1
Elasticity
2
3
Chapter 3 Two-dimensional
Problem in Rectangular Coordinates
§ 3-1 Solution by Polynomials
§ 3-2 Determination of Displacements
§ 3-3 Bending of a Simply Supported
Beam by Uniform Load
§ 3-4 Loading of a Wedge by Gravity and
Hydraulic Pressure
§ 3-6 Bending of a Simply Supported
Beam by Arbitrary Lateral Load
§ 3-5 Solution by Series
Exercises
4
第三章 平面问题的直角坐标解答
§ 3-1 多项式解答
§ 3-2 位移分量的求出
§ 3-3 简支梁受均布载荷
§ 3-4 楔形体受重力和液体压力
§ 3-5 级数式解答
§ 3-6 简支梁受任意横向载荷
习题课
5
1.The Stress Function in the form of a Polynomial of
the First Degree
§ 3-1 Solution by Polynomials
cybxa ????
The Stress Components,
0,0,0 ???? yxxyyx ????
The Stress Boundary Condition,0?? YX
Conclusion:( 1) The linear stress function is corresponding to the state of no
surface force and no stress.( 2) There’s no effect to the stress to add a linear
function to any stress function of two-dimensional problem,
2.The Stress Function in the form of a Polynomial of
the Second Degree
22 cyb xyax ????

1.Corresponding to,the stress components 2ax??
0,2,0 = = = = yx xy y x a t t s s
6
一、应力函数取一次多项式
§ 3-1 多项式解答
cybxa ????
应力分量,0,0,0 ????
yxxyyx ????
应力边界条件,0?? YX
结论,( 1)线性应力函数对应于无面力、无应力的状态。
( 2)把任何平面问题的应力函数加上一个线性函
数,并不影响应力。
二、应力函数取二次多项式
22 cyb xyax ????
1.对应于,应力分量 。 2ax?? 0,2,0 ????
yxxyyx a ????
7
2.Corresponding to,stress components b xy??
byxxyyx ????? ????,0,0Conclusion,The stress function can used to solute the problem of
uniformly distributed shearing stresses rectangular plate.(Fig3-1b) b xy??
Fig.3-1
x
y
o
a2
a2
( a)
x
y
o
b
bb
b
( b)
x
y
o
c2 c2
( c)
Conclusion,1.The stress function can be used to solute the problem
of uniformly distributed tensile(if ) or compressive(if ) stresses on
y-axis of rectangular plate.(Fig3-1a)
0?a 0?a
2 ax =j
8
2ax??结论,应力函数 能解决矩形板在 方向受均布拉力
(设 )或均布压力(设 )的问题。如图 3-1( a)。
y
0?a 0?a
x
y
o
b
bb
b
x
y
o
a2
a2
x
y
o
c2 c2
2.对应于,应力分量 。 b xy?? b
yxxyyx ????? ????,0,0
结论,应力函数 能解决矩形板受均布剪力问题。如
图 3-1( b)。
b xy??
图 3-1
( a) ( b) ( c)
9
3.The Stress Function in the form of a Polynomial of the Third Degree
3ay??The Corresponding Stress Components
Conclusion,The stress function( a) can be used to solute the problem of pure
bending of rectangular beam,The rectangular beam is shown in Fig3-2,
0,0,6 ???? yxxyyx ay ????
( a)
?
?
M M
h
l
2h
2hy
x?
x? 图
x
y
Fig.3-2
1
3.The stress function can be used to solute the problem of uniformly
distributed tensile(if ) or compressive(if ) stresses on -axis of
rectangular plate.(Fig3-1c)
2cy??
0?c0?c
10
x3.应力函数 能解决矩形板在 方向受均布拉力
(设 )或均布压力(设 )的问题。如图 3-1( c)。
2cy??
0?c 0?c
三、应力函数取三次式
3ay??
对应的应力分量,0,0,6 ????
yxxyyx ay ????
( a)
?
?
M M
h
l
2h
2hy
x?
x? 图
x
y
图 3-2
1
结论,应力函数 能解决矩形梁受纯弯曲的问题。如图
3-2所示的矩形梁。
3ay??
11
Specification as following,
In fig3-2,considering the unit width beam,named the moment of double force on per
unit width,The order of here is[force][length]/[length],the result is [force], MM
On the left or right,the two-dimensional force should be combined to a
double force,as the moment of double force is, this request that,M
? ?? ? ??2
2
2
2
26,06
h
h
h
h Mdyyay d ya
Put into formula( a),then,
0,0,12 3 ???? yxxyyx yh M ????
? ?? ? ??2
2
2
2
,0
h
h
h
h xx My d ydy ??
Put in equation( a) into the formula above,then,
x?
The first one always can meet,and the second one request that,
3
2
h
M a =
12
具体解法如下,
如图 3-2,取单位宽度的梁来考察,并命每单位宽度上力偶的矩
为 。这里 的因次是 [力 ][长度 ]/[长度 ],即 [力 ]。 M M
在左端或右端,水平面力应当合成为力偶,而力偶的矩为,
这就要求,
M
? ?? ? ??2
2
2
2
,0
h
h
h
h xx My d ydy ??
前一式总能满足,而后一式要求,
3
2
h
Ma ?
代入式( a),得,
0,0,12 3 ???? yxxyyx yh M ????
? ?? ? ??2
2
2
2
26,06
h
h
h
h Mdyyay d ya
将式( a)中 的代入,上列二式成为,x?
13
Because the torque of the beam’s cross section is, so
the formula above can be written into, 12
1 3hI ??
0,0,???? yxxyyx yIM ????
The result is same with corresponding part in material mechanics
Note,
The result above is useful to the beam which the length is
greatly more than the depth ; to the beam which the length is
equal to the depth,this result is useless,
l
h l
h
14
因为梁截面的惯矩是,所以上式可改写为,
12
1 3hI ??
0,0,???? yxxyyx yIM ????
结果与材料力学中完全相同。
注意,
对于长度 远大于深度 的梁,上面答案是有实用价值
的;对于长度 与深度 同等大小的所谓深梁,这个解答是
没有什么实用意义的。
l h
l h
15
§ 3-2 Determination of Displacements
Take the pure bending of rectangular for example to explain how
to determine the displacement by the stress components,
1.In the State of Two-dimensional Stress
Put the stress component
into the physical equation 0,0,???? yxxyyx yI
M ????
?
?
?
?
?
?
?
?
?
?
?
??
??
xyxy
xyy
yxx
E
E
E
?
?
?
????
????
)1(2
)(
1
)(
1
16
§ 3-2 位移分量的求出
以矩形梁的纯弯曲问题为例,说明如何由应力分量求出
位移分量。
一、平面应力的情况
将应力分量 代入物理方程 0,0,????
yxxyyx yI
M ????
?
?
?
?
?
?
?
?
?
?
?
??
??
xyxy
xyy
yxx
E
E
E
?
?
?
????
????
)1(2
)(
1
)(
1
17
Then the distortion components are,
0,,???? xyyx yEIMyEIM ????
( a)
Then put (a) into the geometric
equation,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
v
y
v
x
u
xy
y
x
?
?
?
so,
0,,????????????? yuxvyEIMyvyEIMxu ?
( b)
Integrate the two
equation above,
)(2),( 221 xfyEIMvyfxyEIMu ????? ?( c)
and Is the arbitrary function。 put( c) into the third equation of( b)
1f 2f
18
得形变分量,
0,,???? xyyx yEIMyEIM ????
( a)
再将式( a)代入几何方程,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y
u
x
v
y
v
x
u
xy
y
x
?
?
?
得, 0,,?
?
??
?
???
?
??
?
?
y
u
x
vy
EI
M
y
vy
EI
M
x
u ?
前二式积分得,
)(2),( 221 xfyEIMvyfxyEIMu ????? ?
( b)
( c)
其中的 和 是任意函数。将式( c)代入( b)中的第三式 1f 2f
19
so,
xEIMdx xdfdy ydf ??? )()( 21
?? ????? xEIMdx xdfdy ydf )(,)( 21
After the integral,
0
2
201 2)(,)( vxxEI
Mxfuyyf ??????? ??
The arbitrary constants,,above must be obtained through
the restrict conditions
? 0u 0v
Put into the formula( c),then the
displacement components are,
?
?
?
??
?
?
?????
???
0
22
0
22
vxx
EI
M
y
EI
M
v
uyxy
EI
M
u
?
?
? ( d)
On the left of the equal mark is the function of,on the right of the equal is
the function of,So both sides should equal to a constant,and,yx w
20
得,
xEIMdx xdfdy ydf ??? )()( 21
等式左边只是 的函数,而等式右边只是 的函数。因此,
只可能两边都等于同一常数 。于是有,
y x
?
?? ????? xEIMdx xdfdy ydf )(,)( 21
积分以后得,
0
2
201 2)(,)( vxxEI
Mxfuyyf ??????? ??
代入式( c),得位移分量,
?
?
?
??
?
?
?????
???
0
22
0
22
vxx
EI
M
y
EI
M
v
uyxy
EI
M
u
?
?
?
其中的任意常数,, 须由约束条件求得。 ? 0u 0v
( d)
21
1.The Simply Supported Beam
In Fig3-3( a),the restrict
condition is,0)(,0)(,0)( 00000 ??? ?????? y lxyxyx vvu
2
2)(2,)2( yEI
Mxxl
EI
Mvylx
EI
Mu ??????
Put into ( d),then obtain the displacement of simply supported beam,
from( d) we have,
EI
Mlvu
2,0,0 00 ??? ?
The flexibility equation of the beam
axis is, xxl
EI
Mv
y )(2)( 0 ???
M M
o x
y
l
M M
o x
y
l
Fig.3-3
( a) ( b)
22
(一)简支梁
2
2)(2,)2( yEI
Mxxl
EI
Mvylx
EI
Mu ??????
如图 3-3( a),约束条件为,
0)(,0)(,0)(
00000
???
?????? y lxyxyx
vvu
由式( d)得出,
代入式( d),就得到简支梁的位移分量,
EI
Mlvu
2,0,0 00 ??? ?
梁轴的挠度方程,xxl
EI
Mv
y )(2)( 0 ???
M M
o x
y
l
M M
o x
y
l
图 3-3
( a) ( b)
23
2.Cantilever
In Fig3-3( b),the restrict
condition is,0)(,0)(,0)( 000 ????? ?????? y lxy lxy lx xvvu
from( d) we have,
EI
Ml
EI
Mlvu ???? ?,
2,0
2
00
Put into( d),then we get the displacement of cantilever,
22
2)(2,)( yEI
Mxl
EI
Mvyxl
EI
Mu ????????
The flexibility of beam axis is,
2
0 )(2)( xlEI
Mv
y ????
2,In the State of Two-dimensional Strain
Only need to instead and in distortion and displacement formula for the state
of two-dimensional
with and,
E
21 ??
E
?
?
?
?1
24
(二)悬臂梁
如图 3-3( b),约束条件为,0)(,0)(,0)(
000
?????
?
?
?
?
?
?
y
lx
y
lx
y
lx x
vvu
由式( d)得出,
EI
Ml
EI
Mlvu ???? ?,
2,0
2
00
代入式( d),得出悬臂梁的位移分量,
22
2)(2,)( yEI
Mxl
EI
Mvyxl
EI
Mu ????????
梁轴的挠度方程,
2
0 )(2)( xlEI
Mv
y ????
二、平面应变的情况
只要将平面应力情况下的形变公式和位移公式中的 换
为, 换为 即可。
E
21 ??
E ? ???1
25
§ 3-3 Bending of a Simply
Supported Beam by Uniform Load
There is a beam with rectangular section,the depth is,the length is,
with uniform load, ignore the physical force,it is kept balance by the sustain
force on both side,It’s shown In Fig3-4.Considering the unit width of the beam,
it can be suppose to be a two-dimensional stress problem 。
h l2
q
ql
ql
q
ql
l l
o x
y
2h
2h
Fig.3-4
With the half-converse method,Suppose is only the
function of, x?y
)( yfy ?? so,)(22 yfx ??? ?
,is arbitrary function,namely the undetermined function。 )(1 yf )(2 yf
Integrate,we have,
)()( 1 yfyxfx ?????
x ( a)
)()()(2 212 yfyxfyfx ????
Then we get,( b)
26
§ 3-3 简支梁受均布载荷
设有矩形截面的简支梁,深度为,长度为,受均布载
荷,体力不计,由两端的反力 维持平衡。如图 3-4所示。
取单位宽度的梁来考虑,可视为平面应力问题。
h l2
q ql
ql
q
ql
l l
o x
y
2h
2h
图 3-4
用半逆解法。假设 只是 的函数,x? y
)( yfy ??
则,
)(22 yfx ??? ?
)()( 1 yfyxfx ?????
对 积分,得,x
)()()(2 212 yfyxfyfx ????解之,得,
其中,,是任意函数,即待定函数。 )(1 yf )(2 yf
( a)
( b)
27
Now let’s check whether the stress function above meet the demand of
consistent equation,So derivate the fourth degree of, ?
Put the result above into the consistent equation,we have,
4
2
4
4
1
4
4
42
4
4
2
2
22
4
4
4
)()(
2
)(
,
)(
,0
dy
yfd
dy
yfd
x
dy
yfdx
y
dy
yfd
yxx
???
?
?
?
??
?
?
?
?
?
??
0)(2)()()(21 22424414244 ???? dy yfddy yfdxdy yfdxdy yfd
The consistent demand this second degree equation has numerous root( every
in the beam should meet that) so,the coefficient and the free item must equal to
0,so,
x
0
)(
2
)(
,0
)(
,0
)(
2
2
4
2
4
4
1
4
4
4
??
??
dy
yfd
dy
yfd
dy
yfd
dy
yfd
28
现在考察,上述应力函数是否满足相容方程。为此,对
求四阶导数,
?
将以上结果代入相容方程,得,
4
2
4
4
1
4
4
42
4
4
2
2
22
4
4
4
)()(
2
)(
,
)(
,0
dy
yfd
dy
yfd
x
dy
yfdx
y
dy
yfd
yxx
???
?
?
?
??
?
?
?
?
?
??
0)(2)()()(21 22424414244 ???? dy yfddy yfdxdy yfdxdy yfd
相容条件要求此二次方程有无数的根 (全梁内的 值都应该满
足它 ),所以,它的系数和自由项都必须等于零。即,
x
0
)(
2
)(
,0
)(
,0
)(
2
2
4
2
4
4
1
4
4
4
??
??
dy
yfd
dy
yfd
dy
yfd
dy
yfd
29
The two equation above demand that,
GyFyEyyfDCyByAyyf ??????? 23123 )(,)( ( c)
The third equation demand that,
23452 610)( KyHyyByAyf ?????
( d)
put( c) and( d) into( b),we have the stress function,
234523232
610)()(2 KyHyy
ByAGyFyEyxDCyByAyx ???????????? ( e)
The corresponding stress component is,
)23()23(
2622)26()26(
2
22
2
23
2
2
23
2
2
2
GFyEyCByAyx
yx
DCyByAy
x
KHyByAyFEyxBAy
x
y
xy
y
x
???????
??
?
??
????
?
?
?
????????
?
?
?
?
?
?
?
?
?
( f)
( g)
( h)
30
前面两个方程要求,
GyFyEyyfDCyByAyyf ??????? 23123 )(,)( ( c)
第三个方程要求,
23452 610)( KyHyyByAyf ????? ( d)
将式( c)和( d)代入式( b),得应力函数,
234523232
610)()(2 KyHyy
ByAGyFyEyxDCyByAyx ???????????? ( e)
相应的应力分量为,
)23()23(
2622)26()26(
2
22
2
23
2
2
23
2
2
2
GFyEyCByAyx
yx
DCyByAy
x
KHyByAyFEyxBAy
x
y
xy
y
x
???????
??
?
??
????
?
?
?
????????
?
?
?
?
?
?
?
?
?
( f)
( g)
( h)
31
These stress components meet the request of counter equation and consistent
equation,If we want all the stress boundary condition to meet the request,then
the constant,,must equal to a given value,only in this way the stress
components above will be correct answers,
A B K
There are 6 undetermined constant which can be work out with the stress boundary
condition in the equation above,
1.Considering the boundary condition of upward and downward
0)(,)(,0)(
222
???? ???? hyxyhyhyy q ???
?
?
?
?
??
?
?
?
????
????
??????
)23(
2622)26(
2
2
23
23
2
CByAyx
DCyByAy
KHyByAyBAy
x
xy
y
x
?
?
?
( i)
As the plane is the symmetrical plane of the beam and the load,so the
distribution of stress should be symmetrical to the plane,Then and should
be the even function of and should be the odd function of,So we can see
from (f) and (h) that,
yz
x? y?
x xy? x
0??? GFE
yz
Put the equation above into the expression of the stress components,the 3 stress
components are,
32
这些应力分量满足平衡微分方程和相容方程。如果要使全部应
力边界条件都满足,除非常数, … 等于特定值,这样以
上应力分量才是正确的解答。
A B K
因为 面是梁和荷载的对称面,所以应力分布应当对称于
yz 面。这样,和 应当是 的偶函数,而 应当是 的奇函
数。于是由式( f)和( h)可见,
yz
x? y? x xy? x
0??? GFE
(一)考察上下两边的边界条件
0)(,)(,0)(
222
???? ???? hyxyhyhyy q ???
将上式代入应力分量表达式,三个应力分量变为,
?
?
?
?
??
?
?
?
????
????
??????
)23(
2622)26(
2
2
23
23
2
CByAyx
DCyByAy
KHyByAyBAy
x
xy
y
x
?
?
?
上式中共有六个待定常数,利用应力边界条件求出。
( i)
33
So we have,
0
4
3
0
4
3
248
0
248
2
2
23
23
???
???
??????
????
ChBAh
ChBAh
qDC
h
B
h
A
h
DC
h
B
h
A
h
Because the 4 equations above is independent and compatible,there are only 4
undetermined value in them,so we can work them out,
2,2
3,0,2
3
qD
h
qCB
h
qA ??????
Put the constant we got above into the stress components expression( i),
we have,
?
?
?
?
?
?
?
?
?
??
????
?????
x
h
q
xy
h
q
q
y
h
q
y
h
q
KHyy
h
q
yx
h
q
xy
y
x
2
36
22
32
26
46
2
3
3
3
3
3
2
3
?
?
?
( k)
( L)
( j)
34
整理,得,
0
4
3
0
4
3
248
0
248
2
2
23
23
???
???
??????
????
ChBAh
ChBAh
qDC
h
B
h
A
h
DC
h
B
h
A
h
由于这四个方程是独立的,互不矛盾的,而且只包含四个未知
数,所以联立求解,得,
2,23,0,2 3 qDhqCBh qA ??????
将上面所得常数代入应力分量表达式( i),得,
?
?
?
?
?
?
?
?
?
??
????
?????
x
h
q
xy
h
q
q
y
h
q
y
h
q
KHyy
h
q
yx
h
q
xy
y
x
2
36
22
32
26
46
2
3
3
3
3
3
2
3
?
?
?
( k)
( L)
( j)
35
2.Considering the boundary condition of left and right
because it’s symmetrical,we only need to consider on side,here we choose
the right side,
?
?
?
?
?
?
?
?
2
2
2
2
0)(
0)(
h
h lxx
h
h lxx
y d y
dy
?
? ( m)
( n)
put( j) into( m),we get,
0)2646( 32
2
33
2 ??????
? dyKHyyh
qy
h
qlh
h
Integrate the expression above,we have,0?K
put( j) into( n),then,
0)646( 32
2
33
2 ?????
? y d yHyyh
qy
h
qlh
h
Integrate the expression above,we
have,
h
q
h
qlH
103
2 ??
36
(二)考察左右两边的边界条件
由于对称性,只需考虑其中的一边。考虑右边,
?
?
?
?
?
?
?
?
2
2
2
2
0)(
0)(
h
h lxx
h
h lxx
y d y
dy
?
? ( m)
( n)
将式( j)代入式( m),得,
0)2646( 32
2
33
2 ??????
? dyKHyyh
qy
h
qlh
h
积分,得,0?K
将式( j)代入式( n),得,
0)646( 32
2
33
2 ?????
? y d yHyyh
qy
h
qlh
h
积分,得,
h
q
h
qlH
103
2 ??
37
Put( l) into the expression above,
?? ???2
2
2
3 )2
36(h
h qldyh
qly
h
ql
On the other side,on the right of the beam,the shearing stress meet the
expression below,
?? ? ??2
2
)(
h
h lxxy qldy?
Put and into( j),we have,
yhqyhqlyh qyxh qX 53646 3 23323 ?????? ( p)
H K
Arrange the expression( p)、( k)、( l),we have the stress components,
?
?
?
?
?
?
?
?
?
???
????
????
)
4
(
6
)
2
1)(1(
2
)
5
3
4()(
6
2
2
3
2
2
2
22
3
y
h
x
h
q
h
y
h
yq
h
y
h
y
qyxl
h
q
xy
y
x
?
?
?
( q)
38
将式 ( l)代入,上式成为,
满足。 )236(2
2
2
3?? ???
h
h qldyh
qly
h
ql
另一方面,在梁的右边剪应力满足,
?? ? ??2
2
)(
h
h lxxy qldy?
将 和 代入式( j),得,
yhqyhqlyh qyxh qX 53646 3 23323 ?????? ( p)
H K
将式 ( p)、( k)、( L)整理,得应力分量,
?
?
?
?
?
?
?
?
?
???
????
????
)
4
(
6
)
2
1)(1(
2
)
5
3
4()(
6
2
2
3
2
2
2
22
3
y
h
x
h
q
h
y
h
yq
h
y
h
y
qyxl
h
q
xy
y
x
?
?
?
( q)
39
The expression( q) can be
written into,
?
?
?
?
?
?
?
?
?
?
????
???
bI
QS
h
y
h
yq
h
y
h
y
qy
I
M
xy
y
x
?
?
?
2
2
2
)
2
1)(1(
2
)
5
3
4(
In the expression of,the main item is the first item which is same with the
answer in material mechanics,the second item is the modify item which is
lodged in material mechanics, The modify item can be ignored the normal
shallow beam and is necessary to the deep beam,
x?
The change of stress components on the vertical direction is shown in Fig3-5
x? y? xy?
Fig.3-5
2h
2h
The biggest absolute value of is,which happens on the top of the beam,It
is ignored in material mechanics,is same with the counterpart in material
mechanics,
y? qxy
40
式( q)可以改写为,
?
?
?
?
?
?
?
?
?
?
????
???
bI
QS
h
y
h
yq
h
y
h
y
qy
I
M
xy
y
x
?
?
?
2
2
2
)
2
1)(1(
2
)
5
3
4(
各应力分量沿铅直方向的变化大致如图 3-5所示。
在 的表达式中,第一项是主要项,和材料力学中的解答
相同,第二项是弹性力学提出的修正项。对于通常的浅梁,修
正项很小,可以不计。对于较深的梁,则需注意修正项。
x?
y? 的最大绝对值是,发生在梁顶。在材料力学中,一
般不考虑这个应力分量。 和材料力学里完全一样。
q
xy?
x? y? xy?
图 3-5
2h
2h
41
§ 3-4 Loading of a Wedge by
Gravity and Hydraulic Pressure
Question,
If there is a wedge which is shown in Fig3-6a,the left plane is vertical and there is
the angle between the right plane and the vertical angle,Both plane which is
boundless in the downside bearing gravity and hydraulic pressure,the density of
the wedge is and the density of the liquid is,Try to work out the stress
components,
?
??
Fig.3-6
?
g?
x
y
?
?? ?2
N
g?
o
x?
y?
yx?
?
?
?



( a) ( b)
42
§ 3-4 楔形体受重力和液体压力
设有楔形体,如图 3-6a所示,左面铅直,右面与铅直面成角,
下端无限长,承受重力及液体压力,楔形体的密度为,液体的
密度为,试求应力分量。
问题,
?
?
?
?
g?
x
y
?
?? ?2
N
g?
o
x?
y?
yx?
?
?
?



图 3-6
( a) ( b)
43
The stress boundary condition of the left side( ),
2.The boundary condition
0?x
0)(,)( 00 ??? ?? xxyxx gy ???
These stress components meet the request of balance differential
equation and consistent equation
Taking the coordinate is shown in the fig,Suppose the stress
function is,
3223 eycxyybxax ?????1.Stress components
In this problem,the body force components are,so the
expression of the stress components is gYX ???,0
?
?
?
?
?
??
?
?
?
?
???
??
?
??
????
?
?
?
???
?
?
?
cybx
yx
gybyaxYy
x
eycxXx
y
xy
y
x
22
26
62
2
2
2
2
2
?
?
?
?
?
?
?
( a)
44
取坐标轴如图所示。假设应力函数为,
3223 eycxyybxax ?????
(二)边界条件
左面( )应力边界条件,0?x
0)(,)( 00 ??? ?? xxyxx gy ???
这些应力分量满足平衡微分方程和相容方程。
(一)应力分量
在该问题中,体力分量,所以应力分量的表达
式为,
gYX ???,0
?
?
?
?
?
??
?
?
?
?
???
??
?
??
????
?
?
?
???
?
?
?
cybx
yx
gybyaxYy
x
eycxXx
y
xy
y
x
22
26
62
2
2
2
2
2
?
?
?
?
?
?
?
( a)
45
?ytgx ?The stress boundary condition of the right side( ),,0?? YX
0)()(
0)()(
??
??
??
??
??
??
??
??
y t gxxyy t gxy
y t gxxyy t gxx
lm
ml
Put (a) into the expression above,we have,
02,6 ???? cygyey ?
0,6/ ???? cge ?
Put into (a) we have,
?
?
?
?
?
???
???
??
bx
gybyax
gy
yxxy
y
x
2
26
??
??
??
( b)
( c) Put into (a) we have,
0)(26
02
????
??
gml tgmba m tg
glb m tg
???
??
and,
??
?
s i n)90c o s (),c o s (
,c o s),c o s (
0 ?????
??
yNm
xNl
46
右面( ),,应力边界条件,?ytgx ? 0??YX
0)()(
0)()(
??
??
??
??
??
??
??
??
y t gxxyy t gxy
y t gxxyy t gxx
lm
ml
将式( a)代入,得,02,6 ???? cygyey ?
0,6/ ???? cge ?
代入式( a),得,
?
?
?
?
?
???
???
??
bx
gybyax
gy
yxxy
y
x
2
26
??
??
??
( b)
将式( b)代入,得,
0)(26
02
????
??
gml tgmba m tg
glb m tg
???
??
( c)
又,
??
?
s i n)90c o s (),c o s (
,c o s),c o s (
0 ?????
??
yNm
xNl
47
Put into( c),we have,
?????? 32 36,2 c t ggc t ggac t ggb ???
Put these coefficient into( b),we get,
?
?
?
??
?
?
???
????
??
????
????????
??
2
23 )()2(
g x c t g
ygg c t gxg c t gg c t g
gy
yxxy
y
x
The change of stress components along horizontal direction is shown in Fig3-6b,
Note,
1.Along the dam-axis,the dam-body often has different cross section and the length
of dam-body is unlimited,So,to be serious,here is not a two-dimensional problem,
2.To the bottom of the dam-body,the answer above is not accurate enough,
3.The answer above is not applicable to the place near the dam-top。
48
代入式( c),得,
?????? 32 36,2 c t ggc t ggac t ggb ???
将这些系数代入式( b),得,
?
?
?
??
?
?
???
????
??
????
????????
??
2
23 )()2(
g x c t g
ygg c t gxg c t gg c t g
gy
yxxy
y
x
各应力分量沿水平方向的变化大致如图 3-6b所示。
注意,
1.沿着坝轴,坝身往往具有不同的截面,而且坝身也不是无限
长的。因此,严格说来,这里不是一个平面问题。
2.对于坝身底部来说,上面的解答是不精确的。
3.在靠近坝顶处,以上解答也不适用。
49
§ 3-5 Solution by Series
yDy c hyC y s hyB c hyA s hyf ???? ????)(
Resolute it,then we have,
Suppose the stress function is, )(c o s
1 yfx ??? ??In the same way,we can get another resolution of the stress function,
In the expression above,,,is arbitrary constant,So we get a
resolution of the stress function,A B C D
)(s i n yDy c hyC y s hyB c hyA s hx ?????? ???? ( c)
0)]()(2)([s i n 42
2
2
4
4
??? yfdy yfddy yfdx ???
( b)
With anti-resolute method,suppose the stress
function is, )(s i n yfx ?? ?? ( a)
is an arbitrary constant,the order of is [length]-1,and is the arbitrary
function of, Put (a) into the consistent equation,we have,)(yfy?
50
§ 3-5 级数式解答
用逆解法。假设应力函数为,)(s i n yfx ?? ?? ( a)
其中 是任意常数,它的因次是 [长度 ]-1,而 是 的任意函
数。
? )(yf y
将式( a)代入相容方程,得,
0)]()(2)([s i n 42
2
2
4
4
??? yfdy yfddy yfdx ???
( b)
yDy c hyC y s hyB c hyA s hyf ???? ????)(解之,得,
其中,,, 都是任意常数。得到应力函数的一个解答,A B C D
)(s i n yDy c hyC y s hyB c hyA s hx ?????? ????
假设应力函数为,)(c o s 1 yfx ??? ??
同样可以得出应力函数的另一个解答,
( c)
51
It is still the answer to this differential equation,So we can get the triangular series
style stress function,
)(c o s
)(s in
1
1
yy c hDyy s hCychByshAx
yy c hDyy s hCychByshAx
mm
m
mmmmmmm
m
mmmmmmmmm
?????
??????
????????????
?????
?
?
?
?
?
?
The corresponding stress components,
Add (c) and (d) together,we have,
)(c o s
)(s i n
yychDyy s hCychByshAx
yD y c hyC y s hyB c hyA s hx
?????
??????
????????????
?????
In (d),,,,are also all arbitrary constant,A? B? C? D?
)(c o s yychDyy s hCychByshAx ?????? ?????????????
( d)
52
仍然是该微分方程的解答。所以可以得到三角级数式的应力
函数,
)(c o s
)(s in
1
1
yy c hDyy s hCychByshAx
yy c hDyy s hCychByshAx
mm
m
mmmmmmm
m
mmmmmmmmm
?????
??????
????????????
?????
?
?
?
?
?
?
相应的应力分量,
将式( c)与( d)叠加,得,
)(c o s
)(s i n
yychDyy s hCychByshAx
yD y c hyC y s hyB c hyA s hx
?????
??????
????????????
?????
其中,,, 也都是任意常数。 A? B? C? D?
)(c o s yychDyy s hCychByshAx ?????? ????????????? ( d)
53
]
)
2
()
2
[(c o s
)]
)
2
()
2
[(s i n
1
2
1
2
2
2
yychDyy s hC
ych
C
Bysh
D
Ax
yychDyy s hC
ych
C
Bysh
D
Ax
y
mmmm
m
m
m
m
mm
m
m
mmm
mmmm
m
m
m
m
mm
m
m
mmmx
??
?
?
?
?
??
??
?
?
?
?
??
?
?
?????
??
?
?
????
?
?
????
??
?????
?
?
?
?
?
?
?
?
?
]
[c o s
)]
[s i n
1
2
1
2
2
2
yy c hDyy s hC
ychByshAx
yy c hDyy s hC
ychByshAx
x
mmmm
m
mmmmmm
mmmm
m
mmmmmmy
??
????
??
????
?
?
?????
????????
??
????
?
?
?
?
?
?
?
?
?
54
]
)
2
()
2
[(c o s
)]
)
2
()
2
[(s i n
1
2
1
2
2
2
yychDyy s hC
ych
C
Bysh
D
Ax
yychDyy s hC
ych
C
Bysh
D
Ax
y
mmmm
m
m
m
m
mm
m
m
mmm
mmmm
m
m
m
m
mm
m
m
mmmx
??
?
?
?
?
??
??
?
?
?
?
??
?
?
?????
??
?
?
????
?
?
????
??
?????
?
?
?
?
?
?
?
?
?
]
[c o s
)]
[s i n
1
2
1
2
2
2
yy c hDyy s hC
ychByshAx
yy c hDyy s hC
ychByshAx
x
mmmm
m
mmmmmm
mmmm
m
mmmmmmy
??
????
??
????
?
?
?????
????????
??
????
?
?
?
?
?
?
?
?
?
55
]
)()[(s i n
)]
)()[(c o s
1
2
1
2
2
yychCyy s hD
ych
D
Aysh
C
Bx
yychCyy s hD
ych
D
Aysh
C
Bx
yx
mmmm
m
m
m
m
mm
m
m
mmm
mmmm
m
m
m
m
mm
m
m
mmmxy
??
?
?
?
?
??
??
?
?
?
?
??
?
?
?????
??
?
?
????
?
?
????
??
??????
??
?
??
?
?
?
?
?
?
These stress components should meet the request of the balance differential equation
and the consistent equation,If we can choose the undetermined
constant,,,,,,,,,in them or add some other stress
components which can meet the request of the equation to meet the boundary
condition of some problem,then we can get the resolution to this problem,
m? mA
mB mC m?? mA? mB? mC? mD?mD
56
]
)()[(s i n
)]
)()[(c o s
1
2
1
2
2
yychCyy s hD
ych
D
Aysh
C
Bx
yychCyy s hD
ych
D
Aysh
C
Bx
yx
mmmm
m
m
m
m
mm
m
m
mmm
mmmm
m
m
m
m
mm
m
m
mmmxy
??
?
?
?
?
??
??
?
?
?
?
??
?
?
?????
??
?
?
????
?
?
????
??
??????
??
?
??
?
?
?
?
?
?
这些应力分量满足平衡微分方程和相容方程。如果能够选择其
中的待定常数,,,,,,,,, 或再叠加以满足
平衡微分方程和相容方程的其它应力分量表达式,使其满足某
个问题的边界条件,就得出该问题的解答。
m? mA mB mC m?? mA? mB? mC? mD?mD
57
§ 3-6 Bending of a Simply Supported
Beam by Arbitrary Lateral Load
R
Question,
If the span of a simply supported beam is,the height is,the coordinate is
shown in Fig3-7,the transverse load of up and down side is and,the support
force of left and right side is and,
l H
)(xq )(1 xq
1R
R
1R
)(xq
)(1 xq
l
H
x
y
o
Fig.3-7
58
§ 3-6 简支梁受任意横向载荷
问题,
设简支梁的跨度为,高度为,坐标轴如图 3-7所示,上
下两边的横向载荷分别为 及,左右两端的反力分别为
及 。
l H
)(xq )(1 xq R
1R
R
1R
)(xq
)(1 xq
l
H
x
y
o
图 3-7
59
In order to meet the request of boundary condition ( c),let,
0???????? mmmm DCBA
),… 3,2,1 ( = = m l m m p a
The boundary condition of the direct stress on up and down side,
)()(),()( 10 xqxq Hyyyy ???? ?? ?? ( a)
The boundary condition of the shearing stress on up and down side,
0)(,0)( 0 ?? ?? Hyxyyxy ?? ( b)
The boundary condition of the direct stress on left and right side,
0)(,0)( 0 ?? ?? lxxxx ?? ( c)
The boundary condition of the shearing stress on left and right side,
100 0 )(,)( RdyRdy
H
lxxy
H
xxy ??? ?? ?? ??
( d)
60
为了满足边界条件( c),取,
0???????? mmmm DCBA
),… 3,2,1 ( ? ? m l m m ? ?
上下两边正应力的边界条件,
)()(),()( 10 xqxq Hyyyy ???? ?? ?? ( a)
上下两边剪应力的边界条件,
0)(,0)( 0 ?? ?? Hyxyyxy ?? ( b)
左右两端正应力的边界条件,
0)(,0)( 0 ?? ?? lxxxx ?? ( c)
左右两端剪应力的边界条件,
100 0 )(,)( RdyRdy
H
lxxy
H
xxy ??? ?? ?? ??
( d)
61
The stress components can be simplified as,
l
ym
y c hC
l
ym
y s hD
l
ym
chD
m
l
A
l
ym
shC
m
l
B
l
xm
l
m
l
ym
y c hD
l
ym
y s hC
l
ym
chB
l
ym
shA
l
xm
l
m
l
ym
y c hD
l
ym
y s hC
l
ym
chC
m
l
B
l
ym
shD
m
l
A
l
xm
l
m
mmmm
mm
m
xy
mm
mm
m
y
mmmm
mm
m
x
???
?
?
?
??
?
??
????
?
???
?
?
?
??
?
????
???
??
???
????
??
?
?
?
?
?
?
?
?
?
)(
)[(c o s
]
[s i n
])
2
(
)
2
[(s i n
1
2
22
1
2
22
1
2
22
( 1)
62
应力分量简化为,
l
ym
y c hC
l
ym
y s hD
l
ym
chD
m
l
A
l
ym
shC
m
l
B
l
xm
l
m
l
ym
y c hD
l
ym
y s hC
l
ym
chB
l
ym
shA
l
xm
l
m
l
ym
y c hD
l
ym
y s hC
l
ym
chC
m
l
B
l
ym
shD
m
l
A
l
xm
l
m
mmmm
mm
m
xy
mm
mm
m
y
mmmm
mm
m
x
???
?
?
?
??
?
??
????
?
???
?
?
?
??
?
????
???
??
???
????
??
?
?
?
?
?
?
?
?
?
)(
)[(c o s
]
[s i n
])
2
(
)
2
[(s i n
1
2
22
1
2
22
1
2
22
( 1)
63
Put into the boundary condition( b) and( a),we have,
0]
)()[(c o s
0][c o s
1
2
1
2
???
???
??
?
?
?
?
?
?
l
Hm
H c hC
l
Hm
H s hD
l
Hm
chD
m
l
A
l
Hm
shC
m
l
B
l
xm
m
D
m
l
A
l
xm
m
mm
mmmm
m
m
m
m
??
?
?
?
?
?
?
?
)(]
[s in
1
1
2
2
2
xq
l
Hm
H c hD
l
Hm
H s hC
l
Hm
chB
l
Hm
shA
l
xm
m
l
mm
mm
m
???
??
?
?
??
????
)(][s i n
1
2
2
2
xqBl xmml m
m
??
?
?
??
( e)
( f)
( g)
( h)
So we get the equation to work out the coefficient,,
mA mB mC mD,,
64
代入边界条件( b)和( a),得,
由此可以得出求解系数,,, 的方程。 mA mB mC mD
0]
)()[(c o s
0][c o s
1
2
1
2
???
???
??
?
?
?
?
?
?
l
Hm
H c hC
l
Hm
H s hD
l
Hm
chD
m
l
A
l
Hm
shC
m
l
B
l
xm
m
D
m
l
A
l
xm
m
mm
mmmm
m
m
m
m
??
?
?
?
?
?
?
?
)(]
[s in
1
1
2
2
2
xq
l
Hm
H c hD
l
Hm
H s hC
l
Hm
chB
l
Hm
shA
l
xm
m
l
mm
mm
m
???
??
?
?
??
????
)(][s i n
1
2
2
2
xqBl xmml m
m
??
?
?
??
( e)
( f)
( g)
( h)
65
From (e) and (f) we have,
0)(
)(
0
???
???
??
l
Hm
H s h
l
Hm
ch
m
l
D
l
Hm
H c h
l
Hm
sh
m
l
C
l
Hm
shB
l
Hm
chA
D
m
l
A
m
mmm
mm
??
?
??
?
??
?
( i)
( j)
According to the Fourier series spread law,we have,
????? lm l xmdxl xmxqlxq 01 s i n]s i n)(2[)( ??
Contrast with (g),we have,
?? lm dxl xmxqlBml 022 2 s in)(2 ??
So we get,
?? lm dxl xmxqm lB 022 s i n)(2 ??
( k)
66
由式( e)、( f),得,
0)(
)(
0
???
???
??
l
Hm
H s h
l
Hm
ch
m
l
D
l
Hm
H c h
l
Hm
sh
m
l
C
l
Hm
shB
l
Hm
chA
D
m
l
A
m
mmm
mm
??
?
??
?
??
?
( i)
( j)
按照傅立叶级数展开法则,有,
????? lm l xmdxl xmxqlxq 01 s i n]s i n)(2[)( ??
与式( g)对比,得,
?? lm dxl xmxqlBml 022 2 s in)(2 ??
从而,得,
?? lm dxl xmxqm lB 022 s i n)(2 ?? ( k)
67
The same,
?
????
l
mmmm
dx
l
xmxq
m
l
l
HmH c hD
l
HmH s hC
l
HmchB
l
HmshA
0 122
s i n)(2 ?
?
???? ( )
L
After work out the integral of (k) and ( ),we can work out the
coefficient,,,from (i),(j),(k),( ),and then work out the
stress components from the formula (l),
L
L
mA mB mC mD
After work out the stress components,we can get the support force and
from (d),and make the balance of the two support force and the load for the use
of verifying,
R 1R
Conclusion,
1.The calculate workload is very large when use the series to solute the two-
dimensional problem,
2.As we can’t meet the request of stress boundary condition on both side of the
beam,so the solution to the stress is only applicable to the place far from the
both ends; this is useless to the beam which the span is equal to the height,
68
同样由式( h),得,
?
????
l
mmmm
dx
l
xm
xq
m
l
l
Hm
H c hD
l
Hm
H s hC
l
Hm
chB
l
Hm
shA
0 122
s i n)(
2 ?
?
???? ( )
L
求出式( k)及式( )右边的积分以后,可由( i)、( j)、
( k)、( )四式求得系数,,,,从而由公式( 1)求
得应力分量。
L
L mA mB mC mD
求出应力分量后,可由式( d)求得反力 及,并利用
两个反力与荷载的平衡作为校核之用。
R 1R
结论,
1.用级数求解平面问题时,计算工作量很大。
2.由于梁的两端的应力边界条件不能精确满足,因而应力的解
答只适用于距两端较远之处;对于跨度与高度同等大小的梁,
这种解答是没有用处的。
69
§ 3-7 The Exercises to,Two-dimensional
Problems in Rectangular Coordinates”
[Exercise 1] If there is an upright column with rectangular cross-section,the density
is,there is an uniformly distributed shearing force on the profile which is shown
in Fig.1,try to work out the stress components,
? q
Resolution,
1,With anti-resolute method,if then we make to meet the request
of double-consistent equation,0?x?
?
0
)()(
,0
0,0
)()(
)()(
)(,0
4
1
4
4
4
4
22
4
4
4
4
1
4
4
4
4
4
1
2
2
????
?
??
?
?
?
?
??
?
?
??
?
?
?
??
?
?
?
dx
xfd
dx
xfd
y
yxy
dx
xfd
dx
xfd
y
x
xfxyf
xf
y
Xx
y
x
?
??
?
?
??
?
x
y
q
h
g?
Fig.1
o
70
§ 3-7, 平面问题的直角坐标解答, 习题课
[练习 1]设有矩形截面的竖柱,其密度为,在一边侧面上受
均布剪力,如图 1,试求应力分量。
?
q
解, 1.采用半逆解法,设 。导出
使其满足双调和方程,
0?x? ?
0
)()(
,0
0,0
)()(
)()(
)(,0
4
1
4
4
4
4
22
4
4
4
4
1
4
4
4
4
4
1
2
2
????
?
??
?
?
?
?
??
?
?
??
?
?
?
??
?
?
?
dx
xfd
dx
xfd
y
yxy
dx
xfd
dx
xfd
y
x
xfxyf
xf
y
Xx
y
x
?
??
?
?
??
?
x
y
q
h
g?
图 1
O
71
As arbitrary value of is applicable to the expression above,so we have,y
2323
23
1
23
4
1
4
4
4
)(
)(,)(
0
)(
,0
)(
FxExCxBxAxy
FxExxfCxBxAxxf
dx
xfd
dx
xfd
?????
?????
??
? ( 1)
The expression above ignore the constant in and the first degree item and
constant of in,because they have no influence to the stress,)(xf)(1 xfx
2.The stress components with undetermined coefficient,
?
?
?
?
?
??
?
?
?
?
????
??
?
??
??????
?
?
?
??
?
?
?
)23(
26)26(
0
2
2
2
2
2
2
CBxAx
yx
PyFExBAxyYy
x
Xx
y
xy
y
x
?
?
?
?
?
?
( 2)
72
取任意值时,上式都应成立,因而有,y
2323
23
1
23
4
1
4
4
4
)(
)(,)(
0
)(
,0
)(
FxExCxBxAxy
FxExxfCxBxAxxf
dx
xfd
dx
xfd
?????
?????
??
?
式中,中略去了常数项,中略去了 的一次项及常数项,
因为它们对应力无影响。
)(xf )(1 xf x
( 1)
2.含待定常数的应力分量为,
?
?
?
?
?
??
?
?
?
?
????
??
?
??
??????
?
?
?
??
?
?
?
)23(
26)26(
0
2
2
2
2
2
2
CBxAx
yx
gyFExBAxyYy
x
Xx
y
xy
y
x
?
?
?
?
?
?
?
( 2)
73
3.To determine the constant with boundary condition and work out the stress,
,0)( 0 ??xx?
can meet the request of,
0,0)( 0 ??? Cxxy?
0,026,0)(
23,)(
0
2
?????
????
?
?
FEFEx
qBhAhq
yy
hxxy
?
?
( 3)
From the (3),(4) and the constant,,then we can work out the stress
components,
A B
h
qB
h
qA ???,
2
0)( 0 ??yyx? only can approximately meet the request of,
? ? ???? ??h h yyyx dxBxAxdx0 0 020 0)23(,0)(?
023 ??? BhAh
( 4)
0)( ??hxx?
So can meet the request of,
74
3.利用边界条件确定常数,并求出应力解答,
,0)( 0 ??xx? 能自然满足,
0,0)( 0 ??? Cxxy?
,0)( ?? hxx? 能自然满足,
0,026,0)(
23,)(
0
2
?????
????
?
?
FEFEx
qBhAhq
yy
hxxy
?
?
( 3)
,0)( 0 ??yyx? 不能精确满足,只能近似满足,
? ? ???? ??h h yyyx dxBxAxdy0 0 020 0)23(,0)(?
023 ??? BhAh
由式( 3)、( 4)解出常数 和,进而可求得应力分量,A B
h
qB
h
qA ???,
2
( 4)
75
( 1) As in i s effectible to the shearing stress,so it can’t be ignored,
( 2) On the top-end,first we should make the stress components exactly meet
the request of boundary condition,if not,then we can use the Saint-Venant
principle to loose the request,As can exactly meet the request,so is
the precise result,and on the top-end is an approximate result,
( 3) If,then we get the stress function and the stress components
are,
4.Analysis,
)(xfCx
0)( 0 ??yy? y?
xy?
)(xfxy ?? ?
)32(,)31(2,0 h xhqxgyh xhqy xyyx ??????? ???? ( 5)
?
?
?
?
?
???
????????
?????
???? ? ?
DCxx
B
gyFExCBxyyf
x
F
x
E
xfDCxx
B
xf
xfdyyfdxxfy
xy
yx
2
23
1
2
1
2
)(),(
26
)(,
2
)(
)()()(
?
???
?
( 6)
( 7)
76
4.分析,
( 1) 中的 不能略去,因为 对剪应力有影响。
( 2)在上端部,首先应使应力分量精确满足边界条件,如不
能,则可运用圣维南原理放松满足。本题 能精确满
足,因此,在此处是精确解,而 在上端部是近似解。
( 3)若设,则导出的应力函数 和应力分量为,
)(xf Cx Cx
0)( 0 ??yy?
y? xy?
)(xfxy ?? ?
)32(,)31(2,0 h xhqxPyh xhqy xyyx ??????? ??? ( 5)
?
?
?
?
?
???
????????
?????
???? ? ?
DCxx
B
PyFExCBxyyf
x
F
x
E
xfDCxx
B
xf
xfdyyfdxxfy
xy
yx
2
23
1
2
1
2
)(),(
26
)(,
2
)(
)()()(
?
??
?
( 6)
( 7)
77
Put the determined constant into (7),then we get a result
which is same with (5),
[Exercise 2] In Fig.2( a),the triangular cantilever is only effected
by gravity, the density of the cantilever is, try to work out the
stress components of the cantilever with pure the third degree stress
function,
?
l
x
y
g??
o
l
x
y
g??
o
0q
0ql
x
Fig.2
( a) ( b)
Resolution,
1.Suppose the stress function is,3223 DyC x yyBxAx ?????
It’s not hard to identify it meet the request of,so the stress
components are,
04 ???
78
常数确定后代入式( 7),所得结果与式( 5)相同。
[练习 2] 如图 2( a),三角形悬臂梁只受重力作用,梁的密度
为,试用纯三次式应力函数求解该梁的应力分量。 ?
l
x
y
g??
o
l
x
y
g??
o
0q
0ql
x
图 2
( a) ( b)
解,1.设应力函数为,3223 DyC x yyBxAx ?????
不难验证其满足 。所以应力分量为,04 ???
79
CyBx
yx
gyByAxYy
x
DyCxXx
y
xy
y
x
22
26
62
2
2
2
2
2
???
??
?
??
????
?
?
?
???
?
?
?
?
?
?
?
?
?
?
2.To determine the constant with boundary condition and work out the
stress,
The up-boundary,0)(,0)(
00 ?? ?? yyxyy ??
The bevel,
0c o ss i n
0c o ss i n
c o s,s i n)90c o s ( 0
???
???
?????
yxy
xyx
ml
????
????
???
So we have,
?????
?????
?
?
?
?
c o t,
c o t2c o t
c o t
3
,c o t
2
,0
2
2
gygy
gygx
g
D
g
CBA
xyy
x
????
??
?????
80
CyBx
yx
gyByAxYy
x
DyCxXx
y
xy
y
x
22
26
62
2
2
2
2
2
???
??
?
??
????
?
?
?
???
?
?
?
?
?
?
?
?
?
?
2.用边界条件确定常数,进而求出应力解答,
上边界,0)(,0)(
00 ?? ?? yyxyy ??
斜面,
0c o ss i n
0c o ss i n
c o s,s i n)90c o s ( 0
???
???
?????
yxy
xyx
ml
????
????
???
解得,
?????
?????
?
?
?
?
c o t,
c o t2c o t
c o t
3
,c o t
2
,0
2
2
gygy
gygx
g
D
g
CBA
xyy
x
????
??
?????
81
3,Analysis,the stress function in this problem can be
obtained by the method of dimension analysis,this function also can
be used to resolute the problem that the up-boundary is effect by the
linear load,it is shown in Fig.2(b),
0ql
xq ?
?[Exercise 3] if is a two-dimensional consistent function which
meet the request of, then whether
could be the stress function? 0
2 ?? ? ??? )(,,22 yxyx ?
Resolution,put into the consistent condition,then we have,?? x?1
0)(2)2(
2)(2))((
22
1
22
2
2
2
2
2
2
2
2
1
2
??
?
?
?
?
?
????
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
????
??
xx
xyx
x
x
x
yx
1?
As meet the request of double consistent equation,so it can be
the stress function,Put into the consistent condition,then
we have
?? y?2
82
3.分析:本题的应力函数可用量纲分析方法得到,此函数亦可
用来求解上边界受线形载荷 作用的问题,见图 2( b)。
0ql
xq ?
[练习 3] 如果 为平面调和函数,它满足,问
? 02 ?? ?
??? )(,,22 yxyx ? 是否可作为应力函数。
解,将 代入相容条件,得,
?? x?1
0)(2)2(
2)(2))((
22
1
22
2
2
2
2
2
2
2
2
1
2
??
?
?
?
?
?
????
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
????
??
xx
xyx
x
x
x
yx
1?
满足双调和方程,因此,可作为应力函数。将
代入相容条件得
?? y?2
83
also can be the consistent stress function,
Put into the consistent condition,we have,
2?
?? )( 223 yx ??
0)444(
444
)()()(
2
3
22
2222222
3
2
?
?
?
?
?
?
?????
?
?
?
?
?
??
????????
y
y
x
x
y
y
x
x
yxyx
??
??
??
?
?????
So also can be the stress function,
3?
[Exercise 4] there is a bending of simply supported beam with rectangular cross
section by the triangular distributed load,If the stress function
is,try to work out the stress
components of the beam (ignore the body-force),
F x yExD x yyCxB x yyAx ?????? 333533?
0)2(,2 222222 ??????????? yy ????
84
也能作为应力函数。把 代入相容条件,得,2? ?? )( 223 yx ??
0)444(
444
)()()(
2
3
22
2222222
3
2
?
?
?
?
?
?
?????
?
?
?
?
?
??
????????
y
y
x
x
y
y
x
x
yxyx
??
??
??
?
?????
所以,也可作为应力函数。 3?
[练习 4] 图所示矩形截面简支梁受三角形分布荷载作用,试取
应力函数为:,求简
支梁的应力分量(体力不计)。
F x yExD x yyCxB x yyAx ?????? 333533?
0)2(,2 222222 ??????????? yy ????
85
Resolution,1.as it can meet the request of consistent equation,so we
can determine the relation between A and B,
BA
B x yA x y
A x y
yx
B x y
yx
3
5
01 2 072
36,1 2 0,0
22
4
4
4
4
4
??
??
?
??
?
?
?
?
?
?
? ???
( 1)
l
xq0
0q
O
60
lq
y
l
30
lq
x
l
h
Fig.3
86
l
xq0
0q
O
60
lq
y
l
30
lq
x
l
h
解,1、由满足相容方程确定系数 A与 B的关系,
BA
B x yA x y
A x y
yx
B x y
yx
3
5
01 2 072
36,1 2 0,0
22
4
4
4
4
4
??
??
?
??
?
?
?
?
?
?
? ???
( 1)
图 3
87
2.The stress components which contain undetermined coefficient are,
)2(
)3359(
666
6206
22422
3
33
?
?
?
??
?
?
??????
???
???
FDyCxByyAx
ExC x yA x y
D x yB x yyAx
xy
y
x
?
?
?
3.We can determine the coefficient by the boundary condition,
)4(0)2(33)2(5)2(9 22422 ???????? FhDCxhBhAx
) 3 ( 0 ) (
6 ) 2 ( 6 ) 2 ( 6,) (
2
0 3 0
2
?
? ? ? ? ? ? ? ?
? ?
? ?
h y xy
h y y l
x q Ex h Cx h Ax
l
x q
?
?
88
2、含待定系数的应力分量为
)2(
)3359(
666
6206
22422
3
33
?
?
?
??
?
?
??????
???
???
FDyCxByyAx
ExC x yA x y
D x yB x yyAx
xy
y
x
?
?
?
3、由边界条件确定待定系数,
)3(0)(
6)
2
(6)
2
(6,)(
2
030
2
?
????????
??
??
h
y
xy
h
y
y
l
xq
Ex
h
Cx
h
Ax
l
xq
?
?
)4(0)2(33)2(5)2(9 22422 ???????? FhDCxhBhAx
89
)6(0)
2
(33)
2
(5)
2
(9,0)(
)5(06)
2
(6)
2
(6,0)(
22422
2
3
2
??????
????
?
?
F
h
DCx
h
B
h
Ax
Ex
h
Cx
h
Ax
h
y
xy
h
y
y
?
?
From the expression above we have,
)8(0,0)(
)7(
6804
,
6
)(
4
,
5
,
3
,
12
222
2
0
2
0
3
0
0
2
2
0
3
0
3
00
????
?????
??????
?
?
?
?
?
?
DBhAly d y
lq
l
hq
Fh
Dhlq
dy
lh
q
C
lh
q
B
lh
q
A
l
q
E
h
h lxx
x
h
h xy
?
?
90
)6(0)
2
(33)
2
(5)
2
(9,0)(
)5(06)
2
(6)
2
(6,0)(
22422
2
3
2
??????
????
?
?
F
h
DCx
h
B
h
Ax
Ex
h
Cx
h
Ax
h
y
xy
h
y
y
?
?
由以上式子可求得,
)8(0,0)(
)7(
6804
,
6
)(
4
,
5
,
3
,
12
222
2
0
2
0
3
0
0
2
2
0
3
0
3
00
????
?????
??????
?
?
?
?
?
?
DBhAly d y
lq
l
hq
Fh
Dhlq
dy
lh
q
C
lh
q
B
lh
q
A
l
q
E
h
h lxx
x
h
h xy
?
?
91
So we can have,
l
hq
h
lqF
h
lq
lh
qD
804,310
00
3
00 ??????
4.The stress components are,
)9(
20
3)(4(
4
)43(
2
)
10
3
2(
2
2
22222
3
0
332
3
0
3222
3
0
?
?
?
?
?
?
?
?
?
?????
???
????
h
lyxhy
lh
q
hyyhx
lh
q
hlxyxy
lh
q
xy
y
x
?
?
?
[Exercise 5] There is a right-fixed cantilever in Fig.4,the length is l,height is h,
there’s a distributed load on the left profile( the resultant force is P),Ignore the body-
force,try to work out the stress components of the cantilever,
34xyd
1.We can use the half-converse method which combines the double-consistent
polynomial function with different degrees to work out this problem,Obviously,
the plane-force which the stress function correspond with,is identical to
this problem at both ends of the cantilever,
Resolution,
92
由此可解得,
l
hq
h
lqF
h
lq
lh
qD
804,310
00
3
00 ??????
4、应力分量为
)9(
20
3)(4(
4
)43(
2
)
10
3
2(
2
2
22222
3
0
332
3
0
3222
3
0
?
?
?
?
?
?
?
?
?
?????
???
????
h
lyxhy
lh
q
hyyhx
lh
q
hlxyxy
lh
q
xy
y
x
?
?
?
[练习 5] 如图所示,右端固定悬臂梁,长为 l,高为 h,在左端面
上受分布力作用(其合力为 P)。不计体力,试求梁的应力分量。
34xyd
1、用凑和幂次不同的双调和多项式函数的半逆解法来求。
显然,应力函数 所对应的面力,在梁两端与本题相一致,
解,
93
Only there’s one more shearing stress equal to on the
up and down boundary profile of this function,To counteract it,
add the stress function which correspond with pure
shearing stress to the stress function,
2443 hd?
34 xyd??
xyb2
xybxyd 234 ???
2.We can get the stress expression which contain the undetermined
coefficient from the balance condition,
2
42
2
2
2
42
2
3
0,6
ydb
yx
x
xyd
y
xy
yx
???
??
?
??
?
?
?
??
?
?
?
?
?
?
?
?
?
3.Use the boundary to determine,and to work out the stress components,
24,bd
P
y
O h
l
x
Fig.4
0)(,0)(
22
?? ???? hyxyhyy ??
The up and down boundary,
94
只是该函数在上、下边界面上多出了一个大小
为 的剪应力,为了抵消它,在应力函数
上再添加一个与纯剪应力对应的应力
函数,
2443 hd?
34 xyd??
xyb2
xybxyd 234 ???
2、由平衡条件得含有待定系数的应力表达式为,
2
42
2
2
2
42
2
3
0,6
ydb
yx
x
xyd
y
xy
yx
???
??
?
??
?
?
?
??
?
?
?
?
?
?
?
?
?
3、利用边界条件确定,并求出应力分量,
上、下边界,
24,bd
0)(,0)(
22
?? ???? hyxyhyy ??
P
y
O h
l
x
图 4
95
Then we have,
2
33
342
6
2
3
,0,
12
2
,
2
3
y
h
P
h
P
xy
h
P
h
P
d
h
P
b
xyyx ??????
???
???
On the left end,
Pdy
h
h xxyxx ??? ?? ?? 2
2
00 )(,0)( ??
96
左端部,Pdyh
h xxyxx ??? ?? ?? 2
2
00 )(,0)( ??
解得,
2
33
342
6
2
3
,0,
12
2
,
2
3
y
h
P
h
P
xy
h
P
h
P
d
h
P
b
xyyx ??????
???
???
97
98