1
Elasticity
2
3
Chapter 4 Polar Solutions For Planar Problems
§ 4-1 Differential Equations of Equilibrium in Polar
Coordinates
§ 4-5 Axially Symmetric Stress and Its Displacement
§ 4-2 Geometric and Physical Formulas in Polar
Coordinates
§ 4-3 Stress Functions and Consistent Equations in
Polar Coordinates
§ 4-4 Coordinates Transforms for Stress Components
§ 4-6 Circular Ring or Cylinder under Uniform
Loading Pressure Tunnel
4
第四章 平面问题的极坐标解答
§ 4-1 极坐标中的平衡微分方程
§ 4-4 应力分量的坐标变换式
§ 4-3 极坐标中的应力函数与相容方程
§ 4-2 极坐标中的几何方程及物理方程
§ 4-5 轴对称应力和相应的位移
§ 4-6 圆环或圆筒受均布压力压力隧洞
5
§ 4-7 Pure Bending of Curved Beam
Chapter 4 Polar Solutions For Planar Problems
§ 4-11 Normal Concentrated Forces on the Boundary for
Semi-plane Body
Exercise
§ 4-9 Stress Concentration Close by Circular Aperture
§ 4-10 Force on the Top and the Faces of Wedge
§ 4-8 Stress and Displacement of Disc in Uniform
Rotation
6
§ 4-9 圆孔的孔边应力集中
§ 4-7 曲梁的纯弯曲
§ 4-8 圆盘在匀速转动中的应力及位移
§ 4-10 楔形体在楔顶或楔面受力
§ 4-11 半平面体在边界上受法向集中力
习题课
第四章 平面问题的极坐标解答
7
§ 4-1 Differential Equations of
Equilibrium in Polar Coordinates
Dealing with elasticity problems,what form of coordinate
system we choose,which can’t affect on describing problem
essence,but relate to the level of difficulty on solving problem
directly。 If coordinate is suitable,it can simplify the problem
considerably。 For example,for circular,wedged and sector
and so on,solved by using polar coordinates are more
convenient than using rectangular coordinates,
Considering an differential field in the plate PACB
8
§ 4-1 极坐标中的平衡微分方程
在处理弹性力学问题时,选择什么形式的坐标系统,虽
不会影响对问题本质的描绘,但将直接关系到解决问题的难
易程度。如坐标选得合适,可使问题大为简化。例如对于圆
形、楔形、扇形等物体,采用极坐标求解比用直角坐标方便
的多。
考虑平面上的一个微分体 PACB
9
Considering equilibrium of an unit
element,there have three equilibrium
equations,
rrrr d??? ??
??r
rrrr d??? ??? ??
???? ?? d???
???? ?? drr ???
?
?d r?
??r??
dr
?K
rK
y
xo
P
A
B
C
Fig.4- 1
? ? ? ??? 0,0,0 MFF r ?
normal stress in the direction is called radial normal stress
denoted by ;normal stress in the direction is called
tangential normal stress denoted by ;shear stress is denoted
by,stipulation of sign of each stress component are similar to
ones in rectangular coordinates.Body force components of radial
and hoop are denoted by and,respectively,Fig.4-1,
r? ?
??
??r
rK ?K
r
10
图 4- 1
沿 方向的正应力称为径向正应力,
用 表示沿 方向的正应力称为
环向正应力,用 表示,剪应力
用 表示,各应力分量的正负号
的规定和直角坐标中一样。径向及
环向的体力分量分别用 及 表
示。如图 4-1。
r
r? ?
??
??r
rK ?K r
rrr d??? ??
??r
rrrr d??? ??? ??
???? ?? d???
???? ?? drr ???
?
?d r?
??r??
dr
?K
rK
y
xo
P
A
B
C
考虑图示单元体的平衡,有三个平衡方程,
? ? ? ??? 0,0,0 MFF r ?
11
From,can find equal relationship of shear stress,? ?0M
??? rθ ?r
? ?0rFFrom,gives,
0)(
2
2
)())((
θr
θr ???
?
?
???
?
?
????
?
?
?
drrdKdrdrd
d
dr
d
drdrdddrrdr
r
rr
r
r
r
???
?
?
?
?
?
?
?
?
?
????
?
?
??
?
?
? ?0?FFrom,gives,
0
22
)(
))(()(
???
?
?
???
?
?
?
???
?
?
?
drrdK
d
dr
d
drdrd
ddrrdr
r
drdrd
r
r
rr
r
r
?
?
?
?
?
?
?
???
?
?
???
?
?
?
??
?
??
?
??
?
?
Because is very micro,has,and,
substitutes for into upper two formulas,thus,22sin
?? dd ? 1
2cos ?
?d
??r r??
?d
12
由,可以得出剪应力互等关系,? ?0M
? ?0rF由,有,
? ?0?F由,有,
0
22
)(
))(()(
???
?
?
???
?
?
?
???
?
?
?
drrdK
d
dr
d
drdrd
ddrrdr
r
drdrd
r
r
rr
r
r
?
?
?
?
?
?
?
???
?
?
???
?
?
?
??
?
??
?
??
?
?
因为 很微小,所以取,,并用 代替,
整理以上两式,得,
?d
22sin
?? dd ? 1
2cos ?
?d ??r r??
0)(
2
2
)())((
θr
θr ???
?
?
???
?
?
????
?
?
?
drrdKdrdrd
d
dr
d
drdrdddrrdr
r
rr
r
r
r
???
?
?
?
?
?
?
?
?
?
????
?
?
??
?
?
??? rθ ?r
13
?
?
?
?
?
?
?
???
?
?
?
?
?
??
?
?
?
?
?
?
?
0
21
0
1
?
???
??
??
?
?
??
?
??
K
rrr
K
rrr
rr
r
rrr
These are differential formulas of equilibrium in polar coordinates,
Two differential formulas of equilibrium contain three unknown
functions and,,so it is a statically determinate
question.thus must consider deformation condition and physical
relationship,
rr ?? ?? ?r? ??
Above formulas differ from equilibrium equations in planar
coordinates where stress components are expressed by partial
derivative.In polar coordinates,areas of which unit element is
perpendicular to two side faces are not equal,and difference is
increasing with radius reducing,which can be seen from underline
items in the formulas,
14
?
?
?
?
?
?
?
???
?
?
?
?
?
??
?
?
?
?
?
?
?
0
21
0
1
?
???
??
??
?
?
??
?
??
K
rrr
K
rrr
rr
r
rrr
这就是极坐标中的平衡微分方程。
两个平衡微分方程中包含三个未知函数, 和,
所以问题是静不定的。因此必须考虑变形条件和物理关系。
rr ?? ?? ?r? ??
上述方程和直角坐标系下的平衡方程有所不同,直角坐
标系中,应力分量仅以偏导数的形式出现,在极坐标系中,
由于微元体垂直于半径的两面面积不等,而且半径愈小差值
愈大,这些反映在方程里带下划线的项中。
15
I,Geometric Formulas— Differential Relationship between
Displacements and Deformation
§ 4-2 Geometric and Physical
Formulas in Polar Coordinates
In polar coordinates,stipulate,
r?
??
??r
ru
?u
---radial normal strain
---hoop normal strain
---shear strain(change of right
angle between radial and hoop
lines segment)
---hoop displacement
---radial displacement
Fig.4-2
?
?d
r dr
ru
o
?
16
一、几何方程 — 位移与形变间的微分关系
§ 4-2 极坐标中的几何方程及物理方程
在极坐标中规定,
r?
??
??r
ru
?u
---径向正应变
---环向正应变
---剪应变 (径向与环向两线段
之间的直角的改变 )
---径向位移
---环向位移 图 4-2
?
?d
r dr
ru
o
?
17
Normal strain of radial line segment PA,have,
r
u
dr
udrruu
r
r
r
r
r ?
????
??
?
)(
?
Normal strain of hoop line segment PB,have,
r
u
rd
rddur rr ????
?
???
?
)(
Angle of rotation of radial line segment PA,have,
0??
(1)Assume only having radial displacement but no hoop one,Fig.4-2,
Discuss differential relationship between displacements and
deformation in polar coordinates with superimpose method,
18
径向线段 的正应变为,PA
r
u
dr
udrruu
r
r
r
r
r ?
????
??
?
)(
?
环向线段 的正应变为,PB
r
u
rd
rddur rr ????
?
???
?
)(
径向线段 的转角为,PA 0??
用叠加法讨论极坐标中的形变与位移间的微分关系。
( 1)假定只有径向位移,而无环向位移。如图 4-2所示。
19
?
?d
r P
P?
B
B?
A?
A
dr
?u
o
(2)Assume only having hoop displacement but no radial one,Fig.4-3,
Fig.4-3
Thus shear strain,have,
0?r?
Normal strain of radial line segment
PA,have,
??
??
? ?
?
?
?
? ?
????
??
? urrd
uduu 1)(
Normal slope of hoop line segment
PB,have,
???? ? ?
???? r
r
u
r
1
Angle of rotation of hoop line segment PB,have,
??
??
? ???
????
? r
r
r
r u
rrd
uduu 1)(
20
?
?d
r P
P?
B
B?
A?
A
dr
?u
o
( 2)假定只有环向位移,而无径向位移。如图 4-3所示。
图 4-3
径向线段 的正应变为,PA
0?r?
环向线段 的正转角为,PB
??
??
? ?
?
?
?
? ?
????
??
? urrd
uduu 1)(
环向线段 的转角为,PB
??
??
? ???
????
? r
r
r
r u
rrd
uduu 1)(
可见剪应变为,
???? ? ?
???? r
r
u
r
1
21
If exists radial and loop displaces,from superposition method have,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
r
u
r
uu
r
u
rr
u
r
u
r
r
r
r
r
??
?
?
?
?
?
?
?
?
1
1
Such are geometric formulas in polar coordinates,
Thus shear strain,have,
Angle of rotation of hoop line segment PB,have,
r
u
r
u
r ??? ??? ??
????
r
u?? ??
Angle of rotation of radial line segment PA,have,
r
u
dr
udrruu
?
????
??
? ?
?
?
?
?
)(
22
如果同时存在径向和环向位移,则由叠加法得,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
r
u
r
uu
r
u
rr
u
r
u
r
r
r
r
r
??
?
?
?
?
?
?
?
?
1
1
这就是极坐标中的几何方程。
径向线段 的转角为,PA
r
u
dr
udrruu
?
????
??
? ?
?
?
?
?
)(
环向线段 的转角为,PB
r
u?? ??
可见剪应变为,
r
u
r
u
r ??? ??? ??
????
23
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
rr
r
rr
E
E
E
)1(2
)
1
(
1
)
1
(
1
2
2
(2) In planar strain’s situation,
Substitute and for and in above formula,respectively,E
21 ??
E ?
?
?
?1
II,Physical Equations
(1) states of planar stress,
?
?
?
?
?
?
?
?
?
?
??
??
??
???
??
?
?
?
??
????
????
rrr
r
rr
EG
E
E
)1(21
)(
1
)(
1
24
( 2)平面应变情况,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
rr
r
rr
E
E
E
)1(2
)
1
(
1
)
1
(
1
2
2
将上式中的 换为, 换为 。 E
21 ??
E ?
?
?
?1
二、物理方程
?
?
?
?
?
?
?
?
?
?
??
??
??
???
??
?
?
?
??
????
????
rrr
r
rr
EG
E
E
)1(21
)(
1
)(
1
( 1)平面应力情况,
25
§ 4-3 Stress Functions and Consistent
Equations in Polar Coordinates
To get stresses and consistent equations denoted by stress
functions in polar coordinates,using relationship between polar
and rectangular coordinates,
??
?
s i n,c o s
a r c t a n,222
ryrx
x
yyxr
??
???
have,
rr
x
yrr
y
x
r
y
y
r
r
x
x
r
?
?
???
?
??
?
?
?
?
?
?
c o s
,
s in
,s in,c o s
22 ??????
????
26
§ 4-3 极坐标中的应力函数与相容方程
为了得到极坐标中用应力函数表示的应力和相容方程,利
用极坐标和直角坐标的关系,
??
?
s i n,c o s
a r c t a n,222
ryrx
x
yyxr
??
???
得到,
rr
x
yrr
y
x
r
y
y
r
r
x
x
r
?
?
???
?
??
?
?
?
?
?
?
c o s
,
s in
,s in,c o s
22 ??????
????
27
2
2
2
2
2
22
2
2
2
2
2
2
2
2
2
2
22
2
2
2
2
2
c o sc o ss in2c o sc o ss in2
s in
s inc o ss in2s inc o ss in2
c o s
??
???
??
????
?
???
???
????
?
??
?
?
??
??
???
??
????
?
???
???
????
?
??
?
?
??
rrrrrrry
rrrrrrrx
?????
????? ( a)
( b)
?
???
?
?
??
??
??
?
?
?
??
?
??
??
???
?
??
?
?
??
??
??
?
?
?
??
?
??
?
?
?
?
?
???
????
rryy
r
ry
rrxx
r
rx
c o s
s i n
s i n
c o s
2
2
22
22
222
2
22
c o ss ins inc o s
c o ss ins inc o s
c o ss in
?
???
?
???
?
????
???
????
?
??
??
??
??
?
?
?
?
??
?
?
?
??
rr
rrrrryx ( c)
28
2
2
2
2
2
22
2
2
2
2
2
2
2
2
2
2
22
2
2
2
2
2
c o sc o ss in2c o sc o ss in2
s in
s inc o ss in2s inc o ss in2
c o s
??
???
??
????
?
???
???
????
?
??
?
?
??
??
???
??
????
?
???
???
????
?
??
?
?
??
rrrrrrry
rrrrrrrx
?????
????? ( a)
( b)
2
2
22
22
222
2
22
c o ss ins inc o s
c o ss ins inc o s
c o ss in
?
???
?
???
?
????
???
????
?
??
??
??
??
?
?
?
?
??
?
?
?
??
rr
rrrrryx ( c)
?
???
?
?
??
??
??
?
?
?
??
?
??
??
???
?
??
?
?
??
??
??
?
?
?
??
?
??
?
?
?
?
?
???
????
rryy
r
ry
rrxx
r
rx
c o s
s i n
s i n
c o s
29
gets,
)
1
()()(
)()(
11
)()(
0
2
0
2
2
02
2
0
2
2
202
2
0
??
??
?
?
??
??
??
?
??
?
??
??
??
??
?
??
?
??
??
???
???
??
rryx
rx
rrry
yxr
y
xr
?????
???
????
??
??
??
Whenθ=0,the components in polar coordinates equal the ones in
orthogonal coordinates.Substituting these values into equations of
stress components( normal body force),
yx
x
y
xy
y
x
??
?
??
?
?
?
?
?
?
?
?
?
?
?
?
2
2
2
2
2
30
得到,
)
1
()()(
)()(
11
)()(
0
2
0
2
2
02
2
0
2
2
202
2
0
??
??
?
?
??
??
??
?
??
?
??
??
??
??
?
??
?
??
??
???
???
??
rryx
rx
rrry
yxr
y
xr
?????
???
????
??
??
??
在 θ =0时,极坐标的各分量和直角坐标各分量相同。将上
面各式代入应力分量的表达式(常体力),
yx
x
y
xy
y
x
??
?
??
?
?
?
?
?
?
?
?
?
?
?
?
2
2
2
2
2
31
Using polar coordinates to evaluate planar problems (body force is
countless),can find stress function from consistent
function,then gets stress components,checks if stress components
satisfy boundary condition,and also satisfy displacement mono-
value conditions if it is multi-joint body,
),( ?? r
Thus from consistent equation in planar coordinates,
gets consistent equation in polar coordinates,
2
2
22
2
2
2
2
2 11
?
???
?
??
?
??
?
??
?
??
?
???
rrrryx
0)( 22222 ?? ????? yx
0)11( 222222 ????????? ??rrrr
It can prove that these stress components can satisfy differential
equations of equilibrium when body force is zero,
From( a) +(b),gets,
32
用极坐标求解平面问题时(体力不计),就只须从相容方
程求解应力函数,然后求出应力分量,再考察应力分量
是否满足边界条件,多连体还要满足位移单值条件。
),( ?? r
可以证明,当体力为零时,这些应力分量确能满足平衡微分方程。
由( a) +( b),得,
于是由直角坐标的相容方程,
得到极坐标中的相容方程,
2
2
22
2
2
2
2
2 11
?
???
?
??
?
??
?
??
?
??
?
???
rrrryx
0)( 22222 ?? ????? yx
0)11( 222222 ????????? ??rrrr
33
§ 4-4 Coordinates Transforms
f or S t re s s C o mp on en t s
In a certain stress situation,if has known stress components in polar
coordinates,stress components in planar coordinates are found by
using simple relationship equation.Vice versa,
Assuming that stress components,, have been known,try to
determine the stress components,, in planar coordinates,
r? ?? ??r
x? y? xy?
r?
??r
y?
yx?
??r??
r?
??r
??
r??
xy?
x?
c
a
b
?o
y
x
A
B
Fig.4-4
Fig.4-4,fetching tiny triangle A in
elastic body,stresses of each side are
denoted like the figure,Triangle
thickness takes one unit,
34
§ 4-4 应力分量的坐标变换式
在一定的应力状态下,如果已知极坐标中的应力分量,就
可以利用简单的关系式求得直角坐标中的应力分量。反之,如
果已知直角坐标中的应力分量,也可以利用简单的关系式求得
极坐标中的应力分量。
设已知极坐标中的应力分量,, 。试求直角坐标中
的应力分量,, 。
r? ?? ??r
x? y? xy?
r?
??r
y?
yx?
??r??
r?
??r
??
r??
xy?
x?
c
a
b
?o
y
x
A
B
图 4-4
如图 4-4,在弹性体中取微小三
角板,各边上的应力如图所示。
三角板的厚度取为一个单位。
A
35
Make bc’length ds,thus the lengths of ab and ac are
and,respectively,
0c o ss ins inc o s
s inc o s 22
???
??
??????
?????
??
?
dsds
dsdsds
rr
rx
Substituting for,has,??r
r??
???????? ?? c o ss i n2s i nc o s 22 rrx ???
In like manner,from equilibrium condition,has,? ? 0
yF
)s i n( c o sc o ss i n)( 22 ???????? ?? ???? rrxy
Fetch other tiny triangle B,Fig.4-4,in terms of equilibrium
condition,gets,? ?0
yF
???????? ?? c o ss i n2c o ss i n 22 rry ???
?cosds
?sinds
According to equilibrium condition of triangle A,,can
get equilibrium equation,?
?0xF
36
根据三角板 的平衡条件,可得平衡方程,A ? ?0xF
0c o ss ins inc o s
s inc o s 22
???
??
??????
?????
??
?
dsds
dsdsds
rr
rx
用 代替,得,??r r??
???????? ?? c o ss i n2s i nc o s 22 rrx ???
同理,由平衡条件,可得,? ? 0yF
)s i n( c o sc o ss i n)( 22 ???????? ?? ???? rrxy
另取微小三角板,如图 4-4,根据平衡条件,得到,? ?0
yF
B
???????? ?? c o ss i n2c o ss i n 22 rry ???
令 bc边的长度为,则 边及 边的长度分别为
及 。
ds ab ac ?sinds
?cosds
37
?
?
?
??
?
?
????
???
???
)s i n( c o sc o ss i n)(
c o ss i n2c o ss i n
c o ss i n2s i nc o s
22
22
22
????????
????????
????????
??
??
??
rrxy
rry
rrx
Using simple triangle formula,upper formulas can be
overwritten,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
?
???
????
?
???
????
?
?
?
?
??
?
??
2c o s2s in
2
2s in2c o s
22
2s in2c o s
22
r
r
xy
r
rr
y
r
rr
x
Combining above solutions,can obtain the transforms of the stress
components from polar coordinates to rectangular coordinates,
38
?
?
?
??
?
?
????
???
???
)s i n( c o sc o ss i n)(
c o ss i n2c o ss i n
c o ss i n2s i nc o s
22
22
22
????????
????????
????????
??
??
??
rrxy
rry
rrx
利用简单的三角公式,上式可改写为,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
??
?
???
????
?
???
????
?
?
?
?
??
?
??
2c o s2s in
2
2s in2c o s
22
2s in2c o s
22
r
r
xy
r
rr
y
r
rr
x
综合以上结果,得出应力分量由极坐标向直角坐标的变换
式为,
39
§ 4-5 Axially Symmetric Stress and its Displacement
If stress components are only the function of radius,such as circular
ring with inside and outside pressure,it is called axial symmetry
problem,
Using inverse solution method,assumes that stress function only is
the function of radial coordinate,
?
r
)(r?? ?
Simplifying consistent formula,
0dd1dd
2
2
2
???
?
?
???
? ? ?
rrr
This is a four-stair ordinary differential equation,which is the
general solution,
DCrrBrrA ???? 22 lnln?
40
§ 4-5 轴对称应力和相应的位移
如果应力分量仅是半径的函数,如受内外压的圆环,称为
轴对称问题。
采用逆解法,假定应力函数 仅是径向坐标 的函数, ? r
)(r?? ?
相容方程简化为,
0dd1dd
2
2
2
???
?
?
???
? ? ?
rrr
这是一个四阶常微分方程,它的通解为,
DCrrBrrA ???? 22 lnln?
41
0
2)ln23(
2)ln21(
2
2
??
?????
????
rr
r
CrB
r
A
CrB
r
A
??
?
??
?
?
Normal stresses are only the functions of and nothing to,and
shear stress are zero.stress components’ symmetry are to arbitrary
plane by means of z’ shaft which called axial symmetry stress,
Substituting above stress expressions into relationship formulas of
stress and strain,can find strain expressions,and then which are
substituted geometric formulas of displacement and strain with
integrated,gets the displacement components in axial symmetry
stress situation,
At this time,gets stress expressions,
?r
42
0
2)ln23(
2)ln21(
2
2
??
?????
????
rr
r
CrB
r
A
CrB
r
A
??
?
??
?
?
正应力分量仅是 的函数,与 无关,并且剪应力为零,
应力分量对称于通过 z轴的任一平面,称为轴对称应力。
r ?
将上述应力的表达式代入应力应变关系式中,可以得到应
变的表达式,再代入位移与应变积分后的几何方程,得到轴对称
应力状态下的位移分量,
这时,应力分量的表达式为,
43
??
?
????
??
? c o ss i n
4
s i nc o s])1(2)31(
)1( l n)1(2)1([
1
KIHr
E
Br
u
KICrBr
rBr
r
A
E
u r
????
??????
??????
For strain problem in plane,we should substitute
and for and,respectively,
21 ??
E
?
?
?1 E ?
44
21 ??
E 对于平面应变问题,须将上面公式 换为, 换
为 。
E ?
?
?
?1
??
?
????
??
? c o ss i n
4
s i nc o s])1(2)31(
)1( l n)1(2)1([
1
KIHr
E
Br
u
KICrBr
rBr
r
A
E
u r
????
??????
??????
45
§ 4-6 Circular Ring or Cylinder under
Uniform Loading Pressure Tunnel
Fig.4-5,inside radius is a,outside
radius is b ; interior pressure is
qa,outer pressure is qb,This is a
axially symmetric problem,
According to upper section,the
solution has,
0
2)ln23(
2)ln21(
2
2
??
?????
????
rr
r
CrB
r
A
CrB
r
A
??
?
??
?
?
Fig.4-5
Boundary conditions,
bbrraarr
brrarr
qq ????
??
??
??
)(,)(
0)(,0)(
??
?? ??
I,Uniform Pressure Acting on Circular Ring or Cylinder
46
§ 4-6 圆环或圆筒受均布压力,压力隧洞
如图 4-5,圆环的 内半径为 a,
外半径为 b,受内压力 qa,外压
力 qb。 为轴对称问题。根据上节
有解为,
0
2)ln23(
2)ln21(
2
2
??
?????
????
rr
r
CrB
r
A
CrB
r
A
??
?
??
?
?
图 4-5
边界条件为,
bbrraarr
brrarr
qq ????
??
??
??
)(,)(
0)(,0)(
??
?? ??
一、圆环或圆筒受均布压力
47
There have two equations while have three undetermined constants,
so need supplement one equation from displacement mono-value
condition of multi-joint body,
In the expression of hoop displacement,???
? c o ss i n
4 KIHr
E
Bru ????
From upper two equations can get A and C,and substituting into the
expression of stress components,get lami key,
b
a
qC
b
A
qC
a
A
???
???
2
2
2
2
b
a
qCbB
b
A
qCaB
a
A
?????
?????
2)ln21(
2)ln21(
2
2
From boundary conditions,get,
The first item is multiple value,and at the same r,θ=θ1 and
θ=θ1+2π,hoop displacement difference is,which is impossible,
thus,from displacement mono-valued condition must have B=0.so,E
Br18?
48
在这里只有两个方程,而有三个待定常数,需要从多连体
的位移单值条件补充一个方程。
在环向位移表达式,???
? c o ss i n
4 KIHr
E
Bru ????
这样从上面两个方程中可解出 A和 C,代入应力分量表达式,
得到拉密解答,
b
a
qC
b
A
qC
a
A
???
???
2
2
2
2于是,
由边界条件得到,
b
a
qCbB
b
A
qCaB
a
A
?????
?????
2)ln21(
2)ln21(
2
2
中,第一项是多值的,在同一 r处,θ=θ1和 θ=θ 1+2π 时,环
向位移相差,这是不可能的,因此,从位移单值条件必须
有 B=0。 E
Br18?
49
ba
bar
q
b
a
r
a
q
a
b
r
b
q
b
a
r
a
q
a
b
r
b
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
Next,separately discuss the cases
that inside pressure and outside
pressure individually operate,
( 1) When only has inside uniform pressure acting ( ),such
as hydraulic cylinder,upper solutions become,
0?bq
aar q
a
b
r
b
q
a
b
r
b
1
1
,
1
1
2
2
2
2
2
2
2
2
?
?
?
?
?
?? ???
??
r?
Fig.4-6
50
ba
bar
q
b
a
r
a
q
a
b
r
b
q
b
a
r
a
q
a
b
r
b
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
下面分别讨论内压力和外压
力单独作用的情况。
( 1)只作用均匀内压时( ),
例如液压缸,上面解答化为,
0?bq
aar q
a
b
r
b
q
a
b
r
b
1
1
,
1
1
2
2
2
2
2
2
2
2
?
?
?
?
?
?? ???
??
r?
图 4-6
51
The stress distribute approximately as Fig.4-6,
When have infinite lamella with
circular aperture,or infinite elastic
body with circular aperture,at this
time,upper solutions become,
??b
aar qr
aq
r
a
2
2
2
2
,??? ???
( 2) When only have outside
pressure ( ),such as hydraulic
plunger,upper solutions become,
0?aq
bbr q
b
a
r
a
q
b
a
r
a
2
2
2
2
2
2
2
2
1
1
,
1
1
?
?
??
?
?
?? ???
The stress distribute approximately as Fig.4-7,
??
r?
Fig.4-7
52
应力分布大致如图 4-6所示。
当 时,得到具有圆孔的无
限大薄板,或具有圆形孔道的无
限大弹性体,这时上面的解答成
为,
??b
aar qr
aq
r
a
2
2
2
2
,??? ???
( 2)只有外压时( ),例如
液压柱塞,上面解答化为,
0?aq
bbr q
b
a
r
a
q
b
a
r
a
2
2
2
2
2
2
2
2
1
1
,
1
1
?
?
??
?
?
?? ???
应力分布大致如图 4-7所示。
??
r?
图 4-7
53
II,Pressure Tunnel
q
o
?,E???,E
???
??
r?
r??
r
Fig.4-8
Fig.4-8,cylinder with
inside uniform pressure q
is buried in infinite elastic
body,and cylinder’s
material is differ from
infinite elastic body’s.Try
to discuss each stress and
displacement situation
separately,
Both belong to axially
symmetric stress problem,
so adopt semi-inverse
solution method,
Assume the stress expressions of cylinder,
CrACrAr 2,2 22 ????? ???
54
二、压力隧洞
q
o
?,E???,E
???
??
r?
r??
r
图 4-8
如图 4-8所示,受
均匀内压力 作用的圆
筒埋在无限大弹性体
中,圆筒和无限大弹
性体的材料不同。试
分别讨论两者的应力
和位移情况。
q
两者都属于轴对
称应力问题,采用半
逆解法。
设圆筒的应力表达式为,
CrACrAr 2,2 22 ????? ???
55
Assume the stress expressions of infinite elastic body,
CrACrAr ??????????? 2,2 22 ???
(1)On inner surface of cylinder,thus have,qarr ???)(?
qCaA ??? 22
(2)In infinite elastic body far away from the cylinder hardly has
stresses,
0)(,0)( ???? ???? rrr ???
Thus have,
02 ??C
(3)On the contact surface of cylinder and infinite elastic
body,ought to have,
brrbrr ?? ?? )()( ??
( 1)
( 2)
According to stress conditions evaluate undermined constants A、
C、,, A? C?
56
设无限大弹性体的应力表达式为,
CrACrAr ??????????? 2,2 22 ???
由应力边界条件求待定常数,,, 。 A C A? C?
( 1)在圆筒的内表面,q
arr ???)(?
由此得,
qCaA ??? 22
( 2)在无限大弹性体内距离圆筒很远处几乎没有应力。
0)(,0)( ???? ???? rrr ???由此得,
02 ??C
( 3)在圆筒和无限大弹性体的接触面上,应当有,
brrbrr ?? ?? )()( ??
( 1)
( 2)
57
Thus have,
CbACbA ????? 22 22
Three equations are not enough for determining four constants,
Next,consider the displacement,Because cylinder and infinite elastic body are all multi-joint
body,and which belong to planar strain problem,so can obtain the
radial displacement expressions of both objects,
Cylinder,
??????? s i nc o s])11(2)11([1
2
KICrrAEu r ??????????
infinite elastic body,
??????? s i nc o s])11(2)11([1
2
KIrCrAEu r ??????? ?????? ???? ????
Simplify upper two equations,have,
???? s i nc o s])21(2[1 KIrACrEu r ??????
???? s i nc o s])21(2[1 KIrArCEu r ?????????? ????
( 3)
58
由此得,
CbACbA ????? 22 22
三个方程不足以确定四个常数,下面来考虑位移。
由于圆筒和无限大弹性体都是多连体,并属于平面应变问
题,可以写出两者的径向位移的表达式。
圆筒,??
?
?
?
?? s i nc o s])
11(2)11([
1 2 KICr
r
A
Eu r ????????
??
无限大弹性体,
??????? s i nc o s])11(2)11([1
2
KIrCrAEu r ??????? ?????? ???? ????
将以上两式简化后得,
???? s i nc o s])21(2[1 KIrACrEu r ??????
???? s i nc o s])21(2[1 KIrArCEu r ?????????? ????
( 3)
59
On the contact surface,both ought to have the same displacement
as,
brrbrr uu ?? ?? )()(Thus have,
???
?
???
?
s i nc o s])21(2[
1
s i nc o s])21(2[
1
KI
b
A
bC
E
KI
b
A
Cb
E
????
?
????
?
??
?????
?
Because this equation ought to found on arbitrary point of contact
surface,in other words,it all found whatever value takes,so the
free item of both sides of equation must equal,thus have,
?
])21(2[1])21(2[1 bAbCEbACbE ?????? ?????? ????
Simplifying,get,
0])21(2[ 22 ????? bAbACn ?
Of which,
)1(
)1(
?
?
??
???
E
En
( 4)
60
在接触面上,两者应具有相同的位移,即,
brrbrr uu ?? ?? )()(
因此有,
???
?
???
?
s i nc o s])21(2[
1
s i nc o s])21(2[
1
KI
b
A
bC
E
KI
b
A
Cb
E
????
?
????
?
??
?????
?
因为这一方程在接触面上的任意一点都应当成立,也就是在
取任何数值时都应当成立,所以方程两边的自由项必须相等。
于是有,
?
])21(2[1])21(2[1 bAbCEbACbE ?????? ?????? ????
简化后,得,
0])21(2[ 22 ????? bAbACn ?
其中,
)1(
)1(
?
?
??
???
E
En
( 4)
61
Simultaneous equations( 1)、( 2)、( 3)、( 4)
evaluate,,,,then substituting the expressions of stress
components,get,
A C A? C?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
????
?
?????
?
????
????
?
????
????
??
)1(])21(1[
)1(2
)1(])21(1[
)1(])21(1[
)1(])21(1[
)1(])21(1[
2
2
2
2
2
2
2
2
2
2
2
2
n
a
b
n
r
b
n
q
n
a
b
n
n
r
b
n
q
n
a
b
n
n
r
b
n
q
r
r
?
?
??
?
?
?
?
?
?
?
?
When,the stresses distribute approximately Fig.4-8,1?n
62
联立方程( 1)、( 2)、( 3)、( 4)求出,,,,代
入应力分量的表达式,得,
A C A? C?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
????
?
?????
?
????
????
?
????
????
??
)1(])21(1[
)1(2
)1(])21(1[
)1(])21(1[
)1(])21(1[
)1(])21(1[
2
2
2
2
2
2
2
2
2
2
2
2
n
a
b
n
r
b
n
q
n
a
b
n
n
r
b
n
q
n
a
b
n
n
r
b
n
q
r
r
?
?
??
?
?
?
?
?
?
?
?
当 时,应力分布大致如图 4-8所示。 1?n
63
§ 4-7 Pure Bending of Curved Beam
?
r
For narrow rectangle section of circular shaft with ento-radius a
and extra-radius b,bending moments act on both ends with equal
size and contrary orientation,which is axial symmetry
problem.have,
0
2)ln23(
2)ln21(
2
2
??
?????
????
rr
r
CrB
r
A
CrB
r
A
??
?
??
?
?
Shear stresses on the boundary are all
zero,
0)(,0)(
0)(,0)(
0 ??
??
??
??
?????
??
??
??
rr
brrarr Fig.4-9
64
§ 4-7 曲梁的纯弯曲
?
r
内半径为 a,外半径为 b的狭矩形
截面的圆轴曲梁,在两端受大小相等、
方向相反的弯矩,为轴对称问题。有,
0
2)ln23(
2)ln21(
2
2
??
?????
????
rr
r
CrB
r
A
CrB
r
A
??
?
??
?
?
边界剪应力都为零,
0)(,0)(
0)(,0)(
0 ??
??
??
??
?????
??
??
??
rr
brrarr 图 4-9
65
On both inside and outside faces,normal stresses require,
0)(,0)( ?? ?? brrarr ??
02)ln21(
02)ln21(
2
2
????
????
CbB
b
A
CaB
a
AThus get,
Boundary condition on the ends of beam require,
Mrr
r
b
a
b
a
?
?
?
?
d
0d
?
?
?
?
Thus,? ? ? ? ? ?
0dddd 2
2
???????????? ???? arrbrrbar
b
a
b
a
b
a
abrrrdrdr ?????? ?
? ? ? ? ? ? Mabr
r
rr
r
r
rrr
r
rr
b
aarrbrr
b
a
b
ar
b
a
b
a
b
a
b
a
b
a
??????
??
?
??
?
???
?
??
?
??
?
??
??
????
?????
?????
?
222
2
2
)()(
d
d
d
d
d
d
dddd
66
在梁的内外两面,正应力要求,
0)(,0)( ?? ?? brrarr ??
02)ln21(
02)ln21(
2
2
????
????
CbB
b
A
CaB
a
A从而可得,
在梁端的边界条件要求,
Mrr
r
b
a
b
a
?
?
?
?
d
0d
?
?
?
?
? ? ? ? ? ? 0dddd 22 ???????????? ???? arrbrrbarb
a
b
a
b
a
abrrrdrdr ?????? ?
? ? ? ? ? ? Mabr
r
rr
r
r
rrr
r
rr
b
aarrbrr
b
a
b
ar
b
a
b
a
b
a
b
a
b
a
??????
??
?
??
?
???
?
??
?
??
?
??
??
????
?????
?????
?
222
2
2
)()(
d
d
d
d
d
d
dddd
则,
67
Substitute ’s expression,?
into and from boundary condition gets,
MabCaabbBabA ?????? )()lnln(ln 2222
There are three formulas and three undetermined
constants.Finding A,B and C,substitute into expressions of
stress component,gets guoluowen’s key,
?
?
?
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
????
0
lnlnln1
4
lnlnln
4
2
2
2
2
2
2
2
2
2
2
2
2
rr
r
a
b
r
b
a
r
r
b
a
b
a
b
Na
M
a
b
r
b
a
r
r
b
a
b
Na
M
??
?
??
?
?
In it,have,
2
2
22
2
2
ln41 ?
?
??
?
??
???
?
???
? ??
a
b
a
b
a
bN
DCrrBrrA ???? 22 lnln?
68
将 的表达式,?
代入,并由边界条件得,
MabCaabbBabA ?????? )()lnln(ln 2222
在这里有三个方程和三个待定常数,解出 A,B和 C,代
入应力分量表达式,得到郭洛文解答,
?
?
?
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
?
????
0
lnlnln1
4
lnlnln
4
2
2
2
2
2
2
2
2
2
2
2
2
rr
r
a
b
r
b
a
r
r
b
a
b
a
b
Na
M
a
b
r
b
a
r
r
b
a
b
Na
M
??
?
??
?
?
其中,
2
2
22
2
2
ln41 ?
?
??
?
??
???
?
???
? ??
a
b
a
b
a
bN
DCrrBrrA ???? 22 lnln?
69
§ 4-8 Stress and Displacement
of Disc in Uniform Rotation
I,Stresses and Displacement of Uniform-Thickness Disc in Uniform Rotation
Assume that uniform-thickness disc rotate with uniform angular velocity round
axis of revolution.the disc can be thought in equilibrium case under below body
force acting,
?
0,2 ?? ??? KrK rBecause there is axially symmetric objects acted by axially symmetric body
force,stress distribution is also axially symmetric.thus,stress components,
and,are only r’s functions,and,So have differential equations of
equilibrium,r
? ??
0?? rr ?? ??
?
?
?
??
?
?
???
?
?
?
?
?
??
?
?
0
21
02
?
???
?
??
?
?
??
???
K
rrr
r
rdr
d
rr
rr
Make,
22,rdrdr r ?????? ? ??? (1)
70
§ 4-8 圆盘在匀速转动中的应力及位移
一、等厚度圆盘在匀速转动中的应力及位移
设有等厚度圆盘,绕其回转轴以匀角速度 旋转。圆盘可
以认为是在下面的体力作用下处于平衡状态,
?
0,2 ?? ??? KrK r
由于这里是轴对称的物体受轴对称的体力,所以应力分布
也是轴对称的。 即:应力分量 及 都只是 的函数,而 r? ?? r
0?? rr ?? ?? 。所以有平衡微分方程,
?
?
?
??
?
?
???
?
?
?
?
?
??
?
?
0
21
02
?
???
?
??
?
?
??
???
K
rrr
r
rdr
d
rr
rr
令,22,rdrdr r ?????? ? ??? (1)
71
Here,because disc is only acted by constraint of axis of revolution
which is axially symmetric.thus,radial displacement,and
hoop displacement,Then geometric equations are simplified,)(ruu rr ?
0??u
0,,??? ?? ??? rrrr ruudrd
Eliminating,get consistent equation,ru
)( ??? rdrdr ?
32
2
22 )3( r
dr
dr
dr
dr ?????? ?????
Solve equations,
Substitute physical equation,then compose simultaneous equations
with Equ.(1),thus get the consistent equation denoted by stress
function, ?
r
BArr ?????
28
3 32????
Associate with Equ.(1),get,
?
?
?
??
?
?
??
?
??
??
?
??
2
22
2
22
28
31
28
3
r
BA
r
r
BA
rr
??
?
?
??
?
?
?
(2)
72
在这里,由于圆盘只受回转轴的约束,而这种约束是轴对称
的,所以它的弹性位移也是轴对称的。即:径向位移,而
环向位移 。于是几何方程简化为,
)(ruu rr ?
0??u
0,,??? ?? ??? rrrr ruudrd
消去,得到相容方程,ru )(
??? rdr
d
r ?
32
2
22 )3( r
dr
dr
dr
dr ?????? ?????
解方程得到,
将物理方程代入,再联立式 (1),得到由应力函数 表示的相
容方程,
?
r
BArr ?????
28
3 32????
联立式( 1),得,
?
?
?
??
?
?
??
?
??
??
?
??
2
22
2
22
28
31
28
3
r
BA
r
r
BA
rr
??
?
?
??
?
?
?
(2)
73
Of which A and B are arbitrary constants,
Boundary condition of edge of disc,0)( ??arr?
In it,a is the radius of disc.substituting into Equ.(2),have,
22
4
3 aA ?????
Make B=0,substitute into Equ.(2),then get the expressions of stress
components,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
)
3
31
1(
8
3
)1(
8
3
2
2
22
2
2
22
a
r
a
a
r
ar
?
?
??
?
?
??
?
?
?
Maximum stress is on the center of disc,
22
00m a x 8
3)()()( a
rrr ??
????
?
????
??Radial displacement,
])1()3[(8 )1()( 3332 ararEaErru rr ????????? ?? ????????
74
其中 和 是任意常数。 A B
盘边的边界条件,0)( ??arr?
其中 是圆盘的半径。代入式( 2),得,a
22
4
3 aA ?????
取,代入式( 2)得应力分量的表达式为,0?B
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
)
3
31
1(
8
3
)1(
8
3
2
2
22
2
2
22
a
r
a
a
r
ar
?
?
??
?
?
??
?
?
?
最大应力在圆盘的中心,
22
00m a x 8
3)()()( a
rrr ??
????
?
????
??径向位移,
])1()3[(8 )1()( 3332 ararEaErru rr ????????? ?? ????????
75
On the center of disc( ),.maximum elastic displacement
occurs on the boundary of disc( ),
0?r 0?ru
ar?
E
au
r 4
)1()( 32
m a x
??? ??
II,Stress and Displacement of variable thickness disc in uniform
rotation
Assume that thickness of disc is,and stress can not change with
varying thickness,so differential equation of uniform-thickness can
approximately apply in unit thickness disc.Thus can get differential
equation of equilibrium in total thickness,
)(rtt?
0)( 2 ???? rtr tttdrd rr ????? ?Make,
22,trdrdtrt r ?????? ? ???
can have,
32
2
22 )3()1()1( tr
dr
dt
t
r
dr
dr
dr
dt
t
r
dr
dr ??????? ???????
Take the transformation law,???Crt
In it,C is constant,is arbitrary positive number,Then the upper
equation becomes,
?
76
在圆盘的中心( ),。最大弹性位移发生在圆盘的
边缘( ),
0?r 0?ru
ar?
E
au
r 4
)1()( 32
m a x
??? ??
二、变厚度圆盘在匀速转动中的应力及位移
假定圆盘的厚度为,而应力不沿厚度变化,则等厚度
圆盘的微分方程可以近似地应用于每单位厚度的圆盘。于是可
得全厚度内的平衡微分方程为,
)(rtt ?
0)( 2 ???? rtr tttdrd rr ????? ?
令,
22,tr
dr
dtrt
r ??
????
? ???
可得,
32
2
22 )3()1()1( tr
dr
dt
t
r
dr
dr
dr
dt
t
r
dr
dr ??????? ???????
取厚度的变化规律为,???Crt
其中 是常数,为任意正数。则上式成为,C ?
77
?????????? ???????? 32
2
22 )3()1()1( Cr
dr
dr
dr
dr
Solving the equation have,???
??
?? ?
??
???? 32
)3(8
3 rCBrAr nm
in which A and B are arbitrary constants,and,
)1()2(2 2 ???? ?????
??
?
n
m
Thus can determine stress components,
?
?
?
??
?
?
??
?
?????
??
?
????
????
????
221122
2211
)3(8
311
)3(8
3
rnr
C
B
mr
C
A
r
dr
d
t
rr
C
B
r
C
A
tr
nm
nm
r
??
??
?
??
?
?
??
??
??
?
??
?
??
???
??
? ??
??
?? ma
C
A 32
)3(8
3
In terms of boundary condition,get,0)( ?
?arr?
78
?????????? ???????? 32
2
22 )3()1()1( Cr
dr
dr
dr
dr
解方程,得,???
??
?? ?
??
???? 32
)3(8
3 rCBrAr nm
其中 和 是任意常数,而,A B
)1()2(2 2 ???? ?????
??
?
n
m
由此可得出应力分量,
?
?
?
??
?
?
??
?
?????
??
?
????
????
????
221122
2211
)3(8
311
)3(8
3
rnr
C
B
mr
C
A
r
dr
d
t
rr
C
B
r
C
A
tr
nm
nm
r
??
??
?
??
?
?
??
??
??
?
??
?
??
???
??
? ??
??
?? ma
C
A 32
)3(8
3
由边界条件,求得,0)( ??arr?
79
In order to make that stresses are not infinite on the center of
disc(r=0),take (B=0).Thus can find the stress components,
])(
3
31
)([
)3(8
3
])()[(
)3(8
3
2122
2122
a
r
a
r
ma
a
r
a
r
a
m
m
r
?
?
??
??
?
?
??
??
?
?
?
?
?
?
?
?
??
?
?
?
??
?
?
??
??
]))(1())()(3[(
])3(8[
)(
32
32
a
r
a
r
m
E
a
E
r
ru
m
rr
???
??
??
????
?
??
????
??
????
?
and have,
80
为了应力在圆盘的中心( )处不成为无限大,取 。 0?r 0?B
从而得应力分量为,
])(
3
31
)([
)3(8
3
])()[(
)3(8
3
2122
2122
a
r
a
r
ma
a
r
a
r
a
m
m
r
?
?
??
??
?
?
??
??
?
?
?
?
?
?
?
?
??
?
?
?
??
?
?
??
??
]))(1())()(3[(
])3(8[
)(
32
32
a
r
a
r
m
E
a
E
r
ru
m
rr
???
??
??
????
?
??
????
??
????
?
且,有,
81
§ 4-9 Stress Concentration close by Circular Aperture
For a plate with aperture,the
stress on the edge of aperture is
by far large than that of which is
imperforate,and also by far
large than that of a bit distance
away from aperture,which is
called stress concentration on
the edge of aperture.The extent
of stress concentration relates to
the shape of aperture,
?
??r
r?
A
b
Fig.4-10
Generally,concentration extent for the edge of circular aperture is
the lowest.Here,discuss the problem of stress concentration on the
edge of circular aperture simply,and more complex problem on
stress concentration on the edge of aperture use complex variable
function generally,which is discussed in chap.5,
82
§ 4-9 圆孔的孔边应力集中
板中开有小孔,孔边的
应力远大于无孔时的应力,
也远大于距孔稍远处的应力,
称为孔边应力集中。
应力集中的程度与孔的
形状有关。一般说来,圆孔
孔边的集中程度最低。这里
简略讨论圆孔孔边应力集中
问题,较为复杂的孔边应力
集中问题一般用复变函数方
法,在第五章中进行讨论。
?
??r
r?
A
b
图 4-10
83
Assume that has a small circular aperture with radius a far away
from the border of rectangular sheet metal,and both left and right
sides of which are acted by uniform tension with concentration
extent q,Fig.4-10,
???? ? 2s i n2)(,2c o s22)( qqq brrbrr ???? ??
Take a certain length b as radius which is by far large than a,and
work out a circle with the center of aperture as the center of the
circle,then in terms of transformation formula between rectangular
and polar coordinates,get the boundary conditions of great circle,
Evaluate the stress raised by face force (a).Make,have,
2
qq
b ??
Above face force can decompose two sections,of which the first
section is,
0)(,2)( ?? ?? brrbrr q ???
(a)
The second section is,????
? 2s i n2)(,2c o s2)(
qq
brrbrr ??? ??
(b)
I,Both Left and Right Sides of Rectangular Slab Acted by Uniform Tension
with Concentration Extent q
84
设有矩形薄板,在离开边界较远处有半径为 的小圆孔,
在左右两边受均布拉力,其集度为,如图 4-10。
a
q
???? ? 2s i n2)(,2c o s22)( qqq brrbrr ???? ??
以远大于 的某一长度 为半径,以小孔中心为圆心作圆,
根据直角坐标与极坐标的变换公式,得到大圆的边界条件,
ba
求面力( a)所引起的应力。令,。得,
2
qq
b ??
上述面力可以分解成两部分,其中第一部分是,
0)(,2)( ?? ?? brrbrr q ???
(a)
第二部分是,
???? ? 2s i n2)(,2c o s2)( qq brrbrr ??? ?? (b)
一,矩形板左右两边受集度为 q的均布拉力
85
Due to,can take approximately,thus get,ab ?? 0?ba
0),1(2),1(2 2
2
2
2
????? ?? ??? rr raqraq
Evaluate the stresses caused by face force(b).Using inverse solving method:
assume that is one function of r multiplying with,while is another
function of r multiplying with, Have,r?
?2cos
??r
?2sin
?????? ? 2s i n)(,2c o s)( 21 ???? rr rrAnd the relation between stress functions and stress components have,
)1(,11 2
2
2 ?
??
?
???
? ?
?
?
???
?
??
?
??
rrrrr rr
Thus can assume,
?? 2c o s)( rf?
Substituting into consistent equation,have,
0])(9)(9)(2)([2c o s 32
2
23
3
4
4
???? dr rdfrdr rfdrdr rfdrdr rfd?
0,
1
1
2
,
1
1
2
2
2
2
2
2
2
2
2
?
?
?
?
?
?
? ?? ??? rr
b
a
r
a
q
b
a
r
a
q
86
ab ??由于,所以可近似地取,从而得到解答,0?ba
0),1(2),1(2 2
2
2
2
????? ?? ??? rr raqraq
求面力( b)所引起的应力。采用半逆解法:假设 为 的某
一函数乘以,而 为 的另一函数乘以 。即,
r? r
?2cos ??r r ?2sin
?????? ? 2s i n)(,2c o s)( 21 ???? rr rr
又应力函数和应力分量之间的关系为,
)1(,11 2
2
2 ?
??
?
???
? ?
?
?
???
?
??
?
??
rrrrr rr
因此可以假设,?? 2c o s)( rf?
代入相容方程,得,
0])(9)(9)(2)([2c o s 32
2
23
3
4
4
???? dr rdfrdr rfdrdr rfdrdr rfd?
0,
1
1
2
,
1
1
2
2
2
2
2
2
2
2
2
?
?
?
?
?
?
? ?? ??? rr
b
a
r
a
q
b
a
r
a
q
87
Cut off,then solving ordinary differential equation,have,?2cos
2
24)(
r
DCBrArrf ????
Thus get stress function,
?? 2c o s)( 224 rDCBrAr ????Thus get stress components,
?
?
?
?
?
?
?
?
?
????
???
????
??
??
??
?
?
2s i n)
62
26(
2c o s)
6
212(
2c o s)
64
2(
42
2
4
2
42
r
D
r
C
BAr
r
D
BAr
r
D
r
C
B
r
r
From the boundary condition,
0)(,0)( ?? ?? arrarr ???get equation,
2
642
42
q
b
D
b
CB ????
88
删去,求解常微分方程,得,?2cos
2
24)(
r
DCBrArrf ????
从而得应力函数,
?? 2c o s)( 224 rDCBrAr ????
从而得应力分量,
?
?
?
?
?
?
?
?
?
????
???
????
??
??
??
?
?
2s i n)
62
26(
2c o s)
6
212(
2c o s)
64
2(
42
2
4
2
42
r
D
r
C
BAr
r
D
BAr
r
D
r
C
B
r
r
由边界条件,
0)(,0)( ?? ?? arrarr ???得到方程,
2
642
42
q
b
D
b
CB ????
89
0
62
26
0
64
2
2
62
26
42
2
42
42
2
????
???
?????
a
D
a
C
BAa
a
D
a
C
B
q
b
D
b
C
BAb
Evaluate A,B,C,D,and make,get,0?
ba
4,,4,0
4
2 qaDqaCqBA ??????
Substitute known quantity into the expressions of stress
components,thus get qierxi’key,
?
?
?
?
?
?
?
?
?
?????
????
?????
???
??
??
??
?
2s in)31)(1(
2
2c o s)31(
2
)1(
2
2c o s)31)(1(
2
)1(
2
2
2
2
2
4
4
2
2
2
2
2
2
2
2
r
a
r
aq
r
aq
r
aq
r
a
r
aq
r
aq
rr
r
90
0
62
26
0
64
2
2
62
26
42
2
42
42
2
????
???
?????
a
D
a
C
BAa
a
D
a
C
B
q
b
D
b
C
BAb
求解,,,,令,得,A B C D 0?
ba
4,,4,0
4
2 qaDqaCqBA ??????
将各已知量代入应力分量表达式,即得齐尔西的解答,
?
?
?
?
?
?
?
?
?
?????
????
?????
???
??
??
??
?
2s in)31)(1(
2
2c o s)31(
2
)1(
2
2c o s)31)(1(
2
)1(
2
2
2
2
2
4
4
2
2
2
2
2
2
2
2
r
a
r
aq
r
aq
r
aq
r
a
r
aq
r
aq
rr
r
91
II,All Sides of Rectangular Slab Acted by Uniform Tension
If rectangular sheet slab is acted by
uniform tension on left and right
sides,and by uniform tension on upper
and lower sides,Fig.4-11,can also get stress
components from prior solution,First
make q in the solution equal,then make
q in the solution equal,substitute
for,finally,superimposing two solutions
have,
1q
2q
1q
2q
?
??090
?
?
?
?
?
?
?
?
?
??
?
?
?
?
??
?
?
??
?
??
?
?
??
??
??
?
?
2s in)31)(1(
2
2c o s)31(
2
)1(
2
2c o s)31)(1(
2
)1(
2
2
2
2
2
21
4
4
21
2
2
21
2
2
2
2
21
2
2
21
r
a
r
aqq
r
aqq
r
aqq
r
a
r
aqq
r
aqq
r
r
Fig.4-11
1q 1q
2q
2q
?
92
二、矩形板四边受均布拉力
如果矩形薄板在左右两
边受有均布拉力,并在上
下两边受有均布拉力,如
图 4-11,也可由前面解答得
出应力分量。首先命该解答
中的 等于,然后命该解
答中的 等于,将 用
代替,最后将两个结果相叠
加。得到,
1q
2q
q 1q
q 2q ? ??090
?
?
?
?
?
?
?
?
?
??
?
?
?
?
??
?
?
??
?
??
?
?
??
??
??
?
?
2s in)31)(1(
2
2c o s)31(
2
)1(
2
2c o s)31)(1(
2
)1(
2
2
2
2
2
21
4
4
21
2
2
21
2
2
2
2
21
2
2
21
r
a
r
aqq
r
aqq
r
aqq
r
a
r
aqq
r
aqq
r
r
图 4-11
1q 1q
2q
2q
?
93
§ 4-10 Force on the Top and the Faces of Wedge
?r
??rr?
P
Fig.4-12
A wedge with central angle has infinite lower
end
1.Concentrated Force P Acting on the Top
Assume that concentrated force acts on the top
of a wedge,and has an angle with center line of
the wedge.Fetch sector on unit width to
study,and assume that force P acts on the unit
width,
Stress components of arbitrary point in a wedge
are determined byα,β,P,r,θ,thus,the
expressions of stress components only contain
these values,
?
?
94
§ 4-10 楔形体在楔顶或楔面受力
?r
??rr?
P
图 4-12
?
?
楔形体的中心角为,下端为无限长。
1,顶部受集中力 P
设楔形体在楔顶受有集中力,与楔形体
的中心线成角 。取单位宽度的部分来考虑,
并令单位宽度上所受的力为 。
楔形体内一点的应力分量决定于 α,β,P、
r,θ,因此,应力分量的表达式中只包含这
几个量。
P
95
Within,the amounts ofα,β,θ are non-dimension,thus
expressions of stress components ought to be denoted by PN/r
where N composed of α,β,θ is non-dimension.From the
expressions of stress function can be seen that r in stress function
is two exponent powers than the ones of each stress
component,thus can assume,
)(?? rf?
Substituting into consistent equation,has,
0)(d )(d2d )(d1 2
2
4
4
3 ????
?
???
? ?? ?
?
?
?
? fff
r
96
)(?? rf?
代入相容方程后得,
0)(d )(d2d )(d1 2
2
4
4
3 ????
?
???
? ?? ?
?
?
?
? fff
r
其中 α,β,θ是无量纲的量,因此根据应力分量的量纲,
应力分量的表达式应取 PN/r的形式,其中 N是 α,β,θ组
成的无量纲的量。由应力函数的表达式可以看出应力函
数中 r的幂次应当比各应力分量的幂次高出两次,因此可
设,
97
Evaluating this differential equation,gets,
)s inc o s(s inc o s
)s inc o s(s inc o s)(
??????
??????
DCrBrAr
DCBAf
????
????
)s i nc o s( ???? DCr ??
Thus gets,
ByAxBrAr ??? ?? s i nc o sWithin,have no effect on stresses,takes,
?
?
?
?
?
?
?
?
?
????
??
????
0)
1
(
0
)s i nc o s(
211
2
2
2
2
2
??
??
?
?
??
?
??
?
??
??
??
?
??
?
??
?
rr
r
CD
rrrr
rr
r
98
求解这一微分方程,得,
)s inc o s(s inc o s
)s inc o s(s inc o s)(
??????
??????
DCrBrAr
DCBAf
????
????
ByAxBrAr ??? ?? s i nc o s 不影响应力,取,其中
)s i nc o s( ???? DCr ??
于是得,
?
?
?
?
?
?
?
?
?
????
??
????
0)
1
(
0
)s i nc o s(
211
2
2
2
2
2
??
??
?
?
??
?
??
?
??
??
??
?
??
?
??
?
rr
r
CD
rrrr
rr
r
99
Boundary conditions of right and left faces of a wedge,
0)(,0)( 2/2/ ?? ???? ara ???? ??
Above stress components satisfy such boundary
conditions.concentrated force P is disposed as St Venant
principle,and when fetch arbitrary circular cylindrical surface
ab,the stresses of this section and P composites equilibrium force
system,
0s i ns i nd:0
0c o sc o sd:0
2/
2/
2/
2/
???
???
??
??
?
?
????
????
?
?
?
?
PrF
PrF
ry
rx
Substituting the expression of,then get Michle key,r?
?
?
?
?
?
?
?
??
?
?
?
?
??
0
0
)
s i n
s i ns i n
s i n
c o sc o s
(
2
rr
r
r
P
??
?
??
?
??
??
??
??
?
100
楔形体左右两面的边界条件,
0)(,0)( 2/2/ ?? ???? ara ???? ??
上述应力分量满足该边界条件。集中力 P按圣维南原理处
理,取出任一圆柱面 ab,则该截面上的应力和 P合 成平衡力系,
0s i ns i nd:0
0c o sc o sd:0
2/
2/
2/
2/
???
???
??
??
?
?
????
????
?
?
?
?
PrF
PrF
ry
rx
将 的表达式代入,可求出 C,D,最后得到密切尔解答,r?
?
?
?
?
?
?
?
??
?
?
?
?
??
0
0
)
s i n
s i ns i n
s i n
c o sc o s
(
2
rr
r
r
P
??
?
??
?
??
??
??
??
?
101
2.Couple M acting on the top of a wedge
r? ??r
?r
Fig.4-13
Assume that couple acts on the top of a
wedge,and moment of couple of unit width is
M,Fig.4-13,
The same as above analysis,the stress
component is such form as MN/r2,and stress
function is nothing to r,
)(??? ?
Substituting into consistent equation,have,
0dd4dd1 2
2
4
4
4 ????
?
???
? ?
?
?
?
?
r
Evaluate this differential equation,and get,
DCBA ???? ???? 2s i n2c o s
102
2.顶部受有力偶 M作用
r? ??r
?r
图 4-13
设楔形体在楔顶受有力偶,而每单位
宽度内的力偶矩为 M,如图 4-13。
根据和前面相似的分析,应力分量应
为 MN/r2的形式,而应力函数应与 r无关。
)(??? ?
代入相容方程后,得,
0dd4dd1 2
2
4
4
4 ????
?
???
? ?
?
?
?
?
r
求解这一微分方程,得,
DCBA ???? ???? 2s i n2c o s
103
2
2
2
22
2
2
2c o s2
)
1
(
0
2s in411
r
CB
rr
r
r
B
rrr
rr
r
?
????
??
????
?
??
??
?
?
??
?
??
?
?
??
??
?
??
?
??
?
Boundary conditions of right and left faces of a wedge,
0)(,0)( 2/2/ ?? ???? ara ???? ??
Above stress components satisfy the first equation
automatically.According to the second equation,get,
?c o s2 BC ??
Consider couple as anti-symmetry force,and normal stress and
stress function as ’s odd function,thus A=D=0,then,?
104
2
2
2
22
2
2
2c o s2
)
1
(
0
2s in411
r
CB
rr
r
r
B
rrr
rr
r
?
????
??
????
?
??
??
?
?
??
?
??
?
?
??
??
?
??
?
??
?
楔形体左右两面边界条件,
0)(,0)( 2/2/ ?? ???? ara ???? ??
上述应力分量自动满足第一式,根据第二式,可得,
?c o s2 BC ??
力偶可看成反对称力,正应力和应力函
数应当是 的奇函数,从而 A=D=0,于是,?
105
Concentrated couple M is disposed as St Venant principle,and when
fetch arbitrary circular cylindrical surface ab,the stresses of this
section and M composites equilibrium force system,
???
??
?
? ?
c o ss in
2
0d:0 2
2/
2/
?
??
??? ??
?
M
B
MrM ro
Finally get English key,
?
?
?
?
?
?
?
?
?
??
?
?
?
2
2
)c o s( s i n
)c o s2( c o s
0
)c o s( s i n
2s i n2
r
M
r
M
rr
r
???
??
??
?
???
?
?
??
?
2
2
)c o s2( c o s2
0
2s i n4
r
B
r
B
rr
r
??
??
?
?
?
??
?
?
??
?
??Thus,
106
集中力偶 M按圣维南原理处理,取出任一圆柱面 ab,则
该截面上的应力与 M成平衡力系,
???
??
?
? ?
c o ss in
2
0d:0 2
2/
2/
?
??
??? ??
?
M
B
MrM ro
最后得到英格立斯的解答,
?
?
?
?
?
?
?
?
?
??
?
?
?
2
2
)c o s( s i n
)c o s2( c o s
0
)c o s( s i n
2s i n2
r
M
r
M
rr
r
???
??
??
?
???
?
?
??
?
于是,
2
2
)c o s2( c o s2
0
2s i n4
r
B
r
B
rr
r
??
??
?
?
?
??
?
?
??
?
??
107
?
r
Fig.4-14
Assume that uniform pressure q acts on one
face of a wedge,Fig.4-14,Stress component
ought to be the form as qN,and stress function
ought to be the form as qNr2,
)(2 ?? fr?
Substituting into consistent equation,
have,
0d )(d4d )(d1 2
2
4
4
2 ????
?
???
? ?
?
?
?
? ff
r
Evaluating this differential equation,have,
)2s i n2c o s(2 DCBAr ???? ????
??
?
?
?
????
????
?????
CBA
DCBA
DCBA
rr
r
????
????
????
??
?
2c o s22s in2
222s in22c o s2
222s in22c o s2
3.uniform pressure q acting on one face
108
?
r
图 4-14
设楔形体在一面受有均布压力,如
图 4-14。
q
应力分量应为 qN的形式,而应力
函数应为 qNr2的形式,
)(2 ?? fr?
代入相容方程后,得,
0d )(d4d )(d1 2
2
4
4
2 ????
?
???
? ?
?
?
?
? ff
r
求解这一微分方程,得,
)2s i n2c o s(2 DCBAr ???? ????
??
?
?
?
????
????
?????
CBA
DCBA
DCBA
rr
r
????
????
????
??
?
2c o s22s in2
222s in22c o s2
222s in22c o s2
3.一面受均布压力 q
109
Boundary conditions,
0)(,0)(
0)(,)(
0
0
??
???
?
??
? ????
?????
??
??
? rr
q
Evaluating the constants,get Levi’s key for stress components,
?
?
?
?
?
?
?
?
?
?
??
??
?
???
???
?
???
???
q
qq
qq
rr
r
)( t g2
2s i ntg)2c o s1(
)( t g2
)2s i n2()2c o s1(tg
)( t g2
)2s i n2()2c o s1(tg
??
???
??
??
????
?
??
????
?
??
?
110
边界条件为,
0)(,0)(
0)(,)(
0
0
??
???
?
??
? ????
?????
??
??
? rr
q
求解常数,得应力分量的李维解答,
?
?
?
?
?
?
?
?
?
?
??
??
?
???
???
?
???
???
q
qq
qq
rr
r
)( t g2
2s i ntg)2c o s1(
)( t g2
)2s i n2()2c o s1(tg
)( t g2
)2s i n2()2c o s1(tg
??
???
??
??
????
?
??
????
?
??
?
111
§ 4-11 Normal Concentrated Forces
on the Boundary for Semi-plane Body
x
y
P
r
?
o
?
?
?
?
?
?
?
??
?
???
0
0
c o s2
rr
r
r
P
??
?
??
?
?
?
?
( 1)
Order that central angle of a wedge equal to a
flat angle,then connecting two sides of the
wedge to be a straight edge,the wedge become
to be semi-plane body.Fig.4-15,
I,Stress Components
Fig.4-15
Using coordinate transform can get the
stress component expressions (2) in
rectangular coordinates,
?
?
?
?
?
?
?
?
?
???
???
???
r
P
r
P
r
P
xy
y
x
??
?
?
??
?
?
?
?
?
2
2
3
c o ss i n2
c o ss i n2
c o s2
(2)
On the boundary of planar body is acted by P which is
perpendicular to it,and for michell’s key
make,So get Equ.(1),??? 0??
112
§ 4-11 半平面体在边界上受法向集中力
x
y
P
r
?
o
?
?
?
?
?
?
?
??
?
???
0
0
c o s2
rr
r
r
P
??
?
??
?
?
?
?
利用坐标变换可得到直角坐标中的应力分量式( 2),
?
?
?
?
?
?
?
?
?
???
???
???
r
P
r
P
r
P
xy
y
x
??
?
?
??
?
?
?
?
?
2
2
3
c o ss i n2
c o ss i n2
c o s2
( 1)
( 2)
命楔形体的中心角等于一个平角,这
楔形体的两个侧边就连成一个直边,而楔
形体就成为一个半平面体,如图 4-15。
一、应力分量
??? 0??
P 当平面体在边界上受有垂直于边界的力
时,在密切尔解答中令, 。于是得
式( 1),图 4-15
113
Or replacing polar coordinates with rectangular coordinates,get,
?
?
?
?
?
??
?
?
?
?
?
???
?
???
?
???
222
2
222
2
222
3
)(
2
)(
2
)(
2
yx
yxP
yx
xyP
yx
xP
xy
y
x
?
?
?
?
?
?
II,Displacement Components
Assume that is planar stress situation.Substituting stress components
into physical equations,get deformation components,
0,c o s2,c o s2 ???? ?? ???????? rr rE PrEP
Then substituting deformation components into geometric
equations,have,
114
或将其中的极坐标改为直角坐标而得,
?
?
?
?
?
??
?
?
?
?
?
???
?
???
?
???
222
2
222
2
222
3
)(
2
)(
2
)(
2
yx
yxP
yx
xyP
yx
xP
xy
y
x
?
?
?
?
?
?
二、位移分量
假设是平面应力情况。将应力分量代入物理方程,得形变分
量,
0,c o s2,c o s2 ???? ?? ???????? rr rE PrEP
再将形变分量代入几何方程,得,
115
0
1
c o s21
c o s2
??
?
?
?
?
?
?
?
?
?
??
?
?
r
u
r
uu
r
rE
Pu
rr
u
rE
P
r
u
r
r
r
??
?
?
?
?
?
?
?
?
Thus can get displacement components,
of which H,I,K are all arbitrary constants,
From symmetric condition have,0)(
0 ????u 0,0 ?? KH
Substituting into Equ.( 3),have,
?
?
?
??
?
?
???
?
?
?
??
??
?
???
????
?
?
?
?
?
?
?
????
?
?
?
?
? c o ss i nc o s
)1(
s i n
)1(
lns i n
2
s i nc o ss i n
)1(
lnc o s
2
KIHr
E
P
E
P
r
E
P
u
KI
E
P
r
E
P
u r ( 3)
116
0
1
c o s21
c o s2
??
?
?
?
?
?
?
?
?
?
??
?
?
r
u
r
uu
r
rE
Pu
rr
u
rE
P
r
u
r
r
r
??
?
?
?
?
?
?
?
?
于是可以得出位移分量,
其中,, 都是任意常数。 H I K
由对称条件,得,0)( 0 ????u 0,0 ?? KH
代入式( 3),得,
?
?
?
??
?
?
???
?
?
?
??
??
?
???
????
?
?
?
?
?
?
?
????
?
?
?
?
? c o ss i nc o s
)1(
s i n
)1(
lns i n
2
s i nc o ss i n
)1(
lnc o s
2
KIHr
E
P
E
P
r
E
P
u
KI
E
P
r
E
P
u r ( 3)
117
?
?
?
??
?
?
?
?
?
?
??
?
?
???
??
?
?
??
?
?
?
?
???
?
?
?
?
? s i ns i n
)1(
c o s
)1(
lns i n
2
c o ss i n
)1(
lnc o s
2
I
E
P
E
P
r
E
P
u
I
E
P
r
E
P
u r
If semi-plane body has no constraint of vertical direction,constant
I can not be determined.Otherwise,can determined the constant I
with this constraint condition,
( 4)
Downward vertical displacement of arbitrary point M on the
boundary is called landing.From the second formula of Equ.(4)
can get landing of point M,
IE PrEPu ??????
? ?
?
????
)1(ln2)(
2
Fetch a base point B on the boundary,and make horizon distance
to the point of load application s,
If constant I is not determined,landing can not be determined
else.At this time,only can evaluate relative landing,
118
?
?
?
??
?
?
?
?
?
?
??
?
?
???
??
?
?
??
?
?
?
?
???
?
?
?
?
? s i ns i n
)1(
c o s
)1(
lns i n
2
c o ss i n
)1(
lnc o s
2
I
E
P
E
P
r
E
P
u
I
E
P
r
E
P
u r
I 如果半平面体不受铅直方向的约束,则常数 不能确定。
如果半平面体受有铅直方向的约束,就可以根据这个约束条
件来确定常数 。 I
( 4)
边界上任意一点 向下的铅直位移,即所谓沉陷。由式
( 4)中的第二式可得 点的沉陷为,
M
M
IE PrEPu ??????
? ?
?
????
)1(ln2)(
2 如果常数 没有确定,则沉陷也不能确定。这时只能求
出相对沉陷。
I
在边界上取定一个基点,它距载荷作用点的水平距离
为 。
B
s
119
])1(ln2[])1(ln2[ IE PsEPIE PrEP ?????????? ? ??? ???
After simplifying,then,
r
s
E
P ln2
?? ?
P
O
s
y
x
B M
?
r
Fig.4-16
The stress and landing which semi-plane body is acted by normal
distributed force on the boundary,can be found by which normal
concentrated force acting on the boundary of semi-plane body is
done with superposition method,
So relative landing of a point M on the boundary for base point
B,equals the landing of point M with subtracting the landing of
point B,Fig.4-16,
120
则边界上一点 M 对于基点 B 的相对沉陷,等于 M 点的沉陷
减去 B点的沉陷,如图 4-16,
])1(ln2[])1(ln2[ IE PsEPIE PrEP ?????????? ? ??? ???
简化以后,得,
r
s
E
P ln2
?? ?
P
O
s
y
x
B M
?
r
图 4-16
半平面体在边界上受法向分布力作用时的应力和沉陷,可
以由半平面体在边界上受法向集中力用叠加法得出。
121
0a
0c
0b
[1] Fig.1,combination cylinder consist of ento- and extra-
cylinder(limited length,free both ends)before assembling outside
radius of ento-cylinder is larger than inside ones of extra-
cylinder,evaluate contact pressure,and derive expression of hoop
prestress,
A
?
p
Solution, 1.Assuming common radius on
joining place after assembling,contact pressure
make outside radius of ento-cylinder
reduce,while make inside one of extra-
cylinder increase with,
0c
p
2?
1?
,Polar Solutions For Planar Problems,Exercise
Fig.1
122
0a
0c
0b
[练习 1] 如图 1所示,由内外筒组成的
组合筒(长度有限,两端自由),装
配前内筒的外半径比外筒的内半径
大,求接触压力,并导出环向预
应力的表达式。
A
? p
解,
1.设装配后接合处的公共半径为,接
触压力 使内筒的外半径减小了,而
使外筒的内半径增大了,
0c
p 2?
1?
,平面问题的极坐标解答, 习题课
图 1
123
??? ?? 21
2,Substituting into displacement
formula of circular ring which internal pressure load only,then,
pqbbcacr a ????,,,000
)( 12
0
2
0
2
0
2
0
1
0
1 ?? ??
??
cb
cb
E
pc
( 1)
( 2)
According to compatibility condition of displacement,have,
Substituting into displacement
formula of circular ring which external pressure load only,then,
pqcbaacr b ????,,,000
124
按位移协调条件有,
??? ?? 21
2.将 代入只受内压力作用圆环的位
移公式,得,
pqbbcacr a ????,,,000
)( 12
0
2
0
2
0
2
0
1
0
1 ?? ??
??
cb
cb
E
pc
( 1)
( 2)
将 代入只受外压力作用圆环的
位移公式,得,
pqcbaacr b ????,,,000
125
)( 22
0
2
0
2
0
2
0
2
0
2 ?? ??
???
ac
ac
E
pc ( 3)
Substituting Eq.( 2)、( 3) into Eq.( 1),have,
??? ???????? )()( 22
0
2
0
2
0
2
0
2
0
12
0
2
0
2
0
2
0
1
0
ac
ac
E
pc
cb
cb
E
pc
3.If ento-tank has the same material as extra-tank,
thus, then can be evaluated from
above equation, ??? ???? 2121,EEE
)(2
))((
2
0
2
0
3
0
2
0
2
0
2
0
2
0
abc
accbEp
?
??? ?
4.Hoop stresses of ento- and extra-tank,have,
)1()(),1()( 2
2
0
2
0
2
0
2
0
2
2
0
2
0
2
0
2
0
r
b
cb
pc
r
a
ac
pc ?
?????? ?? ??en ex
126
)( 22
0
2
0
2
0
2
0
2
0
2 ?? ??
???
ac
ac
E
pc ( 3)
将式( 2)、( 3)代入式( 1),得,
??? ???????? )()( 22
0
2
0
2
0
2
0
2
0
12
0
2
0
2
0
2
0
1
0
ac
ac
E
pc
cb
cb
E
pc
3.若内、外筒为同一种材料,则,
从上式可解得,
??? ???? 2121,EEE
)(2
))((
2
0
2
0
3
0
2
0
2
0
2
0
2
0
abc
accbEp
?
??? ?
4.内、外筒的环向应力为,
)1()(),1()( 2
2
0
2
0
2
0
2
0
2
2
0
2
0
2
0
2
0
r
b
cb
pc
r
a
ac
pc ?
?????? ?? ??内 外
127
Solution,
oy
x
P
??
?
??r
r?
[2]Concentrated force act on the top of
wedge,which against ’s shaft included angle is,
Fig.2.Considering unit thickness,try to
determine the stress components in the wedge,
P
x ?
1.Due to angle used to describe geometry feature of the
wedge is non-dimension,so from dimension analysis
method,in stress function can only express with first
power,
?
r
)(?? rf? ( 1)
Fig.2
128
解,
oy
x
P
??
?
??r
r?
[练习 2]楔形体顶端受集中力 作用,与
轴的夹角为,如图 2所示。取单位厚度考虑,
试确定楔形体内的应力分量。
P x
?
1.由于描述楔形体几何特征的角度 是无
量纲的,故可由量纲分析法得知,应力函
数中 只能以一次幂形式出现,即,
?
r
)(?? rf? ( 1)
图 2
129
Because have no effects on
stress components,can be left out,thus,
ByAxBrAr ??? ?? s i nc o s
0),s i nc o s(2
)s i nc o s(
????
??
?? ?????
????
rr CDr
DCr
( 2)
( 3)
( 4)
)]s i nc o s(s i nc o s[ ?????? DCBAr ????
0)(,0)( ?? ???? ara ???? ??
3.Boundary conditions of both side faces of wedge can be
satisfied naturally,
2.From harmonic equation can get f( ?),then can find
stress function,
130
2.由调和方程求出 后,即可求得应力函数为,)(?f
)]s i nc o s(s i nc o s[ ?????? DCBAr ????
由于 不影响应力分量,故
可删去,因此有,
ByAxBrAr ??? ?? s i nc o s
0),s i nc o s(2
)s i nc o s(
????
??
?? ?????
????
rr CDr
DCr
( 2)
( 3)
( 4)
3.楔形体两侧面的边界条件能自然满足,
0)(,0)( ?? ???? ara ???? ??
131
Considering static equilibrium conditions on the top of
wedge of radius, r
??
???
? ??
?
??
? ?
??
????
????
a
a
ro
a
a
r
a
a
ry
a
a
a
a
rrx
drM
PrdrdF
PrdrdF
0:0
0s inc o ss in:0
0c o ss inc o s:0
2
??
???????
???????
?
?
?
C and D can be evaluated from preceding two equations,and
then can find stress components( Michiel solution),
??
?
??
?
2s i n2
c o s,
2s i n2
s i n
?????
PDPC
0,)2s in2( s ins in2)2s in2( c o sc o s2 ??????? ?? ???? ???? ??? rr rPrP
132
考虑半径为 的楔形体上部的静力平衡条件,r
??
???
? ??
?
??
? ?
??
????
????
a
a
ro
a
a
r
a
a
ry
a
a
a
a
rrx
drM
PrdrdF
PrdrdF
0:0
0s inc o ss in:0
0c o ss inc o s:0
2
??
???????
???????
?
?
?
由前两式可解出 和,从而求出应力分量(密切尔解),C D
??
?
??
?
2s i n2
c o s,
2s i n2
s i n
?????
PDPC
0,)2s in2( s ins in2)2s in2( c o sc o s2 ??????? ?? ???? ???? ??? rr rPrP
133
[3]Evaluate stresses on the section m-n,Fig.3,x?
Solution,
Simplifying the force system of Fig.(a) to point,get static equivalent
force system Fig.(b),within, PaM ?
m
n
x
P
PaM ?
o x
y
m
n
x
y
P
o x
a
c2
?
?
( a) ( b)
Fig.3
134
[练习 3]求图 3所示问题的截面 m-n上的应力 。 x?
解,将图( a)所示力系向 点简化,便得图( b)所示与原力
系静力等效的力系,其中 。
o
PaM ?
m
n
x
P
PaM ?
o x
y
m
n
x
y
P
o x
a
c2
?
?
( a) ( b)
图 3
135
?
?
?
??
?
?
?
?
??
?
?
?
??
???
??
??
???
?
??
?
?
?? 2c o s22s i n
2c o s2c o s
,0
2c o s22s i n
2s i n2
2s i n2
s i n2
2
2
r
Pa
r
Pa
r
P
r
r
From coordinate transform equations of stress components,have,
]
)(
2c o s
)()(
3
[
2c o s22s i n
2
)(2s i n2
2
c o ss i n2s i nc o s
222322
3
322
3
222
2
22
yx
xy
yx
xy
yx
yx
Pa
yx
yxP
rrx
?
?
?
?
?
?
?
?
?
?
?
??
???
?
?????
????????
??
According to St Venant’s principle,the substitution effect on far
away from the top of wedge can be neglected.superimposing the
stress solutions of both concentrated force and moment on the top
of the wedge,then get the stresses of the original question,
136
?
?
?
??
?
?
?
?
??
?
?
?
??
???
??
??
???
?
??
?
?
?? 2c o s22s i n
2c o s2c o s
,0
2c o s22s i n
2s i n2
2s i n2
s i n2
2
2
r
Pa
r
Pa
r
P
r
r
由应力分量的坐标变换式可得,
]
)(
2c o s
)()(
3
[
2c o s22s i n
2
)(2s i n2
2
c o ss i n2s i nc o s
222322
3
322
3
222
2
22
yx
xy
yx
xy
yx
yx
Pa
yx
yxP
rrx
?
?
?
?
?
?
?
?
?
?
?
??
???
?
?????
????????
??
根据圣维南原理,此类代换对远离楔顶之处的应力的影响可
不计。将楔顶受集中力作用与受力矩作用下的应力解答叠加,
得原问题的应力,
137
)1(0)11)(11( 2
2
22
2
2
2
22
2
????????????????? ? ???? rrrrrrrr
[4] Try to expand consistent equation expressed by, ?
011
2
2
2
22
2
????????? ???????? ??rrrr
)
1
()
1
(
1
)
1
(
1
)
1
()(
1
)(
1
)(
2
2
22
2
2
2
2
2
2
2
2
2
2
22
2
2
2
2
2
?
??
?
?
??
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
rrrrrrrrr
rrrrrrrrrr
)2(0)1(1)1(1 2
2
22
2
22
2
2 ??
?
?
??
?
?
?
??
?
?
??
?
rrrrr
Solution,
138
[练习 4] 试将以 表示的相容方程式
展开。
? 011 2
2
2
22
2
????????? ???????? ??rrrr
)1(0)11)(11( 2
2
22
2
2
2
22
2
????????????????? ? ???? rrrrrrrr
)
1
()
1
(
1
)
1
(
1
)
1
()(
1
)(
1
)(
2
2
22
2
2
2
2
2
2
2
2
2
2
22
2
2
2
2
2
?
??
?
?
??
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
rrrrrrrrr
rrrrrrrrrr
)2(0)1(1)1(1 2
2
22
2
22
2
2 ??
?
?
??
?
?
?
??
?
?
??
?
rrrrr
解,
139
22
4
22
2
2
2
2
3
3
2
2
4
4
2
2
2
2
1
)(
1
,
1
)(
1
,)(
rrrr
rrrrrrrr
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
????
2
3
32
2
232
2
2
2
2
233
3
2
2
22
1
)
1
(
1
,
11
)
1
(
1
1211
)
1
(
?
??
?
???
?????
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
rrrrrrrrrrrrr
rrrrrrrrrrr
Differentiating subentries,then adding up,have,
140
22
4
22
2
2
2
2
3
3
2
2
4
4
2
2
2
2
1
)(
1
,
1
)(
1
,)(
rrrr
rrrrrrrr
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
????
2
3
32
2
232
2
2
2
2
233
3
2
2
22
1
)
1
(
1
,
11
)
1
(
1
1211
)
1
(
?
??
?
???
?????
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
rrrrrrrrrrrrr
rrrrrrrrrrr
分项求偏导数,最后相加,得,
141
4
4
42
2
22
2
2
2
3
32
2
42
2
2
22
4
22
3
32
3
32
2
42
2
22
2
1
)
1
(
1
12
)
1
(
1
1226
)
1
(
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
??
?
?
?
?
??
?
?
??
?
?
??
?
?
?
?
?
?
?
?
?
rrr
rrrrrr
rrrrrrrrr
)3(0
14
22112
4
4
42
2
4
2
3
322
4
232
2
23
3
4
4
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?????
rr
rrrrrrrrrrr
142
4
4
42
2
22
2
2
2
3
32
2
42
2
2
22
4
22
3
32
3
32
2
42
2
22
2
1
)
1
(
1
12
)
1
(
1
1226
)
1
(
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
??
?
?
?
?
??
?
?
??
?
?
??
?
?
?
?
?
?
?
?
?
rrr
rrrrrr
rrrrrrrrr
)3(0
14
22112
4
4
42
2
4
2
3
322
4
232
2
23
3
4
4
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?????
rr
rrrrrrrrrrr
143
[5] Homo-thickness circular ring with ento-radius a and extra-
radius b rotates with isogonal velocity (Fig.4a),so try to
determine the stresses and the displacement,
?
1,It is about displacement
problem on axial symmetry
( in polar stress case),with
feature is only r’s
function,r
uu,0??
Solution,
y
z
x
a b
O x O a b
a) b)
Fig.4
144
[练习 5] 等厚度圆环的内外半径分别为 a和 b,以等角速度 旋
转,见图 4a),试求其应力和位移。
?
y
z
x
a b
O x O
a
b
a) b)
1、本题为位移轴对称问题
(平面应力情况),其特征
是 只是 r的函
数,
ruu,0??
解,
图 4
145
In terms of basic equations,determine differential equation of
equilibrium,Fig.(1),within is specific gravity,g is gravity
acceleration,geometric and physical equations,respectively have,
?
)2(0,,
)1(0
2
???
??
?
?
??
?
???
????
r
rr
r
rr
r
u
dr
du
r
g
r
rdr
d
)3(0),(1),(1 22 ??????? ?? ??????? rrrrrr drduruErudrduE
146
根据基本方程,求解本题的平衡微分方程为式( 1),其
中 是材料的比重,?
g是重力加速度,几何方程与物理方程分别为,
)2(0,,
)1(0
2
???
??
?
?
??
?
???
????
r
rr
r
rr
r
u
dr
du
r
g
r
rdr
d
)3(0),(1),(1 22 ??????? ?? ??????? rrrrrr drduruErudrduE
147
Substituting Eq.(3) into Eq.( 1) gives,
)4(
8
)1(
0
11
2
22
22
2
r
Eg
r
r
B
Aru
r
g
r
Er
u
dr
du
rdr
du
r
rrr
??
??
?
???
??
?
???
Substituting Eq.( 4) into Eq.(3) gives,
)5(
8
)31(
8
)3(
2
2
2
2
1
2
2
2
2
1
?
?
?
?
?
?
?
?
???
?
???
r
gr
C
C
r
gr
C
C
r
???
?
???
?
?
148
把式( 3)代入式( 1),得,
)4(
8
)1(
0
11
2
22
22
2
r
Eg
r
r
B
Aru
r
g
r
Er
u
dr
du
rdr
du
r
rrr
??
??
?
???
??
?
???
式( 4)代入式( 3)得应力表达式为,
)5(
8
)31(
8
)3(
2
2
2
2
1
2
2
2
2
1
?
?
?
?
?
?
?
?
???
?
???
r
gr
C
C
r
gr
C
C
r
???
?
???
?
?
149
where
?? ???? 1,1 21 EBCEAC2,Determined constants by boundary conditions of inside and
outside cycles,then get the displacements and the stresses,
? ?
? ?
? ?
? ? ]
3
1)1(
)1[(
8
)3(
8
)31(
][
8
)3(
][
8
)3(
8
)3(
,
8
)3(
0)(,0)(
2
22
22
2
2
2
2
22
22
2
2
22
222
2
22
2
2
22
2
1
r
r
ba
rba
g
u
r
gr
ba
ba
g
r
ba
rba
g
ba
g
Cba
g
C
r
r
brrarr
?
??
?
???
??????
?
???
?
??????
??
?
?
?
?
?
???
?
?
?
???
?
?
???
?
?
?
??
?
?
??
??
150
式中,。
?? ???? 1,1 21
EBCEAC
2、由内外圈的边界条件确定常数,进而求出位移和应力,
? ?
? ?
? ?
? ? ]
3
1)1(
)1[(
8
)3(
8
)31(
][
8
)3(
][
8
)3(
8
)3(
,
8
)3(
0)(,0)(
2
22
22
2
2
2
2
22
22
2
2
22
222
2
22
2
2
22
2
1
r
r
ba
rba
g
u
r
gr
ba
ba
g
r
ba
rba
g
ba
g
Cba
g
C
r
r
brrarr
?
??
?
???
??????
?
???
?
??????
??
?
?
?
?
?
???
?
?
?
???
?
?
???
?
?
?
??
?
?
??
??
151
[6] Uniform load act on the right side face of the
wedge,Fig.5.Determine the stress components,
y
q
x
?
?r
O
Fig.5
1,In the wedge stress components of
arbitrary point are determined by
within dimension of q is [force][length,
identical with stress’s.Thus,expressions of
each stress components can be denoted by
Nq,but N is non-dimension function denoted
by,so it is impossible that arise in the
stress expressions,
,,,,rq??
2]?
??,r
Solution,
152
[练习 6] 楔形体右侧面受均布荷载 q作用,见图 5。试求其应力
分量。
y
q
x
?
?r
O
图 5
2]?
1、楔形体内任一点的应力分量决定于
其中,q的量纲为 [力 ][长度,
与应力的量纲相同。因此,各应力分量的
表达式只可能取 Nq的形式,而 N是以
表示的无量纲函数,也就是应力表达式中
不可能出现,
,,,,rq??
??,
r
解,
153
2.Determined f( ?) from twin harmonic equation,the stress
expressions can be evaluated by the general solution of differential
formula of equilibrium in the ordinary situation,
DCBAfd fdd fdr ?????? ????? ?? ? 2s in2c o s)(,0])(4)([1 22442
From the general solution of differential formula of equilibrium
in the ordinary situation,stress function equal to some
function of with multiplying,thus can build up,
)1()(2 ?? fr?
2r
?
?
154
)1()(2 ?? fr?
2、由双调和方程确定 f( ?),由 平衡微分方程在一般情况下的
通解 得应力表达式,
DCBAfd fdd fdr ?????? ????? ?? ? 2s in2c o s)(,0])(4)([1 22442
再由平衡微分方程在一般情况下的通解知,应力
函数 应是 的某一函数乘以,即可设,? ? 2r
155
)3(
2s i n22c o s2
)2s i n2c o s(2
)2s i n2c o s(2
)2()2s i n2c o s(
2
?
?
?
?
?
???
????
?????
????
CBA
DCBA
DCBA
DCBAr
r
r
???
????
????
????
?
?
3,Boundary conditions of stress,
0)(,0)(,0)(,)( 00 ????? ???? arraq ???????? ????
Then find constant.Substituting the values into Fig.(3) get the stress
components( LeeWi solution),
)4(
)( t a n2
2s i nt a n)2c o s1(
)( t a n2
)2s i n2()2c o s1(t a n
)( t a n2
)2s i n2()2c o s1(t a n
?
?
?
?
?
?
?
?
?
?
??
?
?
???
???
?
???
???
q
qq
q
r
r
??
???
?
??
????
?
??
????
?
?
?
156
)3(
2s i n22c o s2
)2s i n2c o s(2
)2s i n2c o s(2
)2()2s i n2c o s(
2
?
?
?
?
?
???
????
?????
????
CBA
DCBA
DCBA
DCBAr
r
r
???
????
????
????
?
?
3、应力边界条件为,
0)(,0)(,0)(,)( 00 ????? ???? arraq ???????? ????
由此可求出常数,代回式( 3)得应力分量(李维解答)为,
)4(
)( t a n2
2s i nt a n)2c o s1(
)( t a n2
)2s i n2()2c o s1(t a n
)( t a n2
)2s i n2()2c o s1(t a n
?
?
?
?
?
?
?
?
?
?
??
?
?
???
???
?
???
???
q
qq
q
r
r
??
???
?
??
????
?
??
????
?
?
?
157
158