????? ??????? rwzuE rzr ?? 12
Where,
zwrurue rr ??????? Substitute the above equations into the differential equations of equilibrium,and use
the notation,
2
2
2
22 1
zrrr ??????????
We get
? ? 021 112 22 ?????????? ??????? rrr KruureE ?? ? ? 021 112 2 ?????????? ?????? ZwzeE ??
These are known as basic differential equations for solving the spatial axial
symmetry problems in terms of displacement components,
Obviously,the displacement components in above equations are functions
coordinates r and z,they can’t be solved directly,So we introduce the following
method,
30
四 轴对称问题的求解
将几何方程代入应力
分量用应变分量表示的物
理方程,得弹性方程,
??
?
?
??
?
?
?
?
?
??
?
??
?
?
??
?
?
?
??
?
??
?
?
??
?
?
?
?
?
??
?
z
w
e
E
r
u
e
E
r
u
e
E
z
r
r
r
r
?
?
?
?
?
?
?
?
?
?
?
?
11
11
11
? ? ?????? ??????? rwzuE rzr ?? 12
其中,
z
w
r
u
r
ue rr
?
???
?
??
再将弹性方程代入平衡微分方程,并记,22222 1 zrrr ??????????
得到
? ? 021
1
12 2
2 ????
?
?
???
? ???
?
?
?? r
r
r Kr
uu
r
eE
?? ? ? 021
1
12
2 ????
?
?
???
? ?
?
?
?? Zwz
eE
??
这就是按位移求解空间轴对称问题所需要的基本微分方程。
显然,上述基本微分方程中的位移分量是坐标 r,z 的函数,
不可能直接求解,为此介绍下列方法,
31
Five,Displacement Tendency Function
For simplicity,ignoring the body force,the basic differential equations in term of
displacement components can be simplified as,
021 1 22 ??????? ruure rr? 021 1 2 ?????? wze?
Supposing now the displacement has tendency,we use displacement tendency
function to denote the displacement components,? ?zr,?
zGwrGu r ?
??
?
?? ??
2
1,
2
1
Thus we get,?2
2
1 ??
?
???
?
??
Gz
w
r
u
r
ue rr
?
?
2
2
2
1
2
1
?
?
??
?
?
?
?
??
?
?
zGz
e
rGr
e
?222 2 1 ?????? rGruu rr
?22 21 ????? zGw
0,0 22 ???????? ?? zr
C?? ?2
Substitute with the basic differential equations which ignoring the body
force,we get,
Namely
32
五 位移势函数
为简单起见,不计体力。位移分量的基本微分方程简化为,
021 1 22 ??????? ruure rr? 021 1 2 ?????? wze?
现在假设位移是有势的,把位移分量用位移势函数 表示
为,
? ?zr,?
zGwrGu r ?
??
?
?? ??
2
1,
2
1
从而有
?22 1 ????????? Gzwrurue rr
?
?
2
2
2
1
2
1
?
?
??
?
?
?
?
??
?
?
zGz
e
rGr
e
?222 2 1 ?????? rGruu rr
?22 21 ????? zGw
0,0 22 ???????? ?? zr
C?? ?2
代入不计体力的基本微分方程,得
即
33
is a mediation function,The solving representations of stress components
from displacement tendency function are,
If only,we get,
Namely 02 ?? ?0?C?
rrrr ?
??
?
?? ????
?
1,
2
2
zrz rzz ??
??
?
?? ???? 2
2
2,
So for an axial symmetry problem,if we find a suitable mediation
function,from which the displacement components and stress components
satisfy the boundary conditions,then we get the correct solution of the problem,
? ?zr,?
In order to solve axial symmetry problems,Lame introduces a displacement function
? ?zr,?
Attention,not all the displacement functions of spatial problems have tendency,But
if they have,the volumetric strain, Ce ??? ?2
Six Lame Displacement Function
Define
zrGu r ??
??? ?2
2
1
? ? ?? ?????? ??????? 222122 1 zGw
Where
2
2
2
22 1
zrrr ?
??
?
??
?
???
34
02 ?? ?取,则 。即 0?C ? 为调和函数,由位移势函数求应力
分量的表达式为,
rrrr ?
??
?
?? ????
?
1,
2
2
zrz rzz ??
??
?
?? ???? 2
2
2
,
为求解轴对称问题,拉甫引用一个位移函数 ? ?zr,?
这样,对于一个轴对称问题,如果找到适当的调和函数,
使得由此给出的位移分量和应力分量能够满足边界条件,就得到
该问题的正确解答。
? ?zr,?
注:并不是所有问题中的位移函数都是有势的。若位移势函数
有势,则体积应变 。 Ce ??? ?2
六 拉甫位移函数
令
zrGu r ??
??? ?2
2
1 ? ? ??
?????? ??????? 2
2212
2
1
zGw
其中
2
2
2
22 1
zrrr ?
??
?
??
?
???
35
Substitute the above functions into the basic differential functions which in the
absence of body force,we get,
04 ???
???
???
? ?
?
?
?
?
?
?
?
??
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
rrz
rz
r
12
2
2
2
Namely is a repeated mediation function,we call it Lame displacement
function,The representations of stress components from this function are,
?
? ?
? ? ???
???
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
2
2
2
2
2
2
1
2
zr
zz
zr
z
So for an axial symmetry problem,if we find a suitable repeated mediation
function,from which the displacement components and stress
components satisfy the boundary conditions,then we get the correct solution
of the problem,
? ?zr,?
36
将上式代入不计体力位移分量的基本微分方程,可见,
04 ???
???
???
? ?
?
?
?
?
?
?
?
??
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
rrz
rz
r
12
2
2
2
即 是重调和函数,称为拉甫位移函数。由拉甫位移函数求应力
分量的表达式为,
?
? ?
? ? ???
???
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
2
2
2
2
2
2
1
2
zr
zz
zr
z
可见,对于一个轴对称问题,只须找到恰当的重调和的拉
甫位移函数,使得该位移函数给出的位移分量和应力分
量能够满足边界条件,就得到该问题的正确解答。
? ?zr,?
37
Seven Example,half space body which is under the action of outward drawn
concentrated forces in the boundary
Consider a half space body,which body forces are ignored,It receives
outward drawn concentrated forces in the boundary,as shown in figure,
Please solve its stresses and displacements,
Solution:choose the coordinate system as fig,
Through the dimensional analysis,Lame’s
displacement function is positive one order
power of length coordinate of which F
multiplies R,z,ρ,After preliminary
calculation,we set displacement function as,
? ?? ?
? ? ? ?zzrzAzrAA
zRzRARA
??????
????
22
2
22
21
21
ln
ln?
According to the relations of displacement components and stress
components and displacement function,
??????? ?? ?
?
?
??
? ??????
2
2
2
2
)1(22 1,2 1 zGzrGu r
x
z
y
P
R
z
38
七 举例:半空间体在边界上受法向集中力
设有半空间体,体力不计,在其边界上受有法向集
中力,如图所示。试求其应力与位移。
解:取坐标系如图。通过量纲
分析,拉甫位移函数应是 F乘
以 R,z,ρ等长度坐标的正一
次幂,试算后,设位移函数为
? ?? ?
? ? ? ?zzrzAzrAA
zRzRARA
??????
????
22
2
22
21
21
ln
ln?
根据位移分量和应力分量与位移函数的关系,
??????? ?? ?
?
?
??
? ??????
2
2
2
2
)1(22 1,2 1 zGzrGu r
x
z
y
P
R
z
39
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
? ?
?
?
?
?
?
?
?????
?
?
?
?
?
????
?
?
?
?
?
?
????
?
?
?
?
?
???
2
2
2
2
2
2
2
2
2
2
)1(,)2(
1
,
zrzz
rrzrz
zrz
r
We can obtain the displacement components and the stress components
3
2
5
2
31
3
2
5
3
31
2
3
1
325
3
31
2
3
2
12
3
1
3)21(
3)21(
,
)(
)21(
,
)(
13)21(
,
2
43
2
,
)(22
R
rA
R
rz
R
r
A
R
zA
R
z
R
z
A
zRR
A
R
zA
zRRR
z
A
R
zr
R
z
A
GR
A
R
z
RG
A
zRGR
rA
GR
rzA
u
zr
z
r
r
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
40
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
? ?
?
?
?
?
?
?
?????
?
?
?
?
?
????
?
?
?
?
?
?
????
?
?
?
?
?
???
2
2
2
2
2
2
2
2
2
2
)1(,)2(
1
,
zrzz
rrzrz
zrz
r
可以求得位移分量和应力分量
3
2
5
2
31
3
2
5
3
31
2
3
1
325
3
31
2
3
2
12
3
1
3)21(
3)21(
,
)(
)21(
,
)(
13)21(
,
2
43
2
,
)(22
R
rA
R
rz
R
r
A
R
zA
R
z
R
z
A
zRR
A
R
zA
zRRR
z
A
R
zr
R
z
A
GR
A
R
z
RG
A
zRGR
rA
GR
rzA
u
zr
z
r
r
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
41
The boundary conditions are
0)(
0)(
0,0
0,0
?
?
??
??
rzrz
rzz
?
?
(a)
(b)
According to the Saint-Venant’s Principle,we have
?? ??0 0)d2( Prr z??
(c)
The boundary condition (a) is satisfied,From boundary condition (b),we get
0)21( 21 ??? AAr
(d)
From condition (c),we get
? ? PAA ??? 21 214 ?? (e)
Solving in terms of (d) and (e),we get
PAPA ? ?? 2 )21(,2 21 ????
42
边界条件是
0)(
0)(
0,0
0,0
?
?
??
??
rzrz
rzz
?
?
(a)
(b)
根据圣维南原理,有
?? ??0 0)d2( Prr z??
(c)
边界条件 (a)是满足的。由边界条件 (b)得
0)21( 21 ??? AAr
(d)
由条件 (c)得
? ? PAA ??? 21 214 ?? (e)
由 (d)及 (e)二式的联立求解,得
PAPA ? ?? 2 )21(,2 21 ????
43
Substitute the obtained A1 and A2 into the forgoing representations,we get
5
2
5
3
2
3
2
2
2
Pr3
,
2
3
2
)21(
3)21(
2
R
z
R
Pz
zR
R
R
z
R
P
R
zr
zR
R
R
P
rzzrz
r
?
??
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
2
2
2
)1(2
2
)1(
)21(
2
)1(
R
z
ER
P
zR
r
R
rz
ER
P
u r
?
?
?
?
?
?
?
44
将得出的 A1及 A2回代,得
5
2
5
3
2
3
2
2
2
Pr3
,
2
3
2
)21(
3)21(
2
R
z
R
Pz
zR
R
R
z
R
P
R
zr
zR
R
R
P
rzzrz
r
?
??
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
2
2
2
)1(2
2
)1(
)21(
2
)1(
R
z
ER
P
zR
r
R
rz
ER
P
u r
?
?
?
?
?
?
?
45
Among spatial problems,if the elasticity body’s geometric shape,restraint
condition and any external factors are symmetrical in a certain point (any
plane which passes this point is all symmetrical one),then all stresses,strains
and displacements are symmetrical in this point,This kind of problem is
called spherically symmetry problem of space,
According to the characteristic of spherically symmetry,we should adopt
the spherical coordinates,if we take elasticity body’s symmetrical
point as the coordinate’s origin,then all the stress components,strain
components and displacement components will be only the function of
radial coordinate r,with the other two coordinates have nothing to do with,
? ???,,r
O
Obviously,spherically symmetric problems can only exist in hollow
or solid round spheroid,
§ 8-4 Spherically Symmetric Problem For Space
46
在空间问题中,如果弹性体的几何形状、约束情况
以及所受的外来因素,都对称于某一点(通过这一点的
任意平面都是对称面),则所有的应力、形变和位移也
对称于这一点。这种问题称为空间球对称问题。
根据球对称的特点,应采用球坐标 表示。若
以弹性体的对称点为坐标原点,则球对称问题的应力
分量、形变分量和位移分量都将只是径向坐标 r 的函数,
而与其余两个坐标无关。
? ???,,r
O
显然,球对称问题只可能发生于空心或实心的圆球
体中。
§ 8-4 空间球对称问题
47
One,Differential Equations of Equilibrium
For symmetry,the small element only
has radial volume force, From radial
equilibrium,and
considering,Neglecting the
higher order small variables,we get the
differential equations of equilibrium for
spherically symmetric problems,
rK
22sin ?? dd ?
Fetch a small element,Fetch a
small hexahedron from the elastomer,
It is formed by two pellet faces,
which distance is,and two pairs of
radial planes,which angle is
respectively,
For spherical symmetry,each plane
only has normal stress,Its stress
situations are shown in fig,
dr
?d
? ? 02 ???? rrr Krdrd ????
48
一 平衡微分方程
取微元体。用相距 的
两个圆球面和两两互成 角
的两对径向平面,从弹性体
割取一个微小六面体。由于
球对称,各面上只有正应力,
其应力情况如图所示。
dr
?d
由于对称性,微元体只
有径向体积力 。由径向平
衡,并考虑到,再
略去高阶微量,即得球对称
问题的平衡微分方程,
rK
22sin ?? dd ?
? ? 02 ???? rrr Krdrd ????
49
Two Geometric Equations
dr
du r
r ??
For symmetry,it can only exist radial displacement ; for the same reason,it
can only exist radial normal strain and tangent normal strain,it can’t exist
shear strain along the coordinate direction,The geometric equations for spherically
symmetric problems are,
ru
r? t?
r
u r
t ??
Three Physical Equations
The physical equations for spherically symmetric problems can directly be led
out from Hooke’s law
? ?trr E ???? 21 ?? ? ?? ?
rtt E ????? ??? 1
1
If stress components are expressed with strain components,we get
? ?? ? ? ?? ?trr
E ????
??? 21211 ????? ? ?? ? ? ?rtt
E ???
??? ???? 211
50
二 几何方程
由于对称,只可能发生径向位移 ;又由于对称,只可能
发生径向正应变 及切向正应变,不可能发生坐标方向的剪
应变。球对称问题的几何方程为,
ru
r? t?
dr
du r
r ?? r
u r
t ??三 物理方程
球对称问题的物理方程可直接根据虎克定律得来,
? ?trr E ???? 21 ?? ? ?? ?rtt E ????? ??? 11
将应力用应变表示为,
? ?? ? ? ?? ?trr E ??????? 21211 ????? ? ?? ? ? ?rtt E ?????? ???? 211
51
Four,The Basic Differential Equation in Terms of Displacement
Substitute the geometric equations into the physical equations,we get the elastic
equations,
? ?? ?
? ?
? ?? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
??
?
r
u
dr
duE
r
u
dr
duE
rr
t
rr
r
?
??
?
??
??
?
211
21
211
Substitute the above equations into the differential equations of equilibrium,we get
? ?
? ?? ? 0
22
211
1
22
2
????
?
?
???
? ??
??
?
rr
rr Ku
rdr
du
rdr
udE
??
?
This is known as the basic differential equations for solving the spherically
symmetric problems in terms of displacement,
52
四 位移法求解的基本微分方程
将几何方程代入物理方程,得弹性方程
? ?? ?
? ?
? ?? ?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
??
?
r
u
dr
duE
r
u
dr
duE
rr
t
rr
r
?
??
?
??
??
?
211
21
211
再代入平衡微分方程,得
? ?
? ?? ? 0
22
211
1
22
2
????
?
?
???
? ??
??
?
rr
rr Ku
rdr
du
rdr
udE
??
?
这就是按位移求解球对称问题时所需要用的基本微分方
程。
53
Example,a hollow pellet which is under action of the even distributed pressure
consider a hollow pellet,Its interior radius is a,the exterior is b,the inner
pressure is qa,outer pressure is qb,At the absence of body force,please find its
stresses and displacements,
Its solution is
And the stress components are,
2
22
22 0rr
r
d u d u u
r d rd r r? ? ?
Solution,for ignoring the body force,the differential equation for spherically
symmetric problems can be simplified as
2r
Bu Ar
r??
3
3
2
1 2 1
1 2 1
r
t
E E B
A
r
E E B
A
r
?
??
?
??
??
??
??
??
x
z y
Five
54
五 举例:空心圆球受均布压力
设有空心圆球,内半径为 a,外半径为 b,内压为 qa,
外压为 qb,体力不计,试求其应力及位移。
其解为
得应力分量
022 22
2
??? rrr urdrdurdr ud
解,由于体力不计,球对称问题的微分方程简化为
2r
BAru
r ??
3
3
121
1
2
21
r
BEAE
r
BEAE
t
r
??
?
??
?
?
?
?
?
?
?
?
?
x
z y
55
Substitute the boundary conditions ? ? ? ?
r a r br a r bqq????? ? ? ?
into the above formulas,we get
? ? ? ?
? ?
? ? ? ?
3333
3 3 3 31 2,12
abab a b q qa q b qAB
E b a E b a
?? ??? ? ? ?
??
And then we get the radial displacement of the problem,
The stress expressions are,
? ?
33
33
1 2 1 2
1 1122
11
r a b
ba
r rr
u q q
E ba
ab
??
?
????
?????
??
??
??
??
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
1 1 1 1
22,
1 1 1 1
r a b t a b
b a b a
r r r rq q q q
b a b a
a b a b
??
? ? ? ?
? ? ? ? ?
? ? ? ?
56
将边界条件 ? ? ? ? bbrraarr qq ???? ?? ?? 代入上式解得
? ? ? ? ? ?? ? ? ??? ???????? 12,21 33
33
33
33
abE
qqbaB
abE
qbqaA baba
于是得问题的径向位移
应力表达式
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? bar q
b
a
r
a
q
a
b
r
b
E
r
u
3
3
3
3
3
3
3
3
1
1
21
2
1
1
21
21 ?
?
?
?
?
batbar q
b
a
r
a
q
a
b
r
b
q
b
a
r
a
q
a
b
r
b
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
2
1
1
1
2,
1
1
1
1
?
?
?
?
?
?
?
?
?
?
?
?? ??
57
Exercise 8.1 suppose there is a equal section pole with arbitrary shape,
its density is,with its upper end hung and lower end free,which is
shown as fig,
Try to prove the stress components
0, 0,, 0, 0, 0x y z x y y z y zz? ? ? ? ? ? ?? ? ? ? ? ?
be suitable for any condition,
?
z
y
Solution, the stress components are,
0, 0,,
0, 0, 0
xyz
x y y z y z
z? ? ? ?
? ? ?
? ? ?
???
The body force components are,
0,X Y Z ?? ? ? ?
58
练习 8.1 设有任意形状的等截面杆,密度为,上端悬
挂,下端自由,如图所示。试证明应力分量
00000 ?????? yzyzxyzyx z ???????,,,,,
能满足所有一切条件。
?
z
y
解,已知应力分量为
000
00
???
???
yzyzxy
zyx z
???
????
,,
,,,
体力分量为
????? ZYX,0
59
One· The Inspection of Differential Equations of Equilibrium
Obviously they are satisfied,
0
0
0
yxx zx
xy y zy
yzxz z
X
x y z
Y
x y z
Z
x y z
???
? ? ?
???
???
? ? ? ?
? ? ?
? ? ?
? ? ? ?
? ? ?
???
? ? ? ?
? ? ?
Two,The Inspection of Compatibility
Because the body force is a constant,the compatibility equations are
60
一 · 检验平衡微分方程
显然满足。
0
0
0
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
Z
zyx
Y
zyx
X
zyx
zyzxz
zyyxy
zxyxx
???
???
???
二, 检验相容性
因为体力为常量,相容方程为,
61
? ? ? ?
? ? ? ?
? ? ? ?
22
22
2
22
22
2
22
22
2
1 0,1 0
1 0,1 0
1 0,1 0
x y z
y z x
z x y
zyx
xzy
yxz
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ? ? ? ? ?
???
? ? ? ?
? ? ? ? ? ? ? ?
???
? ? ? ?
? ? ? ? ? ? ? ?
???
Substitute into the stress components,obviously they are satisfied,
Three,The Inspection of Boundary Conditions
On the lower end 0,0,1; 0z l m n X Y Z? ? ? ? ? ? ? ?
Substitute into the boundary conditions,
62
? ? ? ?
? ? ? ?
? ? ? ? 01,01
01,01
01,01
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
?
??
??
????
?
??
???
?
??
??
????
?
??
???
?
??
??
????
?
??
???
xyz
zxy
yzx
xyz
zxy
yzx
????
????
????
将应力分量代入,显然均能满足。
三, 检验边界条件
下端面,0;1,0,0 ???????? ZYXnmlz
代入边界条件
63
? ?
x x y x z
x y y z y
x z y z z
l m n X
l m n Y a
l m n Z
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
They are all satisfied,
On the left,right profile,0,1; 0l n m X Y Z? ? ? ? ? ? ?
On the front,back profile 0,1; 0m n l X Y Z? ? ? ? ? ? ?
Substitute them into formula (a),obviously they are satisfied,
In sum,the given stress components satisfy the equations of
equilibrium,the compatibility equations and boundary conditions under
the action of extern forces
64
? ?
Znml
aYnml
Xnml
zyzxz
zyyxy
xzxyx
???
???
???
???
???
???
均满足。
左、右侧面,0;1,0 ??????? ZYXmnl
前、后侧面,0;1,0 ??????? ZYXlnm
代入 (a)式显然满足。
综上所述,所给应力分量满足平衡方程、相容方程
及外力边界条件。
65
Exercise 8.2 Try using the Love stress function to
solve the column pole’s stress components,The column pole’s two ends are
under the action of even distributed forces
? ?2221 zcrcz ???
z
x
y
L
Solution,first we inspect whether the stress function
satisfies the compatibility condition
? ? 022 ??? ?
Differentiating the function,we get ?
zc
z
zc
r
rzc
r
22
2
12
2
1
6
,2,2
?
?
?
?
?
?
?
?
?
?
??
66
练习 8.2 试用 Love应力函数 求解圆柱
杆的两端受均匀分布作用的各应力分量。
? ?2221 zcrcz ???
z
x
y
L
解,首先检查应力函数是否满足
相容条件 ? ? 0
22 ??? ?
对函数 进行求导,得 ?
zc
z
zc
r
rzc
r
22
2
12
2
1
6
,2,2
?
?
?
?
?
?
?
?
?
?
??
67
? ? zcc
zc
r
rzc
zc
zrrr
21
2
1
12
2
2
2
2
64
6
2
2
1
??
???
?
?
?
?
?
?
?
?
??
???
?
Obviously ? ?
022 ??? ?
The stress components
? ? ? ?16212 21
2
2
2
cc
rzr
??
?
???
????
??
?
?
??
?
?
?
?
??
?
?
?
? ? ? ?26212
1
21
2
cc
rrz
??
?
??? ?
????
?
?
?
?
?
?
?
?
??
?
?
?
68
? ? zcc
zc
r
rzc
zc
zrrr
21
2
1
12
2
2
2
2
64
6
2
2
1
??
???
?
?
?
?
?
?
?
?
??
???
?
显然 ? ? 0
22 ??? ?
应力分量
? ? ? ?16212 21
2
2
2
cc
rzr
??
?
???
????
??
?
?
??
?
?
?
?
??
?
?
?
? ? ? ?26212
1
21
2
cc
rrz
??
?
??? ?
????
?
?
?
?
?
?
?
?
??
?
?
?
69
? ?
? ? ? ? ? ?31624
2
21
2
2
2
??
?
???
????
?
?
?
?
?
?
?
?
???
?
?
?
cc
zz
z
? ? ? ?401 2
2
2 ??
?
?
?
?
?
?
????
?
??
zrzr
????
The constants of stress components are determined by the boundary conditions
? ? ? ?
? ? ? ?6
50
qlzz
arr
?
?
?
?
?
?
Substitute the stress expressions into the boundary conditions,we get
70
? ?
? ? ? ? ? ?31624
2
21
2
2
2
??
?
???
????
?
?
?
?
?
?
?
?
???
?
?
?
cc
zz
z
? ? ? ?401 2
2
2 ??
?
?
?
?
?
?
????
?
??
zrzr
????
应力分量中的常数由边界条件决定
? ? ? ?
? ? ? ?6
50
qlzz
arr
?
?
?
?
?
?
将应力表达式代入边界条件,得
71
? ? ? ?706212 21 ???? ?? cc
? ? ? ? ? ?81624 21 qcc ???? ??
From formulas (7),(8),we get
? ?
? ?
qc
qc
?
?
?
?
?
?
?
?
?
16
21
12
2
1
Substitute c1,c2 into the stress components expressions(1),(2),(3)and(4),we get
0,
0,0
??
??
zrz
r
q ??
?? ?
72
? ? ? ?706212 21 ???? ?? cc
? ? ? ? ? ?81624 21 qcc ???? ??
由式 (7),(8)得
? ?
? ?
qc
qc
?
?
?
?
?
?
?
?
?
16
21
12
2
1
将 c1,c2代入应力分量表达式 (1),(2),(3)和 (4),得
0,
0,0
??
??
zrz
r
q ??
?? ?
73
74