1
Elasticity
2
3
Chapter 7 Difference Solution to the Questions of Plane
§ 7-1 Derivation of Difference Formula
§ 7-2 Difference Solution to Steady Temperature Field
§ 7-3 Difference Solution to Unsteady Temperature Field
§ 7-4 Difference Solution to Stress Function
§ 7-5 Example of Difference Solution to Stress Function
§ 7-6 Difference Solution of Stress Function to the
Question of Temperature Stress
§ 7-7 Difference Solution to Displacement
§ 7-8 Example of Difference Solution to Displacement
§ 7-9 Displacement Difference Solution to more
Continuous Object
Exercise of,Difference Solution to Plane Questions,
4
第七章 平面问题的差分解
§ 7-1 差分公式的推导
§ 7-2 稳定温度场的差分解
§ 7-3 不稳定温度场的差分解
§ 7-4 应力函数的差分解
§ 7-5 应力函数差分解的实例
§ 7-6 温度应力问题的应力函数差分解
§ 7-7 位移的差分解
§ 7-8 位移差分解的实例
§ 7-9 多连体问题的位移差分解
习题课
5
The typical solutions to the theory of elasticity have a certain
limits,When the elastic objects’ boundary conditions and loads are
a little complex, always the rigorous solution to boundary
questions of the partial differential equations can’t be found。 Thus
the numerical solutions have an important practical meaning。
Difference solution is one of the numerical solutions。
Difference solution is a method that uses difference equations
(algebra equations) instead of basic equations and boundary
conditions (sometimes they are differential equations),and translates
the solutions to differential equations into algebra equations,
6
弹性力学的经典解法存在一定的局限性,当弹性体的边
界条件和受载情况复杂一点,往往无法求得偏微分方程的边
值问题的解析解。因此,各种数值解法便具有重要的实际意
义 。差分法就是数值解法的一种。
所谓差分法,是把基本方程和边界条件(一般均为微分
方程)近似地改用差分方程(代数方程)来表示,把求解
微分方程的问题改换成为求解代数方程的问题。
7
§ 7-1 Derivation of Difference Formulation
We make a square grid on the surface of
elastic object,by using two group lines
which are parallel to the coordinate axes
and the distance of two parallel lines is
h, Shown in Fig,7-1,
Suppose f=f(x,y) is a continue function in
elastic object, This function is in a line
which is parallel to x axes,Fig.7-1
...)(!31)(!21)( 30
0
3
32
0
0
2
2
0
0
0 ?????
???
?
?
?
?????
?
???
?
?
?
????
?
??
?
?
?
??? xx
x
fxx
x
fxx
x
fff
For example it is in 3-0 -1, It only changes with the change of
coordination of x axes, function f can be opened up into taylor
series in the neighbor of point 0,
8
§ 7-1 差分公式的推导
我们在弹性体上,用相隔等间距
h而平行于坐标轴的两组平行线织成正
方形网格,如图 7-1。
设 f=f(x,y)为弹性体内的某一个连
续函数。该函数在平行于 x轴的一根网
线上,例如在 3-0 -1上, 它只随 x坐
标的改变而变化。在邻近结点0处,
函数 f可展为泰勒级数如下,图 7-1
...)(!31)(!21)( 30
0
3
3
2
0
0
2
2
0
0
0 ?????
?
???
?
?
???
???
?
???
?
?
????
?
??
?
?
?
??? xx
x
fxx
x
fxx
x
fff
9
We will only think of those points which are very near to point
0,It means that x-x0 is sufficient small,So three or more power
of( x-x0) can be eliminated,The above formulation can be
simplified as,
)()(!21)( 20
0
2
2
0
0
0 bxxx
fxx
x
fff ?
???
?
???
?
?
????
?
??
?
?
?
???
At point 3,x=x0-h; at point 1,x=x0+h.We can get from (b),
)(2
0
2
22
0
03 cx
fh
x
fhff
???
?
???
?
?
???
?
??
?
?
?
???
)(2
0
2
22
0
01 dx
fh
x
fhff ??
?
?
???
?
?
???
?
??
?
?
?
???
We can get the difference formula from (c) and (d),
)1(2 31
0 h
ff
x
f ???
?
??
?
?
?
?
10
我们将只考虑离开结点0充分近的那些结点, 即 ( x-x0)
充分小 。 于是可不计 ( x-x0) 的三次及更高次幂的各项, 则上
式简写为,
)()(!21)( 20
0
2
2
0
0
0 bxxx
fxx
x
fff ?
???
?
???
?
?
????
?
??
?
?
?
???
在结点3,x=x0-h; 在结点 1,x=x0+h。 代入 (b) 得,
)(2
0
2
22
0
03 cx
fh
x
fhff
???
?
???
?
?
???
?
??
?
?
?
???
)(2
0
2
22
0
01 dx
fh
x
fhff ??
?
?
???
?
?
???
?
??
?
?
?
???
联立( c)、( d),解得差分公式,
)1(2 31
0 h
ff
x
f ???
?
??
?
?
?
?
11
)2(22 031
0
2
2
h
fff
x
f ???
???
?
???
?
?
?
Similarly,we can get difference
formula in the line 4-0-2,
)4(
2
2
)3(
2
042
0
2
2
42
0
h
fff
y
f
h
ff
y
f
??
???
?
?
??
?
?
?
?
?
???
?
?
??
?
?
?
?
The above( 1 ) — ( 4 ) are the basic difference formulas,
thus we can get other difference formulas from them as
follows,
Fig.7-2
)5()]()[(
4
1
7586
0
2
2 ffffhyx
f ????
???
?
???
?
??
?
12
)2(22 031
0
2
2
h
fff
x
f ???
???
?
???
?
?
?
同理, 在网线 4-0-2上可得到差分公式,
)4(
2
2
)3(
2
042
0
2
2
42
0
h
fff
y
f
h
ff
y
f
??
???
?
?
??
?
?
?
?
?
???
?
?
??
?
?
?
?
以上 ( 1 ) — ( 4 ) 是基本差分公式, 从而可导出其它
的差分公式如下,
图 7-2
)5()]()[(
4
1
7586
0
2
2 ffffhyx
f ????
???
?
???
?
??
?
13
)]()(46[
1
)6()]()(24[
1
)]()(46[
1
12104204
0
4
4
8765432104
0
22
4
1193104
0
4
4
fffff
hy
f
fffffffff
hyx
f
fffff
hx
f
?????
?
?
?
?
?
?
?
?
?
?
?????????
?
?
?
?
?
?
?
?
??
?
?????
?
?
?
?
?
?
?
?
?
?
Difference formulas of (1 ) and (3 ) can be called as midpoint
derivative formulas,Because they use the function value of two
crunodes whose interval is 2h to express the first derivative value
of the midpoint,The formula which uses the function value of three border upon
crunodes to express the first derivative value of a endpoint can be
called endpoint derivative formula,
We must point out that midpoint derivative has a higher precision
than endpoint,Because the former reflects the change of function
of both sides of the crunodes,But the later only reflects one side
of the crunodes,So we always try our best to use the former,and
only use the later because we can’t use the former,
14
)]()(46[
1
)6()]()(24[
1
)]()(46[
1
12104204
0
4
4
8765432104
0
22
4
1193104
0
4
4
fffff
hy
f
fffffffff
hyx
f
fffff
hx
f
?????
?
?
?
?
?
?
?
?
?
?
?????????
?
?
?
?
?
?
?
?
??
?
?????
?
?
?
?
?
?
?
?
?
?
差分公式 (1 )及 (3 )是以相隔 2h的两结点处的函数值来表
示中间结点处的一阶导数值, 可称为中点导数公式 。
以相邻三结点处的函数值来表示一个端点处的一阶导数
值, 可称为端点导数公式 。
应当指出:中点导数公式与端点导数公式相比, 精度较
高 。 因为前者反映了结点两边的函数变化, 而后者却只反映
了结点一边的函数变化 。 因此, 我们总是尽可能应用前者,
而只有在无法应用前者时才不得不应用后者 。
15
§ 7-2 Difference Solution to Steady Temperature Field
This section we discuss the no heat source,plane and,steady
temperature field and explain the application of difference method,
In order to use difference method,we make grids in the
temperature field,Just as Fig.7-1。 At any node,for example at
node 0,we can get the follows from difference formula,
2
031
0
2
2 2
h
TTT
x
T ?????
?
???
?
?
?
?
2
042
0
2
2 2
h
TTT
y
T ?????
?
???
?
?
?
? ( c)
( b)
In the no heat source,plane and,steady temperature field
,so Heat conduction differential equation can be
simplified as harmonic equation,
02222 ?????? yTxT ( a)
0,0,0 ????????? tTzTt?
02 ??T
16
§ 7-2 稳定温度场的差分解
本节以无热源的、平面的、稳定的温度场为例,说明差分
法的应用。
在无热源的平面稳定场中,,所以热传导
微分方程简化为调和方程,即,0,0,0 ??
??
?
??
?
?
t
T
z
T
t
?
02 ??T
02222 ?????? yTxT ( a)
为了用差分法求解,在温度场的域内织成网格,如图 7-1所示。
在任意一个结点,如在结点 0,由差分公式有,
2
031
0
2
2 2
h
TTT
x
T ?????
?
???
?
?
?
?
2
042
0
2
2 2
h
TTT
y
T ?????
?
???
?
?
?
? ( c)
( b)
17
Substitute it into, we can get difference equation,0)()(
02
2
02
2 ?
?
??
?
?
y
T
x
T
04 43210 ????? TTTTT ( 1)
( 1) If all the boundary conditions of a temperature field have
first boundary condition,then we can get all the value of the
boundary crunodes.thus we just need to make a( 1) difference
equation at every inside node,Then we can get all the value of
the inside crunodes from these equations,
T
T
( 2) The boundary node 0 has second boundary conditions, as
in Fig.7-3a.Because the temperature of the node is unknown,
we need to make a ( 1) difference equation at the node。 In
order to eliminate the temperature of outside boundary void node
1, we assume that the boundary plumbs x axes,and the outside
normal of the boundary is parallel to x axes.See it in the picture
and the boundary condition becomes,
0T
1T
0
0
)( xqxT ??????? ??? ?
18
代入,即得差分方程,0)()(
02
2
02
2 ?
?
??
?
?
y
T
x
T
04 43210 ????? TTTTT ( 1)
( 1)如果一个温度场的全部边界条件都具有第一类边界条件,
则所有边界结点处的 值都是已知的。这样,只须在每一个
内结点处建立一个( 1)型的差分方程,就可以由这些方程求
得所有内结点处的未知 值。
T
T
( 2)对于具有第二类边界条件的边界结点 0,如图 7-3a,由
于该结点处的温度 是未知的,需要计算,因而也需要在该
结点建立一个( 1)型的差分方程。为了消去边界外的虚结点
1处的温度,假定该边界是垂直于 轴的,而且该边界的向
外法线是沿 轴的正向,如图所示,则上述边界条件成为,
0T
1T
x
x
0
0
)( xqxT ??????? ??? ?
19
outside
x
inside
y
3
2
1
4
0
0)( xq
inside outside x
y
3
2
1
4
0
eT
( a) ( b)
is a known heat current density which is parallel to x axes of
node 0, Apply difference formula to,we get,
Fig.7-3
0)( xq
????????xT
031 )(2 xqh
TT ??
?
??
?
? ?? ?
Get, then substitute it into formula( 1),we cam
get the amendatory difference equation,
1T
04320 )(
224
xq
hTTTT
??????
( 2)
20
边界内 边界外
x
y
3
2
1
4
0
0)( xq
边界内 边界外
x
y
3
2
1
4
0
eT
图 7-3
( a) ( b)
x其中 是结点 0处的沿 方向的已知热流密度。对 应用
差分公式,则上式成为,
0)( xq ?
?
??
?
?
?
?
x
T
031 )(2 xqh
TT ??
?
??
?
? ?? ?
解出,代入( 1)式,即得修正的差分方程,1T
04320 )(
224
xq
hTTTT
?????? ( 2)
21
( 3) Toward boundary node 0 which has third boundary
conditions as in Fig 7-3b,we need to make difference equation
about unknown 。 In order to eliminate the temperature of the
void node in the equation,we can use the boundary conditions,
0T 1T
)( 0
0
eTTx
T ????
?
??
?
?
?
?
?
?
)(2 031 eTThTT ???? ??
is a known temperature of the outside boundary medium,from the
difference formula we can get,
eT
eT
hTTTTh
?
?
?
? 2224
4320 ???????
??
?
? ?
( 4) Toward the boundary node which has fourth boundary
conditions,if the objects are completely tangent,their temperature
field is continue,
( 3)
1TGet, then substitute it into formula( 1),we can get the
amendatory difference equation,
When the boundary plumbs y axes,we can get similar amendatory
difference equation like above
22
( 3)对于具有第三类边界条件的边界结点 0,如图 7-3b,也须
立出相应于未知值 的差分方程。为了消去该方程中的虚结点
温度,可利用边界条件得,
0T
1T
)( 0
0
eTTx
T ????
?
??
?
?
?
?
?
?
)(2 031 eTThTT ???? ??
其中 为边界以外的介质的已知温度。应用差分公式,可得,eT
解出,代入( 1)式,即得修正的差分方程,1T
当边界垂直于 轴时,也可导出与上式相似的修正差分方程。 y
( 4)对于具有第四类边界条件的边界结点,在完全接触的情
况下,由于两个接触体的温度场是连续的,
eT
hTTTTh
?
?
?
? 2224
4320 ???????
??
?
? ? ( 3)
23
So when they have the same heat nature constant,the boundary
node is the same as inside node.If they are not completely
tangent,or they have different heat nature constant,the question is
very complex,and we will not discuss it here,Example, Suppose a square
sheet(Fig.7-4) is 8 meters in
length,6 meters in width,Its right
boundary is adiabatic boundary,
The temperature of other three
boundaries is signed at every node.
( unit is ℃ ),try to find the
temperature from to of nodes in
the sheet, aT iT
6m
8m
a
b
c
d
e
f
g
i
40 35 30 25 20
16 14 12 10
32
24
18
Establish difference equations of nodes from a to f according to
formula (1),
Solution,use a 4x3 grid,h=2 m
024164
032354
?????
?????
dab
cba
TTT
TTT
Fig.7-4
24
因此只要两个接触体具有相同的热性常数,这个边界结点就和
内结点完全一样。如果接触不完全,或者两个接触体具有不同
的热性常数,则问题比较复杂,这里不进行讨论。
例,设有矩形薄板,如图 7-4,
长 8米,宽 6米,右边界为绝热
边界,其余三边界上的已知结
点温度标在各结点上(单位为
℃ ),试求板内的结点温度
至 。
aT
iT
6m
8m
a
b
c
d
e
f
g
i
40 35 30 25 20
16 14 12 10
32
24
18
按照( 1)式立出结点 a至 f处的差分方程,
解,用 的网格,米。 34? 2?h
024164
032354
?????
?????
dab
cba
TTT
TTT
图 7-4
25
0124
0254
0144
0304
?????
?????
?????
?????
iedf
gfce
fcbd
edac
TTTT
TTTT
TTTT
TTTT
Establish difference equations of nodes g and i according to
formula (3),
01024
02024
????
????
fgi
eig
TTT
TTT
Solve the 8 equations above together,we get(unit is ℃ ),
20.16,97.19,41.17,84.21
61.19,99.24,03.22,51.28
????
????
igfe
dcba
TTTT
TTTT
When the temperature has curve or declining boundary,irregular
inside nodes will happen near the boundary,Like node 0 in the
Fig.7-5a,
26
0124
0254
0144
0304
?????
?????
?????
?????
iedf
gfce
fcbd
edac
TTTT
TTTT
TTTT
TTTT
按照( 3)式立出结点 g及 i处的差分方程,
01024
02024
????
????
fgi
eig
TTT
TTT
联立求解上列 8个方程,得到(单位为 ℃ ),
20.16,97.19,41.17,84.21
61.19,99.24,03.22,51.28
????
????
igfe
dcba
TTTT
TTTT
当温度具有曲线边界或斜边界时,在靠近边界处将出现
不规则的内结点,如图 7-5a中的结点 0。
27
1
2
3
4
0 A
B
h
h
h
h? 1
2
3
4
0 A
B
h
h
h?
h?
Fig,7— 5
outside outside
28



1
2
3
4
0 A
B
h
h
h
h?



1
2
3
4
0 A
B
h
h
h?
h?
图 7— 5
29
First we assume that boundary AB is first boundary,Open up temperature T into
taylor series along x axes near node 0,and eliminate three or more power of,
0xx?
2
0
0
2
2
0
0
0 )(2
1)( xx
x
Txx
x
TTT ???
?
???
?
?
?
????
?
??
?
?
?
???
hx ?0 hx ??0 0xx?Assume x equals to and respectively,that means
equals to and respectively,h? )10( ?? ??h
0
2
2
22
0
0
0
2
22
0
03
2
1
2
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
??
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
??
x
T
h
x
T
hTT
x
Th
x
T
hTT
A ??
Eliminate, and
we get, 0
????????xT
)10(11 1)1( 12 03
0
2
2 ??
?????? ????????????? ?? ????? TTThxT A
2
042
0
2
2 2
h
TTT
y
T ?????
?
???
?
?
?
?
30
AB 首先假定边界 是第一类边界。将温度 在临近结点 0处
沿 方向展为泰勒级数,略去 的三次幂及更高次的幂的项,
得到,
T
x 0xx?
2
0
0
2
2
0
0
0 )(2
1)( xx
x
Txx
x
TTT ???
?
???
?
?
?
????
?
??
?
?
?
???
命 依次等于 及,即 依次等于 及,
得,
x hx ?0 hx ??0 0xx? h? )10( ?? ??h
0
2
2
22
0
0
0
2
22
0
03
2
1
2
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
??
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
??
x
T
h
x
T
hTT
x
Th
x
T
hTT
A ??
消去,得到,
0
????????xT
)10(11 1)1( 12 03
0
2
2 ??
?????? ????????????? ?? ????? TTThxT A
2
042
0
2
2 2
h
TTT
y
T ?????
?
???
?
?
?
?
31
Then the difference equation is,
)10()1( 21 2112 4320 ???????????????? ? ????? ATTTTT
Similarly,we can get difference equation of irregular node 0
in Fig.7-5b,
)10,10()1( 1)1( 11 11 111 430 ???????????????????? ? ?????????? BA TTTTT
Assume that boundary AB in Fig.7-5a is second boundary,Open up
temperature T into taylor series along x axes near node A,and
eliminate three or more power of, Axx?
2
2
2 )(
2
1)(
A
A
A
A
A xxx
Txx
x
TTT ???
?
???
?
?
?
????
?
??
?
?
?
???
Axx? h??Assume equals to and respectively,)10(,)1( ???? ?? h
AA
A
AA
A
x
T
h
x
T
hTT
x
Th
x
T
hTT
??
?
?
??
?
?
?
?
???
?
?
?
?
?
?
?
???
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
??
2
2
22
3
2
222
0
)1(
2
1
)1(
2
??
?
?
( 4)
( 5)
32
于是得到差分方程,
)10()1( 21 2112 4320 ???????????????? ? ????? ATTTTT
同理可以导出图 7-5b中不规则结点 0的差分方程为,
)10,10()1( 1)1( 11 11 111 430 ???????????????????? ? ?????????? BA TTTTT
假定图 7-5a中的边界 是第二类边界。将温度 在临近结
点 处沿 方向展为泰勒级数,略去 的三次幂及更高次幂
的项,得,
AB T
A x Axx?
2
2
2 )(
2
1)(
A
A
A
A
A xxx
Txx
x
TTT ???
?
???
?
?
?
????
?
??
?
?
?
???
命 依次等于 及,得到,Axx? h?? )10(,)1( ???? ?? h
AA
A
AA
A
x
T
h
x
T
hTT
x
Th
x
T
hTT
??
?
?
??
?
?
?
?
???
?
?
?
?
?
?
?
???
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
??
2
2
22
3
2
222
0
)1(
2
1
)1(
2
??
?
?
( 4)
( 5)
33
?????? ?????? ????????
A
A x
ThTTT )1()1(
21
1
3
2
0
2 ????
?
Eliminate,and we get
?????????? 2
2
x
T
Eliminate from boundary equation,we get,
Ax
A
qxT )(??????? ??? ?
Ax
T?
?
??
?
?
?
?
? ? ?????? ?????? AxA qhTTT ?????? )1()1(21 1 3202
Substitute it into formula ( 4),simplified as
)10()(21 221 221 )1(4 4320 ?????????? ? ?????? AxqhTTTT
)10,10(
)(
21
1
)(
21
1
21
1
21
1
21
1
21
1
430
????
?
?
?
?
?
?
?
?
?
??
?
?
?
???
?
?
??
?
?
?
?
?
??
??????? BxAx
qq
h
TTT
( d)
Similarly,we can get difference equation of irregular node 0
in Fig.7-5b,
34
?????? ?????? ????????
A
A x
ThTTT )1()1(
21
1
3
2
0
2 ????
?
消去,得,
?????????? 2
2
x
T
由边界条件 消去,得,
Ax
A
qxT )(??????? ??? ?
Ax
T?
?
??
?
?
?
?
? ? ?????? ?????? AxA qhTTT ?????? )1()1(21 1 3202
代入( 4)式,简化后得差分方程,
)10()(21 221 221 )1(4 4320 ?????????? ? ?????? AxqhTTTT
同理可以导出图 7-5b中不规则结点 0的差分方程为,
)10,10(
)(
21
1
)(
21
1
21
1
21
1
21
1
21
1
430
????
?
?
?
?
?
?
?
?
?
??
?
?
?
???
?
?
??
?
?
?
?
?
??
??????? BxAx
qq
h
TTT
( d)
35
Assume boundary AB in Fig 7-5a is third boundary,apply boundary
conditions we can get,
)( eA
A
TTxT ????????? ?? ??
Substitute it into formula ( d),we get,
)10())(1()1(21 1 3202 ???????? ??????? ???????? eAA TThTTT
If boundary AB in Fig 7-5a is third boundary, we can get similar
equation besides equation (e),
( e)
)10())(1()1(21 1 3202 ???????? ??????? ???????? eBB TThTTT
Calculate and substitute it into formula ( 4),we get
difference equation
AT
Substitute ( e)和( f) into formula ( 5),we can get
difference equation,
( f)
36
假定图 7-5a中的边界 是第三类边界,则可利用边界条件
得到,
AB
)( eA
A
TTxT ????????? ?? ??
代入式( d),得,
)10())(1()1(21 1 3202 ???????? ??????? ???????? eAA TThTTT
如果图 7-5b中的边界 是第三类边界,则除了方程( e)
外还可以得出相似的方程,
AB
( e)
)10())(1()1(21 1 3202 ???????? ??????? ???????? eBB TThTTT
解出 代入式( 4),即得差分方程。 AT
将式( e)和( f)代入式( 5),即可得出差分方程。
( f)
37
§ 7-3 Difference Solution to Unsteady Temperature Field
We will introduce difference solution to unsteady temperature field
in this section,The main purpose is to calculate the unsteady
temperature in concrete caused by the heat because the concrete
coagulates,It can be used by the calculation of temperature stress and
the control of temperature,
Fig.7-6
Make a grid in the temperature field
(Fig.7-6).Apply the differential equation
of plane,unsteady temperature field into
any instantaneous inside node 0,we can
get,
0
0
2
0
)( ?????? ??????????? ?? tTatT ?( a)
Assume the temperature of node 0 at time t
is T0,and at the temperature is 。
Apply forward linear difference formula,we
can get,
t
tt ??
0T?
t
TT
t
T
?
????
?
??
?
?
?
? 00
0
( b)
38
§ 7-3 不稳定温度场的差分解
本节简单介绍平面不稳定温度场的差分解法,主要为了说
明,如何计算混凝土体中由于混凝土凝结发热而出现的不稳定
温度场,供温度应力的计算及温度控制用。
图 7-6
在温度场上织成网格,如图 7-6。
将平面不稳定温度场的微分方程用于在
任一瞬时的任意内结点 0,得到,
0
0
2
0
)( ?????? ??????????? ?? tTatT ?( a)
命结点 0在 时的温度为,在
时的温度为 。应用向前线性差分公式,
得,
t 0T tt ??
0T?
t
TT
t
T
?
????
?
??
?
?
?
? 00
0
( b)
39
Toward, we still use parabola difference formula,T2?
)4(
1
22
)(
043212
2
042
2
031
0
2
2
0
2
2
0
2
TTTTT
h
h
TTT
h
TTT
y
T
x
T
T
?????
??
?
??
???
?
?
??
?
?
?
?
???
?
?
??
?
?
?
?
??
( c)
Toward, use linear difference
formula,and we get,
t?
??
tt ?
???
?
??
?
?
?
? 0
0
)( ?? ( d)
Substitute ( b)、( c)、( d) into formula( a),we get,
Use this equation,we can get the temperature of node 0 at
according to the temperature of nodes 0,1,2,3,4 at time t
and during the time of node 0,t???
tt ??
(1)Toward node 0 which has first boundary condition,
temperature is known,0T?
043212020 )()(
41 ??????????
?
??
?
? ???? TTTT
h
taT
h
taT ( 1)
40
对于,仍然采用抛物线差分公式,得,T2?
)4(
1
22
)(
043212
2
042
2
031
0
2
2
0
2
2
0
2
TTTTT
h
h
TTT
h
TTT
y
T
x
T
T
?????
??
?
??
???
?
?
??
?
?
?
?
???
?
?
??
?
?
?
?
??
对于,也采用线性差分公式,t???
tt ?
???
?
??
?
?
?
? 0
0
)( ??
( c)
( d)
将式( b)、( c)、( d)代入式( a),得差分方程,
043212020 )()(
41 ??????????
?
??
?
? ???? TTTT
h
taT
h
taT
利用这个方程,可以根据结点 0,1,2,3,4在 时的温度,
以及结点 0在时段 内的,求得结点 0在 时的温度。
t
t? ?? tt ??
(1)对于具有第一类边界条件的边界结点 0,结点温度 是已
知的。
0T?
( 1)
41
(2)Toward boundary node 0 which has
second boundary condition (Fig.7-7a),use
boundary condition,
031 )(2 xqh
TT ??
?
??
?
? ?? ?
Calculate, substitute it into formula( 1),
we get amendatory difference equation,
1T
004322020 )()(
2241 ?
? ????
??
?
? ??????
?
??
?
? ????
xq
hTTT
h
taT
h
taT
inside x
y 3
2
1
4
0
0)( xq
Fig.7-7
inside
x
y 3
2
1
4
0
eT
(a)
(b)
(3) Toward boundary node 0 which has third
boundary condition (Fig.7-7b),use boundary
condition,
)(2 031 eTThTT ???? ??
Calculate, substitute it into formula( 1),
we get amendatory difference equation,
1T
? ? 04322020 )(22241 ????? ?????????????? ?????? eTh taTTTh taTh tah taT
outside
outside
42
(2)对于具有第二类边界条件的边界结点 0,
如图 7-7a。利用边界条件,
031 )(2 xqh
TT ??
?
??
?
? ?? ?
解出,代入式( 1),得修正的差分方程,1T
004322020 )()(
2241 ?
? ????
??
?
? ??????
?
??
?
? ????
xq
hTTT
h
taT
h
taT
边界内 边界外
x
y
3
2
1
4
0
0)( xq
图 7-7
边界内 边界外
x
y
3
2
1
4
0
eT
(a)
(b)
(3)对于具有第三类边界条件的边界结点 0,
如图 7-7b。利用边界条件,
)(2 031 eTThTT ???? ??
解出,代入式( 1),得修正的差分方程,1T
? ? 04322020 )(22241 ????? ?????????????? ?????? eTh taTTTh taTh tah taT
43
(4) Toward boundary nodes which have fourth boundary condition,
when they are completely tangent,boundary node is the same as
inside node。 No mater what the boundary condition is,we can calculate the
temperature of node after according to the before,When calculate
it,we can divide the experience time of temperature field into
several equal or unequal period of time, Use difference equation to
calculate the temperature of nodes at the end of every period of time
since the beginning,Then we can get the change process of every
node,
t?
Toward inside nodes which have second boundary
condition,we can get convergence condition from difference
formula,
We can see from the above that is always decided by the boundary
nodes which have third boundary condition and is max,
041 2 ??? h taso,
?????? ?
?
?
??
?
?
?
?
214
24
1 2
2
ha
h
h
a
h
at
t?
?
44
(4)对于具有第四类边界条件的边界结点,在完全接触的情况
下,边界结点就和内结点完全一样。
不论边界条件如何,都可以由 前的结点温度求得 后的
结点温度。具体计算时,可将温度场的经历时间分为若干个相
等或不相等的时段,从初瞬时开始,依次利用差分方程算出
各个时段终了时的结点温度,从而确定各结点处的变温过程。
t? t?
t?
对于内结点及具有第二类边界条件的边界结点,可由差分
公式得收敛条件,
041 2 ??? h ta
从而得,
?????? ?
?
?
??
?
?
?
?
214
24
1 2
2
ha
h
h
a
h
at
由以上两式可见 总是决定于 值最大的、具有第三类边界
条件的边界结点。
t? ?
45
If we use afterward difference formula toward,every difference
equation will have many nodes’ temperature after, So the
difference equations of every node in the whole temperature field
will become simultaneous equations.We will solve simultaneous
equations according to every,Though there is no confine of
convergence conditions,when the is large,the calculation may
be very large,
tT??
t?
t?
t?
Example,suppose there is a concrete
mound,whose plane cross section is a square
of 1.6m 1.6m,Its irrigating temperature is
2℃,After irrigated the temperature of the
surface is about 2℃ ( first boundary
condition ),Its transmitting temperature
modulus is m2/h.Find solution to the
unsteady temperature field of concrete when it
coagulates and fevers by using difference
method,
0 0 3 3 4.0??
?
c b c
b a b
c b c
2℃
Fig.7-8
Solution,suppose the height of the concrete mound is far bigger
46
如果对于 采用向后差分公式,则每一个差分方程中将
包含多个结点在 后的温度,因而整个温度场内各结点处的
差分方程成为联立方程;对于每一个时段,都要求解一次
联立方程。这样,虽然由于没有收敛条件的限制,可以取
得大一些,但计算工作量仍然可能很大。
t
T
?
?
t?
t?
t?
例,设有一混凝土墩,其水平横截
面为 1.6米 1.6米的正方形。混凝
土的浇注温度为 2℃,浇注以后,表
面的温度也大致保持为 2℃ (第一类
边界条件)。混凝土的导温系数取
为 米 2/时。试用差分法计
算混凝土凝结发热期间的不稳定温
度场。
00334.0??
?
解,假定混凝土墩的高度远大于
c b c
b a b
c b c
2℃
图 7-8
47
than 6 m.So the question can be simplified as plane question,
Make a h=0.4m,grid (Fig.7-8),Mark the nodes whose
temperature should be the same according to symmetry condition,
with the same character,
44?
0.120 0 3 3 4.04 4.04 22 ????? aht
0.6??t when
1 2 5.0,5.04 22 ???? h tah taSo the difference equations are,
cbcc
bcabb
abaa
TTT
TTTT
TTT
)()222(1 2 5.0)5.01(
)()22(1 2 5.0)5.01(
)()4(1 2 5.0)5.01(
?
?
?
????????
????????
??????
???? ??????? cba )()()(
?
?
?
??????
???????
?????
5.025.05.0
25.025.0125.05.0
5.05.0
bcc
cabb
baa
TTT
TTTT
TTT
Because all the concrete is of the same period,so
Then we can simplify the equations as,
48
远大于 1.6米,因而该温度场的问题可以近似地作为平面问题。
在横截面上织成 网格,如图 7-8。在图上,凡是根据对称
条件看出温度应当相同的结点,均用相同的字母标明。取,
44?
0.120 0 3 3 4.04 4.04 22 ????? aht 时
0.6??t取 时,有,1 2 5.0,5.04 22 ???? h tah ta
所以差分方程为,
cbcc
bcabb
abaa
TTT
TTTT
TTT
)()222(1 2 5.0)5.01(
)()22(1 2 5.0)5.01(
)()4(1 2 5.0)5.01(
?
?
?
????????
????????
??????
由于全部混凝土均属于同一龄期,故有 。
于是上列三式简化为,
???? ??????? cba )()()(
?
?
?
??????
???????
?????
5.025.05.0
25.025.0125.05.0
5.05.0
bcc
cabb
baa
TTT
TTTT
TTT
49
Suppose the data bellow is from the adiabatic thermal change
examination of concrete,
t
?? ( ℃ )
?( ℃ )
( h) 0
0
6.0
5.5
12.0
8.0 9.7
5.5 2.5 1.7 1.1 0.8 0.8 0.7 0.7
18.0 24.0 30.0 36.0 42.0 48.0
10.8 11.6 12.4 13.1 13.8
We calculate the temperature according to the period,
First period (from to ) 0?t 0.6?t C??? 5.5?
00.2??? cba TTT
CTTT cba ????????? 50.75.500.2
(original temperature)
CTTT cba ???? 50.7
CTCTCT cba ????????? 63.8,31.9,00.10
Similarly we can get,
0.6?t 0.12?t C??? 5.2?second period (from to )
50
假定由混凝土绝热温升试验得来的数据如下表所示,
t
?? ( ℃ )
?( ℃ )
(时 ) 0
0
6.0
5.5
12.0
8.0 9.7
5.5 2.5 1.7 1.1 0.8 0.8 0.7 0.7
18.0 24.0 30.0 36.0 42.0 48.0
10.8 11.6 12.4 13.1 13.8
按照上式分时段计算,结果为,
第一时段 ( 至 ),0?t 0.6?t C??? 5.5?
00.2??? cba TTT
CTTT cba ????????? 50.75.500.2
(初始温度 )
第二时段 ( 至 ),0.6?t 0.12?t C??? 5.2?
CTTT cba ???? 50.7
CTCTCT cba ????????? 63.8,31.9,00.10
对其余各段进行同样的计算,结果如下表所示,
51
Node a
Node b
Node c
2.00
2.00
2.00
7.50
7.50
7.50
10.00
9.31
8.63 8.84 8.52 8.06 7.74 7.41 7.15
8.69 8.99 9.35 9.65 9.99 10.01
11.36 11.79 11.69 11.47 11.11 10.75
The temperature change process of the three nodes are in Fig.7-9,
0
2
4
6
8
10
12
14
6 12 18 24 30 36 42 48
)(7.0 0C
?
aT
bT
cT
Fig,7— 9
t(h)
52
结点 a
结点 b
结点 c
2.00
2.00
2.00
7.50
7.50
7.50
10.00
9.31
8.63 8.84 8.52 8.06 7.74 7.41 7.15
8.69 8.99 9.35 9.65 9.99 10.01
11.36 11.79 11.69 11.47 11.11 10.75
三结点处温度变化的过程如图 7-9所示,
0
2
4
6
8
10
12
14
6 12 18 24 30 36 42 48 (时)t
)(7.0 0C
?
aT
bT
cT
图 7— 9
53
§ 7-4 Difference Solution to Stress Function
When the physical force is omitted, the stress component in plane
question can be expressed with the second derivative of stress
function,
If we make grids in the elasticity
object as in Fig.7-10,we can express
the stress component of every node by
using difference formula,
? ?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
????
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
)()(
4
1
)(
2)(
1
)(
2)(
1
)(
86752
0
2
0
0312
0
2
2
0
0422
0
2
2
0
????
?
?
???
?
?
???
?
?
hyx
hx
hy
xy
y
x
yxxy xyyx ??
???
?
??
?
?? ?????? 2
2
2
2
2,,( a)
Fig.7-10
( b)
54
§ 7-4 应力函数的差分解
当不计体力时,平面问题中的应力分量可以用应力函数的
二阶导数表示,
如果在弹性体上织成如图 7-10所示
的网格,应用差分公式就可以把任
一结点处的应力分量表示成为,
? ?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
????
?
?
?
?
?
?
?
?
??
?
??
???
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
)()(
4
1
)(
2)(
1
)(
2)(
1
)(
86752
0
2
0
0312
0
2
2
0
0422
0
2
2
0
????
?
?
???
?
?
???
?
?
hyx
hx
hy
xy
y
x
yxxy xyyx ??
???
?
??
?
?? ?????? 2
2
2
2
2,,( a)
图 7-10
( b)
55
We can see that if we know the value of every node,we can find
the stress component of them,
?
h
We can establish such difference equation according to every node
inside of the elasticity object boundary.But according to the nodes
in a row of the boundary( the distance to the boundary is ),
difference equation will include value of every node in the
boundary and the value of the void node in a row out of the
boundary.So if there is another row of nodes out of the
boundary,we must extend the grids out of the boundary.First
calculate the value of every node in the boundary,then the one
near the row out of the boundary,last solve the equations of nodes
in the boundary together,
?
?
02
0
4
4
0
22
4
0
4
4
???
?
?
???
?
?
????
?
?
???
?
??
????
?
?
???
?
?
?
yyxx
???And we also can get,
0)()(2)(820 1211109876543210 ????????????? ?????????????
In order to find the value of every node inside of the elasticity
boundary,we must use biharmonic equation of stress function,and
must transmit it into difference equation,Substitute it into
biharmonic equation,we can get,
?
( c)
56
可见,只要已知各结点处的 值,就可以求得各结点处的应
力分量。
?
对于弹性体边界以内的每一结点,都可以建立这样一个差
分方程。但是对于边界内一行(距边界为 )的结点,差分方
程中还将包含边界上各结点处的 值和边界外一行的虚结点的
值。因此必须将网格扩展到边界外,假想在边界外还有一行结
点。先算出边界上各结点的,再求靠近边界外面一行的各结
点的,然后解出边界内各结点的联立差分方程。
?
?
h
?
02
0
4
4
0
22
4
0
4
4
???
?
?
???
?
?
????
?
?
???
?
??
????
?
?
???
?
?
?
yyxx
???
得出,
0)()(2)(820 1211109876543210 ????????????? ?????????????
为了求得弹性体边界以内各结点处的 值,须利用应力函
数的双调和方程,但也必须把它变换为差分方程。利用差分公
式代入双调和方程,
?
( c)
57
Fig.7-11 There into,the integral on the right of formula ( 1)
expresses the sum of surface force along x axis between
A and B; the integral on the right of formula ( 2)
expresses the negative of sum of surface force along y
axis between A and B ; the integral on the right of
formula ( 3) expresses the sum of moment according to
node B between A and B,
1.The value and derivative value of
every node in the boundary are in Fig.7-
11.The value of node B are,
?
?
?
?
?
?
?
?
?
?
?
????
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
)3()()(
)2(
)1(
B
A
B
B
A
BB
B
A
B
B
A
B
dsYxxdsXyy
dsY
x
dsX
y
?
?
?
( d)
?
?
58
(一)边界上各结点的 值及导数值 ?
如图 7-11,点的 值为,B ?
图 7-11
?
?
?
?
?
?
?
?
?
?
?
????
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
)3()()(
)2(
)1(
B
A
B
B
A
BB
B
A
B
B
A
B
dsYxxdsXyy
dsY
x
dsX
y
?
?
?
( d)
其中,( 1)式右边的积分表示 与 之
间沿 方向的面力之和;( 2)式右边的
积分表示 与 之间沿 方向的面力之和
的负数;( 3)式右边的积分表示 与
之间的面力对 点力矩之和。
A B
x
A B y
A B
B
59
2.The value of void nodes in a row out of
the boundary such as void nodes 13 and 14 in
Fig.7-10,
?
)(
2
2
1014
913
e
y
h
x
h
B
A
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
??
?
??
can be expressed by the derivative value in the boundary of
function and the value of every node in a row out of the boundary,? ?
3.The process of finite difference method,
( 1) Choose a node as base point A in the
boundary,and we suppose,
0????????? ????????? ???
AA
A yx
???
Then we calculate all the values of nodes in the boundary according
to formula ( 3) in (d),and and values which we should
have when we use formula (e),
????????x???????????y?
?
60
(二 )边界外一行的虚结点处的 值 ?
如图 7-10中的虚结点 13和 14,
)(
2
2
1014
913
e
y
h
x
h
B
A
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
??
?
??
?
??
即用函数 在边界上的导数值和边界内一行的各结点处的 值
来表示。
? ?
(三)有限差分法计算步骤
( 1)在边界上任意选定一个结点作为基点 A,取,
0????????? ????????? ???
AA
A yx
???
然后由( d)中( 3)式算出边界上所有各结点处的 值,以及
应用公式( e)时所必须的一些 值及 值。
?
????????x? ??????????y?
61
( 5) Calculate all the stress component according to formula (b),
( 2) We can express the value of void nodes in a row out of the
boundary with the value of the corresponding nodes by using
formula (e),
?
?
( 3) Make difference equations of every node in the boundary,
solve them together,and we can get the values of every node,?
( 4) Calculate the values of void nodes in a row out of the
boundary according to formula (e),
?
62
( 5)按照公式( b),计算所需求的应力分量。
( 2)应用公式( e),将边界外一行各虚结点处的 值用边界
内的相应结点处的 值来表示。
?
?
( 3)对边界内的各结点建立差分方程,联立求解,从而求出
各结点处的 值。 ?
( 4)按照公式( e),算出边界外一行的各虚结点处的 值。 ?
63
§ 7-5 Example of Difference Solution to Stress Function
Solution,suppose the reaction is fixate,
Make the coordinate axis as in the Fig
and the space between of the grids is 1/6
of the border,Because it is symmetric,so
we only need to calculate the left of it,
( 1) Suppose the midpoint A of the girder is base point,And,
0????????? ????????? ???
AA
A yx
???
?Calculate all the values of the nodes in the boundary and the
and values which are needed,make a table as follows (the not
necessary derivative values are not calculated,and we use short
transverse lines instead of them)
x?
??
y?
??
Suppose there is a square concrete
girder,just as in Fig.7-12,There is an
even load q which plumbs the above of
the girder and is balanced by reaction of
the below corner,Try to calculate the
stress component by using stress function,
Fig.7-12
64
解,假定反力是集中力。取坐标轴如
图所示,取网格间距 边长。由
于对称,只计算梁的左一半。 ?? 6
1h
( 1)取底梁的中点 作为基点,取,A
0????????? ????????? ???
AA
A yx
???
计算边界上所有各结点处的 值以及必需
的 值和 值,列表如下(不必需的导
数值没有计算,在表中用短横线表示 )。
?
x?
??
y?
??
设有正方形的混凝土深梁,如图
7-12,上边受均布向下的铅直载荷,
由下角点处的反力维持平衡,试用应力
函数的差分解求出应力分量。
q
图 7-12
§ 7-5 应力函数差分解的实例
65
nodes
x?
??
y?
??
?
A CB,D IHGFE,,,,J K L M
0
0
0
0
0 0 0 0
0 0 0
? ?
? ?
?
?
? ? ?qh3
25.2 qh 20.4 qh 25.4 qh
(2) Express values of every void node in a row out of the
boundary (from to ) with the values of every node inside of
the boundary,Because in the above and below boundaries,
so,
?
16? 26? ?
0???y?
??
?
???
???
152114201319
318217116
,,
,,
??????
??????
On the left,every node in
the boundary has,qhx 3????
so,2
2222223 6)3(22 qhqhhxh
I
?????????? ???? ?????
66
结 点
x?
??
y?
??
?
A CB,D IHGFE,,,,J K L M
0
0
0
0
0 0 0 0
0 0 0
? ?
? ?
?
?
? ? ?qh3
25.2 qh 20.4 qh 25.4 qh
(2)将边界外一行各个虚结点处的 值 ( 至 )用边界内一行
各结点处的 值表示。由于上下两边,所以有,
? 16? 26?
?
0???y?
??
?
???
???
152114201319
318217116
,,
,,
??????
??????
在左边,边界上各点有,qh
x 3??
??
所以,2
2222223 6)3(22 qhqhhxh
I
?????????? ???? ?????
67
Similarly,215,12,9,626,25,24,23 6 qh?? ??
( 3) Establish difference equations to every node in the boundary,
For example,according to node 1(pay attention to the
symmetry),
0)2()22(2)2(820 16735421 ????????? ????????? LMSubstitute the known value in above table
into the formula,where,we can get,
22 0.4,5.4 qhqh LM ?? ??
116 ?? ?
0204821621 2754321 ??????? qh??????
We can establish 15 difference equations to nodes 1— 15,
including 15 unknown values,solve them together,and
we get,
151 ?? ?
88.0,94.0,92.0,63.1,13.2
23.2,10.2,03.3,29.3,35.2
59.3,98.3,47.2,89.3,36.4
1514131211
109876
54321
?????
?????
?????
?????
?????
?????
( 4) Calculate all the values in a row out of the boundary,?
68
同样,215,12,9,626,25,24,23 6 qh?? ??
( 3)对边界内的各结点建立差分方程。
例如对结点 1(注意对称性),
0)2()22(2)2(820 16735421 ????????? ????????? LM
将上表中的 的已知值代入,并注意,22 0.4,5.4 qhqh LM ?? ??
116 ?? ?,得,0204821621 2
754321 ??????? qh??????
对结点 1— 15可以列出 15个差分方程,其中包含 15各未知值
151 ?? ?,联立求解,得,
88.0,94.0,92.0,63.1,13.2
23.2,10.2,03.3,29.3,35.2
59.3,98.3,47.2,89.3,36.4
1514131211
109876
54321
?????
?????
?????
?????
?????
?????
( 4)计算边界外一行各结点处的 值。 ?
69
We can get the below from formula (a),(b),(c)( the unite is ) 2qh
12.5,37.4,90.3
65.3,53.3,88.0,94.0
92.0,47.2,89.3,36.4
262524
23222120
19181716
??????
??????
????
???
????
????
( 5) Calculate the stress,
For example,in node M,we can get from formula (b),
? ?? ? qh MMx 28.021)( 1612 ????? ????
similarly,? ? qqqqqqAx 84.1,39.0,25.0,37.0,31.0,24.0,13,10,7,4,1 ??????
The changes of along the midline of the girder are
like the curve in Fig7-12,
xMA?,
Compared with the result of material mechanics,we can get,
? ? qWMMAx 75.0,?????
Therefore,according to the deep girder just as in the example,the
stress calculated by the formula of material mechanic can’t
reflect the truth,
70
由式( a)、( b)、( c)可得( 为单位),2qh
12.5,37.4,90.3
65.3,53.3,88.0,94.0
92.0,47.2,89.3,36.4
262524
23222120
19181716
??????
??????
????
???
????
????
( 5)计算应力。
例如在结点,由( b)式可得,M
? ?? ? qh MMx 28.021)( 1612 ????? ????
同样可得,? ? qqqqqqAx 84.1,39.0,25.0,37.0,31.0,24.0,13,10,7,4,1 ??????
沿着梁的中线 的变化如图 7-12中的曲线所示。 xMA?,
与材料力学的结果比较,
? ? qWMMAx 75.0,?????
可见,对于象本例题中这样的深梁,用材料力学公式算
出的应力远远不能反映实际情况。
71
§ 7-6 Difference Solution of Stress
Function to the Question of Temperature Stress
According to the plane questions of temperature stress,the physics
equations in the condition of plane stress are,
xyxy
xy
y
yx
x
E
T
E
T
E
?
?
?
?
???
?
?
???
?
)1(2 ?
?
?
?
?
?
?
?
Where T is a changed temperature(not a temperature in a temperature
field),substitute them into deformation compatible equations,we can
get,
??????
?
??
????
?
?
???
? ??
?
????
?
?
???
? ??
?
?
xy
xyyx
EyxTExTEy ?
????????? )1(22
2
2
2
2
On the other hand,we suppose body force is 0 in equilibrium
equations,and we can get,
0,0 ???????????? xyyx xyyxyx ????
( a)
( b)
72
§ 7-6 温度应力问题的应力函数差分解
对于温度应力的平面问题,在平面应力的情况下,物理方
程为,
xyxy
xy
y
yx
x
E
T
E
T
E
?
?
?
?
???
?
?
???
?
)1(2 ?
?
?
?
?
?
?
?
其中 是变温(不是某一温度场中的温度)。代入形变相容方
程,得,
T
??????
?
??
????
?
?
???
? ??
?
????
?
?
???
? ??
?
?
xy
xyyx
EyxTExTEy ?
????????? )1(22
2
2
2
2
另一方面,在平衡方程中,命体力分量等于零,得,
0,0 ???????????? xyyx xyyxyx ????
( a)
( b)
73
( a) and( b) are the basic derivative equations when we solve
the question of stress,
Derive the first and second formulas in (b) by x and y,then add them
together,we can get,
2
2
2
22
2 yxyx yxxy ?????????? ???
Substitute it into formula (a),simplify it,we can get equilibrium
equation,? ?
022 ????? TEyx ???
In the questions of temperature stress,there is no body force,So
we can simplify the questions further by citing stress functions,We
assume,
According to the questions of plane stress,we must change
for,and for, E 21 ??E?? ????1
( c)
yxxy xyyx ??
???
?
??
?
?? ?????? 2
2
2
2
2,,( d)
then the equilibrium equation (b) can be satisfied all the time,
Substitute it into formula ( c),we can get compatible equations
expressed by stress function,024 ???? TE ?? ( e)
74
式( a)和( b)就是按应力求解时的基本微分方程。
将( b)中的第一式及第二式分别对 及 求导,然后相加,
得,
x y
2
2
2
22
2 yxyx yxxy ?????????? ???
代入式( a),化简以后,得相容方程为,
? ? 022 ????? TEyx ??? ( c)
在温度应力问题中,没有体力作用,因此也可以引用应力
函数使问题得到进一步的简化。命,
yxxy xyyx ??
???
?
??
?
?? ?????? 2
2
2
2
2,,
则平衡微分方程( b)总能满足。代入式( c),得用应力函数
表示的相容方程,
024 ???? TE ??
对于平面应变问题,须将其中的 换为, 换为 。 E
21 ??
E ? ? ????1
( d)
( e)
75
In the questions of temperature stress,because the component of
face force,so all nodes in the boundary have,0?? YX
0,0,0 ??????? yx ???
then to solve the plane questions of temperature stress can be
simplified as to solve the derivative equation (e) in formula (f),
Calculate the stress component according to formula (d),
According to the previous knowledge,when we solve
temperature stress by using difference solution,we have,
? ? ? ?
? ? ? ? ? ? ? ?? ?1211109876543210404
0432120
2
2820
1
4
1
?????????????? ??????????????
??????
h
TTTTT
h
T
According to any node 0,we can have the following formula
form formula (e),? ? ? ? 0
0204 ???? TE ??Substitute formulas (g) and (h) into formula (i),we can get the
difference equation we need,
? ? ? ? ? ?
? ? 04
2820
04321
2
1211109876543210
??????
????????????
TTTTThE ?
?????????????
( 1)
( f)
( g)
( h)
( i)
76
在温度应力问题中,由于面力分量,所以在边界
的所有各点都有,
0?? YX
0,0,0 ??????? yx ???
于是求解温度应力的平面问题,就简化为在式( f)所示的边界
条件下求解微分方程( e),然后按式( d)求出应力分量。
将式( g)、( h)代入式( i),得所需的差分方程,
? ? ? ? ? ?
? ? 04
2820
04321
2
1211109876543210
??????
????????????
TTTTThE ?
?????????????
( 1)
( f)
用差分法求解温度应力时,根据前面知识有,
? ? ? ?
? ? ? ? ? ? ? ?? ?1211109876543210404
0432120
2
2820
1
4
1
?????????????? ??????????????
??????
h
TTTTT
h
T ( g)
( h)
对于任一结点 0,由式( e)有,
? ? ? ? 00204 ???? TE ?? ( i)
77
That means the value of every node in the boundary is 0,and the
value of a row void nodes out of the boundary equals to the
relative ones in the boundary,
?
?
According to the previous formulas,we can get,
BA y
hxh ???????? ?????????? ???? ?????? 2,2 1014913
According to boundary condition (f),we can get,
0,0,0 ????????? ????????? ????
BA
BA yx
????
Substitute them into formula (j),we can get difference format of
boundary condition,
1014913,,0 ?????? ???? BA ( 2)
( j)
To solve the questions of temperature stress with difference
method is to solve sample (1) difference equations in the
boundary condition shown by formula (2),Among the questions
only the value of inside nodes are unknown,therefore we can
get stress component of every node by calculating the unknown
quantities,
?
78
即:边界上各结点处的 值为零,而边界外一行虚结点处的
值,就等于边界内一行相对结点处的 值。
? ?
?
由前面公式有,
BA y
hxh ???????? ?????????? ???? ?????? 2,2 1014913
按照边界条件( f),有,
0,0,0 ????????? ????????? ????
BA
BA yx
????
代入式( j),得边界条件的差分形式,
1014913,,0 ?????? ???? BA ( 2)
( j)
这样,用差分法求解温度应力问题,就是在( 2)所示的
边界条件下求解( 1)型的差分方程。这些方程中只包含内
结点处的 值作为未知量,因而可以用来求解这些未知值,
从而求得各结点处的应力分量。
?
79
Besides,the difference of two former and later no heat- source
plane stable temperature fields will not cause any temperature
stress to the no boundary restricted single continuous objects (no
matter what unstable process the former stable temperature field
experiences during its transition to the later stable temperature
field.)
80
此外,前后两个无热源的平面稳定温度场之差,不会在
没有边界约束的单连体中引起任何温度应力(不论前一个稳
定温度场经过怎样的不稳定过程而过渡到后一个稳定温度
场)。
81
§ 7-7 Difference Solution to Displacement
According to the plane questions of single continuous objects which
only have stress boundary conditions and constant body force,we can
simply find the value of stress by using difference solution to stress
function,But it is more complex to the more continuous objects,When
the elastic objects have stress or mixed boundary conditions,especially
when the body force is not constant,it is more difficult to use
difference solution to stress function,On the other hand,even though
we can find the value of stress though difference solution to stress
function,it is very complex to find the displacement,
We can simply find the value of displacement and stress through
difference solution to displacement,no matter the elastic objects are
single continuous objects or more continuous ones,and no matter
what boundary they have or their body force is constant or not,
Assume there is a point a in line 0-1 as in Fig.7-13,The distance
between it and node 0 is, And we prescribe,h?
1,Find derivate value of function f(delegating the displacement
component u or v)in the grid,
1.1 the derivate of function f along the direction of the grid-line is
constant in every node (except the crunodes) of the line,
82
§ 7-7 位移的差分解
对于只具有应力边界条件的单连体受有常体力时的平面问
题,可以通过应力函数的差分解比较简单地求得应力的数值。
但是对于多连体,则求解比较繁。当弹性体具有应力边界条件
或混合边界条件时,特别是在体力并非常量的情况下,则更难
以利用应力函数的差分解。另一方面,即使通过应力函数差分
解求得应力的数值,要进一步求出位移也是很繁的。
利用位移的差分解,则不论弹性体是单连体还是多连体,也
不论它具有何种边界,以及它所受的体力是否为常量,总可以比
较简便地求得位移的数值,从而求得应力的数值。
如图 7-13,设网线段 0-1上有一点,距结点 0的距离为 。
规定,
a h?
一、求 (代表位移分量 或 )在网线上一点处的导数值 f u v
(一)函数 沿网格线方向的导数,在该网线上各点(不包括
结点)处的数值取为常量,
f
83
So,
h
ff
x
f
a
01 ???
?
??
?
?
?
?
1.2 The derivate of function f in the
direction of plumbing grid-line
changes linearly in every node (except
the crunodes )in the grid-line,So,
? ?
10
1 ???????? ??????????? ???????????? ?? yfyfyf
a
??
Where,the derivate of f in crunodes
are,
h
ff
y
f
h
ff
y
f
2,2
56
1
42
0
????
?
???
?
?
?
?????
?
???
?
?
?
?
Similarly,according to node,the distance between
which and node 0 in line 0-2 is,we have, h?
b
h
ff
y
f
b
02 ????
?
???
?
?
?
?
x
y
h h
h?
8
3
4 5
0
h?
2
h
h
1
7
a
c d
e 6
b
Fig.7— 13
84
据此有,
h
ff
x
f
a
01 ???
?
??
?
?
?
?
(二)函数 在垂直于网线方向的
导数,在该网线上各点(不包括结
点)处的数值取为按线性变化,据
此有,
f
? ?
10
1 ???????? ??????????? ???????????? ?? yfyfyf
a
??
其中,在结点处的导数值取为,f
h
ff
y
f
h
ff
y
f
2,2
56
1
42
0
????
?
???
?
?
?
?????
?
???
?
?
?
?
对于网线段 0-2上距结点 0为 的一点,同样有,h? b
h
ff
y
f
b
02 ????
?
???
?
?
?
?
x
y
h h
h?
8
3
4 5
0
h?
2
h
h
1
7
a
c d
e 6
b
图 7— 13
85
? ?
20
1 ?????? ????????? ?????????? ?? xfxfxf
b
??
h
ff
x
f
h
ff
x
f
2,2
76
2
31
0
???
?
??
?
?
?
????
?
??
?
?
?
?
Where,
1.3 According to any node,which is not in the line,we
assume that,
c
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
???
?
?
??
?
?
?
?
????
?
?
??
?
?
?
?
eac
dbc
x
f
x
f
x
f
y
f
y
f
y
f
??
??
1
1
So,
? ?
? ? ??
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
???
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
????
?
?
??
?
?
?
?
h
ff
h
ff
x
f
h
ff
h
ff
y
f
c
c
2601
1602
1
1
??
??
86
? ?
20
1 ?????? ????????? ?????????? ?? xfxfxf
b
??
h
ff
x
f
h
ff
x
f
2,2
76
2
31
0
???
?
??
?
?
?
????
?
??
?
?
?
?
其中,
(三)对于不在网线上的任一点,则取为,c
? ?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
???
?
?
??
?
?
?
?
????
?
?
??
?
?
?
?
eac
dbc
x
f
x
f
x
f
y
f
y
f
y
f
??
??
1
1
这样就有,
? ?
? ? ??
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
???
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
????
?
?
??
?
?
?
?
h
ff
h
ff
x
f
h
ff
h
ff
y
f
c
c
2601
1602
1
1
??
??
87
2,Domain
3,Deduce difference solution to inside nodes
? ?dxy?
In Fig.7-15,the domain of node 0 is the
square expressed by void lines,In
the domain,expresses the total
outside force along direction,and the
positive direction of axis is positive,
The stresses along axis
are,,, According to the
equilibrium conditions along axis in
the domain,we can get,
hh?
x
? ?0xP
x
x
? ?ax? ? ?bx? ? ?cxy?
x
5
y
x
e
d
f
2
4
g
b
a
c
3
2/h
2/h
2/h
2/h
2/h 2/h 2/h 2/h
Fig.7— 14
y
x
2
1
Fig,7— 15
548
3
7
o
6
h
h
h h
dy)(?
ay)(?
by)(?
cy)(?
c
bbxy)(?
dxy)(?
cxy)(?
axy)(?
oxP)(
oyP)(
The domain of one node is the area
encircled by the plumbing bisectors
of lines around the node,For example
in Fig.7-14,the domain of node 1 is
the square 1 of,the domain
of node 2 is the square of, 22
hh ?abc
2hh?abde
88
二、领域
某个结点的, 领域,,是指环
绕该结点的那两段、三段或四段网
线的垂直平分线所围成的区域。例
如图 7-14中,角隅结点 1的领域是
的正方形 1 ;角隅结点 2的领域
是 的矩形 。
22 hh ?
abc
abde2hh?
三、推导内结点处的差分公式
在图 7-15中,内结点 0的领域是
虚线所示的 的正方形。在该领域
上,作用于 方向的外力总和用
代表,以沿 轴的正方向为正;作用
于 方向的应力有,,
和 。由该领域在 方向的平衡条
件得,
hh?
x ? ?0xP
x
x ? ?ax? ? ?bx? ? ?cxy?
? ?dxy? x
5
y
x
e
d
f
2
4
g
b
a
c
3
2/h
2/h
2/h
2/h
2/h 2/h 2/h 2/h
图 7— 14
y
x
2
1
图 7— 15
548
3
7
o
6
h
h
h h
dy)(?
ay)(?
by)(?
cy)(?
c
bbxy)(?
dxy)(?
cxy)(?
axy)(?
oxP)(
oyP)(
89
According to difference solution formula,we get,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
??
??
?
?
?
?
?
?
?
h
vv
h
vv
y
v
y
v
y
v
h
uu
y
u
h
uu
y
u
h
uu
x
u
h
uu
x
u
a
dc
ba
22
1
22
1
2
1
2
1
,
,
5642
10
1002
3001
? ? ? ? ? ? ? ? ? ? 00 ????? xdxycxybxax Phhhh ????
Take examples of plane stress questions,we get,
? ? 0
)1(2)1(2
11
0
22
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
x
ddcc
bbaa
P
x
v
y
uE
h
x
v
y
uE
h
y
v
x
uE
h
y
v
x
uE
h
??
?
?
?
?
(1)
90
由差分公式,有,
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
??
??
?
?
?
?
?
?
?
h
vv
h
vv
y
v
y
v
y
v
h
uu
y
u
h
uu
y
u
h
uu
x
u
h
uu
x
u
a
dc
ba
22
1
22
1
2
1
2
1
,
,
5642
10
1002
3001
? ? ? ? ? ? ? ? ? ? 00 ????? xdxycxybxax Phhhh ????
以平面应力问题为例,上式成为,
? ? 0
)1(2)1(2
11
0
22
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
x
ddcc
bbaa
P
x
v
y
uE
h
x
v
y
uE
h
y
v
x
uE
h
y
v
x
uE
h
??
?
?
?
?
(1)
91
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
h
vv
h
vv
x
v
x
v
x
v
h
vv
h
vv
x
v
x
v
x
v
h
vv
h
vv
y
v
y
v
y
v
d
c
b
22
1
22
1
2
1
2
1
22
1
22
1
2
1
2
1
22
1
22
1
2
1
2
1
8531
40
7631
20
8742
30
Substitute them into formula (1),simplify and we can get,
? ? ? ? ? ? ? ?? ? ? ?? ?? ? ? ? 08765423102 11483818 xPvvvvuuuuuE ????????????? ????
Similarly,we can get the formula according to the equilibrium
conditions along direction,y
? ? ? ? ? ? ? ?? ? ? ?? ?? ? ? ? 08765314202 11483818 yPuuuuvvvvvE ????????????? ????
In order to simplify calculation,we express the above two
difference equations with the difference maps in Fig.7-16 and
Fig.7-17,
92
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
h
vv
h
vv
x
v
x
v
x
v
h
vv
h
vv
x
v
x
v
x
v
h
vv
h
vv
y
v
y
v
y
v
d
c
b
22
1
22
1
2
1
2
1
22
1
22
1
2
1
2
1
22
1
22
1
2
1
2
1
8531
40
7631
20
8742
30
代入式( 1),简化得,
? ? ? ? ? ? ? ?? ? ? ?? ?? ? ? ? 08765423102 11483818 xPvvvvuuuuuE ????????????? ????
与上相似,可由该结点领域在 方向的平衡条件得出,y
? ? ? ? ? ? ? ?? ? ? ?? ?? ? ? ? 08765314202 11483818 yPuuuuvvvvvE ????????????? ????
为了计算方便,将上列两个差分方程分别用图 7-16和图 7-17
的差分图式来表示。
93
y
x
??)1( ?? u)1(4 ??? ??)1( ?
u8? u)3(8 ?? u8?
??)1( ? u)1(4 ??? ??)1( ??
[)1(8 2??E xP?]
Fig,7— 16
x
y
u)1( ???
??)1(4 ??
u)1( ???8?
u)3(8 ??
?8?u)1( ??
??)1(4 ??
??)1( ??
[)1(8 2??E yP?]
Fig,7— 17
94
y
x
??)1( ?? u)1(4 ??? ??)1( ?
u8? u)3(8 ?? u8?
??)1( ? u)1(4 ??? ??)1( ??
[)1(8 2??E xP?]
图 7— 16
x
y
u)1( ???
??)1(4 ??
u)1( ???8?
u)3(8 ??
?8?u)1( ??
??)1(4 ??
??)1( ??
[)1(8 2??E yP?]
图 7— 17
95
4.Difference equations of boundary nodes,
? ? ? ? ? ? ? ? 022 0 ????? xcxybxyax Phhh ???
And
we
get,? ? 0)1(22
)1(221
0
2
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?
x
cc
bbaa
P
x
v
y
uEh
x
v
y
uEh
y
v
x
uE
h
?
?
?
?
(2)
B
x
y
4
0
2
8
3
7
A
e
j
k
f
i
d
? ?cy?
? ?cxy?
? ?ayx?
? ?ax?
? ?byP
? ?bxP
? ?by? ? ?bxy?
c
g
a
b
Fig.7-18
? ?0xP
x
AB x
hh ?2
? ?ax? ? ?bxy? ? ?cxy?
(1)We assume that elastic object has some
boundary,which plumbs axis,just as in
Fig.7-18,and its outside normal is along
positive direction,The domain of boundary
node 0 is the square,Just as expressed
by the void lines in the Fig,We express the
total outside force with (including body
force and face force),We can get the stress
component,, from the
equilibrium conditions along xdirections,
96
四、边界结点处的差分方程
(1)设弹性体具有垂直于 轴的某一边
界,如图 7-18,其向外法线系沿
轴的正向。边界结点 0的领域为
的矩形,如图中虚线所示。用 表示
该领域所受的 方向的外力总和(包括
体力和面力,以沿 的正向为正)。平
行于 轴的应力分有,, 。
由该领域在 x方向的平衡条件,
x
AB x
hh ?2
? ?0xP
x
x
x ? ?ax? ? ?bxy? ? ?cxy?
? ? ? ? ? ? ? ? 022 0 ????? xcxybxyax Phhh ???
得,
? ? 0
)1(22
)1(221
0
2
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?
x
cc
bbaa
P
x
v
y
uEh
x
v
y
uEh
y
v
x
uE
h
?
?
?
?
(2)
B
x
y
4
0
2
8
3
7
A
e
j
k
f
i
d
? ?cy?
? ?cxy?
? ?ayx?
? ?ax?
? ?byP
? ?bxP
? ?by? ? ?bxy?
c
g
a
b
图 7-18
97
Apply difference formula,and we can get,
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
y
v
y
v
y
v
h
uu
x
u
gkc
iic
gfb
edb
a
a
3084
4083
3072
0237
8742
30
30
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
22
1
22
1
2
1
2
1
98
应用差分公式,有,
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
y
v
y
v
y
v
h
uu
x
u
gkc
iic
gfb
edb
a
a
3084
4083
3072
0237
8742
30
30
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
22
1
22
1
2
1
2
1
99
Substitute them into formula (2),simplify them and we can get,
? ? ? ?? ? ? ? ? ?? ?
? ?? ? ? ?? ? ? ? 08742
8734202
12312
172133112[
)1(16
xPvvvv
uuuuuuE
???????
?????????
?
??
????
?
The difference map is in Fig.7-19,
? ?? ?vu???? ?? 121 ? ?? ?vu??312 13 ?? ??
? ?u??? 72 ? ?u?3112 ?
? ?? ?vu???? ?? 121 ? ?? ?vu??312 13 ?? ??
boundary
boundary
xPE ???????? )1(16 2?
y
x
Fig.7-19
100
代入式( 2),简化后得,
? ? ? ?? ? ? ? ? ?? ?
? ?? ? ? ?? ? ? ? 08742
8734202
12312
172133112[
)1(16
xPvvvv
uuuuuuE
???????
?????????
?
??
????
?
其差分图式如图 7-19所示。
? ?? ?vu???? ?? 121 ? ?? ?vu??312 13 ?? ??
? ?u??? 72 ? ?u?3112 ?
? ?? ?vu???? ?? 121 ? ?? ?vu??312 13 ?? ??
边界
边界
xPE ???????? )1(16 2?
y
x
图 7-19
101
If the displacement component of node 0 along direction is
unknown,similarly we can get the maps as in Fig.7-20,
0v y
If the outside normal of boundary is along negative direction of
axis,the stress and outside force components of boundary node 0 in
the domain are in Fig.7-21,Similarly we can get difference
equations of and,and their difference maps are in Fig.7-22 and
Fig.7-23,
AB x
0v0u
x
y
boundary
u)1( ???
??
u)31( ???
?3?
??)21(2 ?? ??)25(2 ?
u)1( ??
??
u)31( ??
?3?
[)1(8 2??E yP?]
Fig,7— 20
x
y
4
o
5
1
2
6
Fig,7— 21
A
B
a
c
b
cy)(?
ax)(?
by)(?
axP)(
ayP)(
bxy)(?
axy)(?
cxy)(?
102
如果结点 0在 方向的位移分量 是未知值,同理可以得到
如图 7-20所示的图式。
0vy
如果边界 的向外法线是沿 轴的负向,则作用于边界结点 0的
领域的应力分量及外力分量如图 7-21所示。与前面运算相似,
可得出相应于未知值 及 的差分方程,它们的差分图式分别
如图 7-22,7-23所示。
AB x
0v0u
x
y
边界
u)1( ???
??
u)31( ???
?3?
??)21(2 ?? ??)25(2 ?
u)1( ??
??
u)31( ??
?3?
[)1(8 2??E yP?]
图 7— 20
x
y
4
o
5
1
2
6
图 7— 21
A
B
a
c
b
cy)(?
ax)(?
by)(?
axP)(
ayP)(
bxy)(?
axy)(?
cxy)(?
103
( 2)We assume that the elastic object has a boundary which plumbs
axis,If the outside normal of the boundary is along positive
direction of,and the displacement components and of node 0
in the boundary are unknown,then we can get difference maps of
and as in Fig.7-24 and Fig.7-25,If the outside normal of the
boundary is along negative direction of,then we can get difference
maps of and as in Fig.7-26 and Fig.7-27,
y
y
0u 0v
0v
0v0u
0u
y
boundary
? ?v u331?? ? ? ?v u???1
? ?v?212 ??? ?v?252 ?
? ?v u3 31? ?? ? ? ?v u? ?? ?1
yPE ???????? )1(8 2?
boundary
boundary
? ?? ?vu??31213 ?? ?? ? ?? ?vu???? ?? 121
? ?u??? 72? ?u?3112 ?
? ?? ?vu??31213 ?? ?? ? ?? ?vu???? ?? 121
xPE ???????? )1(16 2?
y
x
y
x boundary
Fig.7-22 Fig.7-23
104
( 2)假定弹性体具有垂直于 轴的一个边界。如果边界的向外
法线是沿 的正向,而该边界上某一结点 0的位移分量 或 是
未知值,则得出相应于 或 的差分图式如图 7-24或图 7-25所
示。如果该边界的向外法线是沿 轴的负向,则得出相应于
或 的差分图式如图 7-26或图 7-27所示。
y
y 0u 0v
0v
0v
0u
0uy
边界
边界
? ?? ?vu??31213 ?? ?? ? ?? ?vu???? ?? 121
? ?u??? 72? ?u?3112 ?
? ?? ?vu??31213 ?? ?? ? ?? ?vu???? ?? 121
xPE ???????? )1(16 2?
y
x
边界
? ?v u331?? ? ? ?v u???1
? ?v?212 ??? ?v?252 ?
? ?v u3 31? ?? ? ? ?v u? ?? ?1
yPE ???????? )1(8 2?
y
x 边界
图 7-22 图 7-23
105
x
boundary boundary
? ?vu???? ?? 1 )1(2 ? ?v??? 72
? ?v?3112 ?? ?vu???? ?13 )31(2 ? ?vu???? ?? 13 )31(2
yPE ???????? )1(16 2?
y
? ?vu???? ?1 )1(2
Fig.7-25
boundary boundary
? ?vu ????1 ? ?u?212 ??
? ?u?252 ?? ?vu ?313 ??? ? ?vu ?313 ???
xPE ???????? )1(8 2?
y
x
? ?vu ????1
Fig.7-24
106
边界 边界
? ?vu???? ?? 1 )1(2 ? ?v??? 72
? ?v?3112 ?? ?vu???? ?13 )31(2 ? ?vu???? ?? 13 )31(2
yPE ???????? )1(16 2?
y
x
? ?vu???? ?1 )1(2
图 7-25
边界 边界
? ?vu ????1 ? ?u?212 ??
? ?u?252 ?? ?vu ?313 ??? ? ?vu ?313 ???
xPE ???????? )1(8 2?
y
x
? ?vu ????1
图 7-24
107 Fig.7-27
x
boundary boundary
? ?vu???? ?? 13 )31(2 ? ?v?3112 ?
? ?v??? 72? ?vu???? ?1 )1(2 ? ?vu???? ?? 1 )1(2
yPE ???????? )1(16 2?
y
? ?vu???? ?13 )31(2
Fig.7-26
boundary boundary
? ?vu ?313 ??? ? ?u?252 ?
? ?v?212 ??? ?vu ???? 1 ? ?vu ???? 1
xPE ???????? )1(8 2?
y
x
? ?vu ?313 ???
108
边界 边界
? ?vu???? ?? 13 )31(2 ? ?v?3112 ?
? ?v??? 72? ?vu???? ?1 )1(2 ? ?vu???? ?? 1 )1(2
yPE ???????? )1(16 2?
y
x
? ?vu???? ?13 )31(2
图 7-27
边界 边界
? ?vu ?313 ??? ? ?u?252 ?
? ?v?212 ??? ?vu ???? 1 ? ?vu ???? 1
xPE ???????? )1(8 2?
y
x
? ?vu ?313 ???
图 7-26
109
At the corner of two boundaries,the domain of node 0 is a
square,We assume that the outside normals of the two boundaries
are along the positive direction,just as in Fig.7-28,In the domain
encircled with void lines,we use to express the total outside
force along direction,The stress components parallel axis are
only and, If is unknown,the difference equations about
can be got from the equilibrium condition along direction in the
domain,The equilibrium condition is,
Apply physic and geometry equations,we can get,
? ? ? ? 012212 02 ?????
?
???
? ?
?
??
?
?
?
??
???
?
???
?
?
?
?????
?
???
?
???
?
???
?
?
???
?
??
?
?
?
?
?? xbbaa Px
v
y
uEh
y
v
x
uEh
???
According to difference formula,we can get,
?????? ???????? ???????? ????????? ????????? ?? h uuh uuxuxuxu
dca
3084
4
3
4
1
4
3
4
1
x
0u0u
22 hh ?
x
? ?0xP
? ?ax? ? ?bxy?
x
? ? ? ? ? ? 022 0 ???? xbxyax Phh ??
110
在两个边界的交点 (角点 ),结点 0的领域将是 的正方
形。假定该二边界的向外法线都沿着坐标轴的正向,如图 7-28。
在虚线所示的结点领域上,作用于 方向的外力总和仍用 表
示,平行于 轴的应力分量只有 和 。如果 是未知的,
则相应于 的差分方程可由该领域在 方向的平衡条件得来,
该平衡条件为,
22 hh ?
? ?0xPx
x ? ?ax? ? ?bxy? 0u
0u x
? ? ? ? ? ? 022 0 ???? xbxyax Phh ??
利用物理方程和几何方程改换为,
? ? ? ? 012212 02 ?????
?
???
? ?
?
??
?
?
?
??
???
?
???
?
?
?
?????
?
???
?
???
?
???
?
?
???
?
??
?
?
?
?
?? xbbaa Px
v
y
uEh
y
v
x
uEh
???
由差分公式可得,
?????? ???????? ???????? ????????? ????????? ?? h uuh uuxuxuxu
dca
3084
4
3
4
1
4
3
4
1
111
x
y
8 c j 4
g
e
3 d k
i
f
O
b
a
by)(?
bxy)(?
0)( xp
0)( yp
ax)(?
axy)(?
Fig.7-28
112
x
y
8 c j 4
g
e
3 d k
i
f
O
b
a
by)(?
bxy)(?
0)( xp
0)( yp
ax)(?
axy)(?
图 7-28
113
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
y
v
y
v
y
v
kjb
igb
fea
3084
4083
4083
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
2
1
2
1
2
1
2
1
? ? ? ? ? ?? ?
? ? ? ?? ? ? ?? ?? ? ? ? 034808
4302
312123
31533
)1(16
xPvvvvu
uuuE
?????????
?????
?
???
???
?
Substitute it into the above formulas and simplify them,we can get
the difference equation of,which is unknown,
0u
Its map is in Fig.7-29,similarly we can get the difference equation
of and its map is in Fig.7-30,0v
Similarly,if at the corner 0,the outside normal of one boundary or
two boundaries is along the negative direction of axis,we also can
get difference maps of and, 0u 0v
114
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
y
v
y
v
y
v
kjb
igb
fea
3084
4083
4083
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
2
1
2
1
2
1
2
1
? ? ? ? ? ?? ?
? ? ? ?? ? ? ?? ?? ? ? ? 034808
4302
312123
31533
)1(16
xPvvvvu
uuuE
?????????
?????
?
???
???
?
代入上式简化后,得相应于未知值 的差分方程,0u
其图式如图 7-29所示。同样可得相应于未知值 的差分方程,
其图式如图 7-30所示。
0v
同理,如果在角隅结点 0处,一个边界或两个边界的向外
法线是沿坐标轴的负向,也可得出相应于 和 的差分图式。 0u 0v
115
Just as in Fig.7-31 to Fig.7-36,
Fig.7-30
boundary
boundary
? ?vu???? ?? 12 )3(
vu)31(2 )5( ???? ??
xP
E ???????? )1(16
2?
y
x
? ?vu??312 )31( ?? ??
? ?vu???? ?12 )3(3 boundary
y
boundary
? ?vu???? ?? 3 )1(2
vu)31( )31(2 ???? ?
yP
E ???????? )1(16
2?
x
? ?v u? ??? ?? 5 )31(2
? ?vu???? ?33 )1(2
Fig.7-29
116
如图 7-31至 7-36。
y
图 7-30
边界
边界
? ?vu???? ?? 3 )1(2
vu)31( )31(2 ???? ?
yP
E ???????? )1(16
2?
x
? ?v u? ??? ?? 5 )31(2
? ?vu???? ?33 )1(2边界
边界
? ?vu???? ?? 12 )3(
vu)31(2 )5( ???? ??
xP
E ???????? )1(16
2?
y
x
? ?vu??312 )31( ?? ??
? ?vu???? ?12 )3(3
图 7-29
117
Fig.7-31
[ ]=
vu)31(2 )5( ???? ?? vu)1(2 )3(3 ???? ?
vu)1(2 )3( ???? ?? vu)31(2 )31( ???? ??
)( 2116 ??E xP
x
y
boundary
boundary
Fig.7-32
[ ]=
vu)31( )31(2 ???? ?? vu)3(3 )1(2 ???? ??
vu)3( )1(2 ???? ? v
u)5( )31(2 ???? ?
yP)( 2116 ??E
x
y
boundary
boundary
118
[ ]= [ ]=
图 7-31 图 7-32
vu)31(2 )5( ???? ?? vu)1(2 )3(3 ???? ?
vu)1(2 )3( ???? ?? vu)31(2 )31( ???? ??
vu)31( )31(2 ???? ?? vu)3(3 )1(2 ???? ??
vu)3( )1(2 ???? ? v
u)5( )31(2 ???? ?
)( 2116 ??E xP yP)( 2116 ??E
x
y
x
y
边界 边界
边界 边界
119
[ ]=
Fig.7-34
yP
vu)5( )31(2 ???? ? v
u)3( )1(2 ???? ?
vu)3(3 )1(2 ???? ?? v
u)31( )31(2 ???? ??
)1(16 2??
E
x
y
boundary
boundary
[ ]=
Fig.7-33
xP
vu)31(2 )31( ???? ?? vu)1(2 )3( ???? ??
vu)1(2 )3(3 ???? ? v
u)31(2 )5( ???? ??
)1(16 2??
E
x
y
boundary
boundary
120
[ ]= [ ]=
图 7-33 图 7-34
xP yP
vu)31(2 )31( ???? ?? vu)1(2 )3( ???? ??
vu)1(2 )3(3 ???? ? v
u)31(2 )5( ???? ??
vu)5( )31(2 ???? ? v
u)3( )1(2 ???? ?
vu)3(3 )1(2 ???? ?? v
u)31( )31(2 ???? ??
)1(16 2??
E
)1(16 2??
E
x
y
x
y
边界 边界
边界 边界
121
y
[ ]=
Fig.7-35
xP
vu)1(2 )3(3 ???? ? v
u)31(2 )5( ???? ??
vu)31(2 )31( ???? ?? vu)1(2 )3( ???? ??
)1(16 2??
E
x
boundary
boundary
[ ]=
Fig.7-36
yP
vu)3(3 )1(2 ???? ? v
u)31( )31(2 ???? ?
v u)5( )31(2 ? ??? ?? v
u)3( )1(2 ???? ??
)1(16 2??
E
x
y
boundary
boundary
122
y
[ ]= [ ]=
图 7-35 图 7-36
xP yP
vu)1(2 )3(3 ???? ? v
u)31(2 )5( ???? ??
vu)31(2 )31( ???? ?? vu)1(2 )3( ???? ??
vu)3(3 )1(2 ???? ? v
u)31( )31(2 ???? ?
v u)5( )31(2 ? ??? ?? v
u)3( )1(2 ???? ??
)1(16 2??
E
)1(16 2??
E
x x
y
边界
边界
边界
边界
123
§ 7-8 Example of Difference Solution to Displacement
1:2
Example 1,suppose there is a fixed
rectangle sheet as in Fig.7-37,The ratio of
length and breadth is,and its density is,
In order to simplify the calculation,we
assume,Try to use grids of to
calculate the displacement and stress caused
by its weight,
?
0?? 24?
Solution, Because of its symmetry,there are only three unknown
values,They are,, ( ), The difference
equations of,,
are,
au av bv acacb uuvvu ????,,0
au av bv
? ? ? ?
? ?? ? ? ?
? ?? ? ? ? 2
2
0
)4(238
8
438
8
)3(8
8
ghPvv
E
ghPvv
E
Pu
E
byab
byba
xa
?
?
???
???
?
x
Fig.7-37
c
e d
b a
g f
y
124
§ 7-8 位移的差分解的实例
例 1,设有四边固定的矩形薄板,如图
7-37,长度与宽度之比为,密度
为,为简单起见取 。试用 的
网格计算自重引起的位移和应力。
1:2
? 0?? 24?
? ? ? ?
? ?? ? ? ?
? ?? ? ? ? 2
2
0
)4(238
8
438
8
)3(8
8
ghPvv
E
ghPvv
E
Pu
E
byab
byba
xa
?
?
???
???
?
x
图 7-37
c
e d
b a
g f
y 解,由于对称,只有三个独立的未知值,
即,, ( )。相
应于,, 的差分方程为,
au av bv acacb uuvvu ????,,0
au av bv
125
E
ghv
E
ghvu
baa
22 4706.0,4118.0,0 ?? ???
Simplify them
and we get,
Because,use physic and geometry equations and midpoint
derivative formula,we can get,
0??
? ?
? ? 0
21
0
21
2
2
???
?
?
??
?
? ?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
???
?
?
??
?
? ?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
h
vv
E
y
v
E
x
u
y
vE
h
vv
E
y
v
E
x
u
y
vE
eg
bbb
by
df
aaa
ay
?
?
?
?
?
?
Towards the nodes in the boundary,use endpoint derivative
formulas,we can get,
? ?
? ?
? ?
? ? gh
h
Ev
gh
h
Ev
gh
h
Ev
h
vvv
E
y
v
E
gh
h
Ev
h
vvv
E
y
v
E
b
g
y
b
e
y
adaf
f
f
y
afad
d
d
y
??
??
??
??
9410
2
9410
2
8240
2
2
43
8240
2
2
43
.
.
.
.
????
??
????
?
?
?
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
? ???
?
?
?
?
?
?
?
?
?
?
?
?
126
E
ghv
E
ghvu
baa
22 4706.0,4118.0,0 ?? ???简化后得,
由于,利用物理、几何方程及中点导数公式,得,0??
? ?
? ? 0
21
0
21
2
2
???
?
?
??
?
? ?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
???
?
?
??
?
? ?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
h
vv
E
y
v
E
x
u
y
vE
h
vv
E
y
v
E
x
u
y
vE
eg
bbb
by
df
aaa
ay
?
?
?
?
?
?
对于边界上的结点,利用端点导数公式,得,
? ?
? ?
? ?
? ? gh
h
Ev
gh
h
Ev
gh
h
Ev
h
vvv
E
y
v
E
gh
h
Ev
h
vvv
E
y
v
E
b
g
y
b
e
y
adaf
f
f
y
afad
d
d
y
??
??
??
??
9410
2
9410
2
8240
2
2
43
8240
2
2
43
.
.
.
.
????
??
????
?
?
?
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
? ???
?
?
?
?
?
?
?
?
?
?
?
?
127
Similarly,we can find that towards every node,0?x?
Example 2,suppose the below of the
sheet in example 1 is supported by
poles (support is lubricity ),as in Fig.7-
38,Calculate the displacement and
stress caused by its weight,Solution,the unknown values are
,The corresponding difference
equations are,
,,aa vu
fb uv,
? ? ? ?
? ?? ? ? ?
? ? ? ?? ? ? ?
? ?? ? ? ? 0252
8
2)4(238
8
438
8
04)3(8
8
2
2
????
?????
???
???
fxbaf
byfab
ayba
axfa
Pvuu
E
ghPuvv
E
ghPvv
E
Puu
E
?
?
Fig.7-38
Simplify and calculate them,we can get,
128
通过同样的计算,可见在所有各结点处都得到,0?x?
例 2,设例 1中的薄板改在下边受连
干支承(光滑支承),如图 7-38,试
求自重引起的位移及应力。
解,在该题中,独立的未知值有
。相应的差分方程为,
,,aa vu
fb uv,
? ? ? ?
? ?? ? ? ?
? ? ? ?? ? ? ?
? ?? ? ? ? 0252
8
2)4(238
8
438
8
04)3(8
8
2
2
????
?????
???
???
fxbaf
byfab
ayba
axfa
Pvuu
E
ghPuvv
E
ghPvv
E
Puu
E
?
?
简化后求解,得,
图 7-38
129
E
gh
u
E
gh
v
E
gh
v
E
gh
u
fb
aa
22
22
0482.0,4663.0
4111.0,0080.0
??
??
??
??
The calculation of is like example 1,Next we will
calculate and of some nodes,y
?
x? xy?
? ?
? ?
? ?
? ?
? ?
gh
h
vvE
h
vvv
h
uuE
x
v
y
uE
x
v
y
uE
gh
h
Eu
h
uuu
E
x
u
E
h
uu
E
x
u
E
gh
h
uu
E
x
u
E
y
v
x
uE
babai
kj
iiii
i
xy
fgfj
j
jx
gj
f
fx
ff
ggg
yx
?
?
?
??
?
??
?
?
295.0
2
4
22
43
22
212
096.0
2
2
43
0
2
48.0
2
)(
1
2
???
?
?
?
?
? ??
?
?
?
?
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
????
?
?
?
?
?
?
?
? ??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
130
E
gh
u
E
gh
v
E
gh
v
E
gh
u
fb
aa
22
22
0482.0,4663.0
4111.0,0080.0
??
??
??
??
的计算同例 1。下面计算几点处的 及, y? x? xy?
? ?
? ?
? ?
? ?
? ?
gh
h
vvE
h
vvv
h
uuE
x
v
y
uE
x
v
y
uE
gh
h
Eu
h
uuu
E
x
u
E
h
uu
E
x
u
E
gh
h
uu
E
x
u
E
y
v
x
uE
babai
kj
iiii
i
xy
fgfj
j
jx
gj
f
fx
ff
ggg
yx
?
?
?
??
?
??
?
?
295.0
2
4
22
43
22
212
096.0
2
2
43
0
2
48.0
2
)(
1
2
???
?
?
?
?
? ??
?
?
?
?
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
????
?
?
?
?
?
?
?
? ??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
131
? ? 024324322 ???
?
?
???
? ??????
???
?
???
? ?
?
??
?
?
?
??
???
?
???
?
?
??
h
vvv
h
uuuE
x
v
y
uE gfjkij
ji
jxy?
Example 3,suppose there is a deep
rectangle girder in Fig.7-39,Its left
and right boundaries are fixed,and its
above boundary bears equal load,
Calculate the displacement and stress,
We make
q
2.0??
Solution,because of its symmetry the
unknown values are only 6,
,,,(,,,,,cfbeadccbbaa vvvvvvvuvuvu ???
),,cfbead uuuuuu ??????
The difference equations of and are,au av? ? ? ?
? ?
? ? 0
8.0))(2.1(2)8.0(3))(4.0(2)2.7(2)4.10(2
)96.0(16
02.1)(4.0)(3)6.0(2)6.4(2
)96.0(8
??
???????
?????????
ay
bbaaba
axbbaaba
P
vuvuvv
E
Pvuvuuu
E
Fig.7-39
132
? ? 024324322 ???
?
?
???
? ??????
???
?
???
? ?
?
??
?
?
?
??
???
?
???
?
?
??
h
vvv
h
uuuE
x
v
y
uE gfjkij
ji
jxy?
,,,(,,,,,cfbeadccbbaa vvvvvvvuvuvu ???
例 3,设有矩形深梁,左右两边固定,
上边受均布载荷,如图 7-39。试
求位移及应力。取 。
q
2.0??
解,由于对称,独立的未知值有 6个,
),,cfbead uuuuuu ??????
的差分方程为,相应于 和 au av ? ?
? ?
? ?
? ? 0
802128034022724102
96016
0
21403602642
9608
??
???????
??
???????
ay
bbaaba
ax
bbaaba
P
vuvuvv
E
P
vuvuuu
E
.))(.().())(.().().(
).(
.)(.)().().(
).( 图 7-39
133
The difference equations of and are, bu bv
? ?
? ?
? ?
? ? 0
)(2.1)8.0(4)(2.188)8.2(8
)96.0(8
0
2.1)(82.1)8.0(4)8.0(4)8.2(8
)96.0(8
??
???????
??
??????
by
cbacab
bx
cbacab
P
uvuvvv
E
P
vuvuuu
E
The difference equations of and are, cu cv ? ?
? ?
? ?
? ? qhP
vuvuvv
E
P
vuvuuu
E
cy
ccbbbc
cx
ccbbbc
??
???????
??
???????
).())(.(.))(.().().(
).(
.)(.)().().(
).(
803402802122724102
96016
0
40321602642
9608
134
相应于 和 的差分方程为,bu bv
? ?
? ?
? ?
? ? 0
)(2.1)8.0(4)(2.188)8.2(8
)96.0(8
0
2.1)(82.1)8.0(4)8.0(4)8.2(8
)96.0(8
??
???????
??
??????
by
cbacab
bx
cbacab
P
uvuvvv
E
P
vuvuuu
E
相应于 和 的差分方程为,cu cv ? ?
? ?
? ?
? ? qhP
vuvuvv
E
P
vuvuuu
E
cy
ccbbbc
cx
ccbbbc
??
???????
??
???????
).())(.(.))(.().().(
).(
.)(.)().().(
).(
803402802122724102
96016
0
40321602642
9608
135
Simplify the above 6 equations and solve them together,we can
get the component of displacement,
E
qh
v
E
qh
u
E
qh
v
E
qh
u
E
qh
v
E
qh
u
cc
bb
aa
8 3 9 0.1,1 7 8 0.0
2 0 1 5.1,0 3 0 5.0
9 9 5 1.0,1 5 1 3.0
???
??
??
The component of stress are,
? ?
? ?
q
h
uE
h
uuuE
y
v
x
uE
q
h
uE
h
uuuE
y
v
x
uE
a
dag
gg
gx
c
fcj
jj
jx
3 9 4.0
2
5
96.0
0
2
43
96.01
4 6 4.0
2
5
96.0
0
2
43
96.01
2
2
???
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
136
将上列 6个方程简化后联立求解,得位移分量为,
E
qh
v
E
qh
u
E
qh
v
E
qh
u
E
qh
v
E
qh
u
cc
bb
aa
8 3 9 0.1,1 7 8 0.0
2 0 1 5.1,0 3 0 5.0
9 9 5 1.0,1 5 1 3.0
???
??
??
应力分量为,
? ?
? ?
q
h
uE
h
uuuE
y
v
x
uE
q
h
uE
h
uuuE
y
v
x
uE
a
dag
gg
gx
c
fcj
jj
jx
3 9 4.0
2
5
96.0
0
2
43
96.01
4 6 4.0
2
5
96.0
0
2
43
96.01
2
2
???
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
137
? ?
? ?
? ?
? ?
q
h
vvE
h
vvvE
x
v
y
uE
q
h
vvE
h
vvv
h
uuE
x
v
y
uE
cc
fcj
jj
j
xy
bb
ebiig
ii
i
xy
6 2 50
2
4
212
0
2
43
21212
7 5 10
2
4
212
2
43
221212
.
).(
).(
.
).(
).(
???
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
? ??
?
?
?
?
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
q
h
uvvvE
h
uu
h
uvvE
x
u
y
vE
q
h
uvvE
h
uu
h
vvE
x
u
y
vE
cabc
fjabc
cc
c
y
bca
eica
bb
b
y
907.0
2
2.043
96.0
2
2.0
2
43
96.01
436.0
2
2.0
96.0
2
2.0
296.01
2
2
???
?
?
?
?
? ????
?
?
?
?
?
?
?
?
? ?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
? ??
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
138
? ?
? ?
? ?
? ?
q
h
vvE
h
vvvE
x
v
y
uE
q
h
vvE
h
vvv
h
uuE
x
v
y
uE
cc
fcj
jj
j
xy
bb
ebiig
ii
i
xy
6 2 50
2
4
212
0
2
43
21212
7 5 10
2
4
212
2
43
221212
.
).(
).(
.
).(
).(
???
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
? ??
?
?
?
?
?
?
?
?
? ??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
q
h
uvvvE
h
uu
h
uvvE
x
u
y
vE
q
h
uvvE
h
uu
h
vvE
x
u
y
vE
cabc
fjabc
cc
c
y
bca
eica
bb
b
y
907.0
2
2.043
96.0
2
2.0
2
43
96.01
436.0
2
2.0
96.0
2
2.0
296.01
2
2
???
?
?
?
?
? ????
?
?
?
?
?
?
?
?
? ?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
? ??
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
139
Because the stress boundary condition is,so the error
is,Other error of stress values belongs to the same rank,In
order to get more accurate stress values,we must make the grids
more thick,
? ? qcy ???
q093.0
Illumination,towards plane questions of single continuous object,
which only has stress boundary conditions,we can calculate the
stress component with displacement difference solution,but when
we use stress function difference solution,we can get more accurate
result with the same grids,and the workload of calculation is more
less,So if we only need calculate the stress not the displacement we
only need use stress function difference solution,not displacement
difference solution,
140
而由应力边界条件有 。所以误差为 。其它应力
数值的误差大致也属于这个量阶。为了得到较精确的应力数
值,必须把网格加密。
? ? qcy ??? q093.0
说明,对于只具有应力边界条件的单连体平面问题,虽然也可
以用位移差分解求得应力分量,但是,改用应力函数差分解时,
同样的网格可以给出较精确的应力数值,而且计算工作量较少。
因此,如果不须求出位移而只需求出应力,则毫无疑问的应当
用应力函数差分解,而完全不必用位移差分解。
141
§ 7-9 Displacement Difference
Solution to more Continuous Object
1,Displacement difference solution to
node of inside tine corner,
x
y
8
3
7
2
4 5
10
m
j c
lb
d a
g
dy)(?
ax)(?
cy)(?
bx)(?
bxy)(?
dxy)(?
axy)(?
cxy)(?
0)(xP 0
)(yP
f
Fig,7— 40
e
i
k
x y
Look at the inside tine corner in Fig.7-
40,The outside normals of both sides
are along positive direction of and
axis,The domain of node 0 is
expressed by void lines in the Fig,its
area is, We use and to
express the total outside force along
and,
243 h
x
y
? ?0xP ? ?
0yP
Direction in the domain (including body force and face
force),
142
§ 7-9 多连体问题的位移差分解
一、内尖角处的结点位移差分方程
和 表示。
图 7-40所示内尖角,两边的向
外法线分别沿 轴及 轴的正向。
结点 0的领域如图中虚线所示,面积
为 。该领域所受的沿 和 方向
的外力总和(包括体力、面力)用
x y
243 h x y
? ?0xP ? ?
0yP
x
y
8
3
7
2
4 5
10
m
j c
lb
d a
g
dy)(?
ax)(?
cy)(?
bx)(?
bxy)(?
dxy)(?
axy)(?
cxy)(?
0)(xP 0
)(yP
边界 边界 f
图 7— 40
e
i
k
143
? ? 0
)1(2)1(22
112
0
22
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
??
?
?
?
?
??
?
?
?
?
?
?
?
?
x
ddcc
bbaa
P
x
v
y
uE
h
x
v
y
uEh
y
v
x
uE
h
y
v
x
uEh
??
?
?
?
? ( a)
Use derivative of displacement component to express stress
component,and the above formula becomes,
? ? ? ? ? ? ? ? ? ? 022 0 ????? xdxycxybxax Phhhh ????
According to the equilibrium conditions of direction
,we have,
x
144
由 方向的平衡条件有,x
? ? ? ? ? ? ? ? ? ? 022 0 ????? xdxycxybxax Phhhh ????
用位移分量的导数来表示应力分量,则上式成为,
? ? 0
)1(2)1(22
112
0
22
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
x
ddcc
bbaa
P
x
v
y
uE
h
x
v
y
uEh
y
v
x
uE
h
y
v
x
uEh
??
?
?
?
? ( a)
145
According to difference formula,we get,
h
uu
y
u
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
y
v
y
v
y
v
h
uu
x
u
h
vv
h
vv
y
v
y
v
y
v
h
uu
h
uu
x
u
x
u
x
u
d
mlc
kjc
b
b
iga
fea
40
7230
0237
4287
03
30
5140
0145
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
22
1
22
1
2
1
2
1
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
146
按照差分公式,有,
h
uu
y
u
h
vv
h
vv
x
v
x
v
x
v
h
uu
h
uu
y
u
y
u
y
u
h
vv
h
vv
y
v
y
v
y
v
h
uu
x
u
h
vv
h
vv
y
v
y
v
y
v
h
uu
h
uu
x
u
x
u
x
u
d
mlc
kjc
b
b
iga
fea
40
7230
0237
4287
03
30
5140
0145
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
22
1
22
1
2
1
2
1
2
1
2
1
2
1
2
1
4
3
4
1
4
3
4
1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
??
?
?
?
?
? ?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
147
?????? ???????? ???????? ????????? ????????? ?? h vvh vvxvxvxv
d 22
1
22
1
2
1
2
1 3185
04
Substitute them into formula (a),we get difference equation of 0u
? ? 0875210
75432102
])1(2)1(2)1(2)31(2)31(2)1(2
)1(2)43(2)15()1(36)3(11[
)1(16
xPvvvvvv
uuuuuuuE
?????????????
???????????
?
??????
?????
?
Difference formulas are in Fig.7-41,
x
y
boundary
)1(2 ??? ??)15( ?? u)1(2 ?? ??)1( ??
??)43(2 ?? u)1(2 ??? ??)3(11 ? u)31(2 ??? ??)1(3 ??
u)1(2 ??
?2?
u)31(2 ??
?6?
[)1(16 2??E yP?]
Fig.7— 42
boundary
x
y
boundary
v)1(2 ??? u)43(2 ??? u2? v)1(2 ???
u)15( ??? v)1(2 ??? u)3(11 ?? u6? ??)31(2 ??
u)1( ???
v)1(2 ???
u)1(3 ???
v)31(2 ???
[)1(16 2??E xP?]
Fig.7— 41
boundary
148
?????? ???????? ???????? ????????? ????????? ?? h vvh vvxvxvxv
d 22
1
22
1
2
1
2
1 3185
04
代入式( a),简化后,得相应于未知值 的差分方程,0u
? ? 0875210
75432102
])1(2)1(2)1(2)31(2)31(2)1(2
)1(2)43(2)15()1(36)3(11[
)1(16
xPvvvvvv
uuuuuuuE
?????????????
???????????
?
??????
?????
?
差分式如图 7-41所示。
x
y
边界
)1(2 ??? ??)15( ?? u)1(2 ?? ??)1( ??
??)43(2 ?? u)1(2 ??? ??)3(11 ? u)31(2 ??? ??)1(3 ??
u)1(2 ??
?2?
u)31(2 ??
?6?
[)1(16 2??E yP?]
图 7— 42
边界
x
y
边界
v)1(2 ??? u)43(2 ??? u2? v)1(2 ???
u)15( ??? v)1(2 ??? u)3(11 ?? u6? ??)31(2 ??
u)1( ???
v)1(2 ???
u)1(3 ???
v)31(2 ???
[)1(16 2??E xP?]
图 7— 41
边界
149
Similarly,we can get difference equations of,its difference
formulas are in Fig.7-42,
0v
2,Displacement difference solution to more continuous object,
hh 22 ?
Suppose there is a square sheet,
as in Fig.7-43,In its middle is a
square hole,and its above and below
sides bear equal load,
hh 44 ?
q
Because of its symmetry,we only
need calculate a quarter of it,There
are 12 independent unknown
displacement component,They are,
igfeeddcbbaa vvuvuvuuvuvu,,,,,,,,,,,
)0( ???? igfc uuvv
We make,then the difference
equation of is,
0??
eu
? ? 022323113215216 ??????????? exigfeedcba PvvuvuuuuvE ])()([
Fig.7-43
150
同理,可得相应于未知值 的差分方程,差分式如图 7-42所示。 0v
二、多连体的位移差分解
设有 的正方形薄板,如图
7-43,中间有 的正方形孔口,
在上下两边受均布压力 。
hh 44 ?
hh 22 ?
q
由于对称,只需计算四分之一
部分。独立的未知位移分量有 12个,
即,igfeeddcbbaa vvuvuvuuvuvu,,,,,,,,,,,
。 )0( ???? igfc uuvv
取,相应于 的差分方
程为,
0?? eu
? ? 022323113215216 ??????????? exigfeedcba PvvuvuuuuvE ])()([
图 7-43
151
Other 11 difference equations are given by difference maps in
Fig.7-7,Solve them together,(unit is )
Eqh
.819.4
,392.5
,541.1
819.2,706.0
980.3,707.0
,545.1
180.1,742.0
265.2,820.0
?
?
??
???
??
??
???
??
i
g
f
ee
dd
c
bb
aa
v
v
u
vu
vu
u
vu
vu
Stress component can be found as before,But because the grids
are too sparse,the stress values calculated are approximate,and
there will be great error of stress value of inside node,
152
其余 11个差分方程按 § 7-7中的差分图式列出。联立求解上
述 12个方程,得(以 为单位),
Eqh
.819.4
,392.5
,541.1
819.2,706.0
980.3,707.0
,545.1
180.1,742.0
265.2,820.0
?
?
??
???
??
??
???
??
i
g
f
ee
dd
c
bb
aa
v
v
u
vu
vu
u
vu
vu
应力分量可以和以前一样求得。但是,由于网格太疏,算出
的应力数值只是粗略近似的,而内结点处的应力数值将具有
特别大的误差。
153
Exercise of,Difference Solution to Plane Questions,
[Exercise 1],Calculate max
tensile stress of girder as in
Fig.1 by using difference
solution,and compare it with
the result found in material
mechanics, The serial number
of the gird is shown in the Fig,
The gird is, 42? Fig.1
Solution, because of its symmetry,we only need
calculate half of the girder,There are only two unknown
values,They are and, 1? 2?
1.Make the middle point of the below side of the girder as base
point,and we assume,
A
0????????? ????????? ???
AA
A yx
???
Calculate the values of every node in the boundary by using
stress functions and derivate formulas of the boundary nodes,
yx ?
?
?
? ???,,
154
,平面问题的差分解, 习题课
[练习 1]用差分法计算如图 1
所示基础梁的最大拉应力,
并与材料力学的解答进行对
比,采用 的网格,各结
点编号如图所示。
42?
解,由于对称,只需计算梁
的一半,所以,只有两个独
立的未知数 和 。 1? 2?
1.取梁底中点 作为基点,
设,
A
0????????? ????????? ???
AA
A yx
???
yx ?
?
?
? ???,,
利用边界结点的应力函数及其导数公式,计算边界上所有各结
点处的 值。结果见下表。
图 1
155
2.Calculate values of every void node,?
node A B C D E F G
x?
??
y?
??
?
0
0
0
?
0
2
2qh?
qh2
0
22qh?
qh2
?
22qh?
0 0
0
0
22qh? 2
2
3qh
qh2 ? ?
2
9
2
8
2
227
2
6
2
5
224113
22,42
42
5.42,22
2,2
qh
y
hqh
x
h
qh
x
h
qh
x
hqh
y
h
y
h
y
h
E
D
E
F
D
C
B
C
D
BA
??
?
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
??
???
?
?
?
?
?
?
?
??
???
?
?
?
?
?
?
?
????
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
??
?
??
?
??
?
?
??
?
??
?
??
?
?
???
?
??
156
2.计算各虚结点的 值,?
结点 A B C D E F G
x?
??
y?
??
?
0
0
0
?
0
2
2qh?
qh2
0
22qh?
qh2
?
22qh?
0 0
0
0
22qh? 2
2
3qh
qh2 ? ?
2
9
2
8
2
227
2
6
2
5
224113
22,42
42
5.42,22
2,2
qh
y
hqh
x
h
qh
x
h
qh
x
hqh
y
h
y
h
y
h
E
D
E
F
D
C
B
C
D
BA
??
?
?
?
?
?
?
?
?
?
?
?????
?
?
?
?
?
?
?
??
???
?
?
?
?
?
?
?
??
???
?
?
?
?
?
?
?
????
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
???
?
?
?
?
?
?
?
?
?
?
??
?
??
?
??
?
?
??
?
??
?
??
?
?
???
?
??
157
11112210 2,2 ?
??????? ?
???
?
???
?
?
????
???
?
???
?
?
???
GF y
hyh
3.Establish difference equations of inside nodes,
0)()(2)(820
0)2()22(2)2(820
1074212
11321 ????????????? ????????? ????????????? ?????????
GECAFDB
DFBGA
2
2
2
1
2
21
2
21
245.0,64.0
11248
181622
qhqh
qh
qh
???
????
??
??
??
??
4.Calculate values of
void nodes,
?
Substitute values of boundary nodes and void nodes into the
formula,and simplify it,we can get,
?
22
27
2
2104
2
1113
2 4 5.44
2 4 5.0,64.0
qhqh
qhqh
????
???????
??
??????
5.The values of three nodes in section are,GAx?
? ? ? ? qh GGx 72.121 1112 ????? ????
158
11112210 2,2 ?
??????? ?
???
?
???
?
?
????
???
?
???
?
?
???
GF y
hyh
3.建立内结点的差分方程,
0)()(2)(820
0)2()22(2)2(820
1074212
11321 ????????????? ????????? ????????????? ?????????
GECAFDB
DFBGA
2
2
2
1
2
21
2
21
245.0,64.0
11248
181622
qhqh
qh
qh
???
????
??
??
??
??
4.计算虚结点的 值,?
将边界点及虚结点的 值代入,简化得,?
22
27
2
2104
2
1113
2 4 5.44
2 4 5.0,64.0
qhqh
qhqh
????
???????
??
??????
5.各结点处的应力分量,如 截面上三个结点的 分别为,GA x?
? ? ? ? qh GGx 72.121 1112 ????? ????
159
? ? ? ?
? ? ? ? q
h
q
h
AAx
GAlx
28.12
1
22.02
1
132
12
????
????
????
????
Similarly,we can calculate of sections and,and of every
plane section and shearing strength,Compare them,we can find that
the max tensile stress is,the max compressing stress
is,The distributing of in section is in Fig,
FB ECx? y?
? ? qAx 28.1??
? ? qGx 72.1??? x? GA
6.Analyse,according to material mechanics,the torque of section
and positive stress of point are,
GA
GA,x?
? ?
? ? q
q
h
hqh
J
My
qh
qh
qhM
Ax
Gx
25.2
25.2
)2(
12
1
)(5.1
5.1
2
2
3
2
2
2
2
?
??
?
??
???
?
?
160
? ? ? ?
? ? ? ? q
h
q
h
AAx
GAlx
28.12
1
22.02
1
132
12
????
????
????
????
同理可算得 截面,截面上的 以及各水平截面上的,
各结点的剪应力也可求得。经比较基础梁内最大拉应力为
FB EC x? y?
? ? qAx 28.1??,最大压应力为, 截面上 的分布见
图所示。
? ? qGx 72.1??? x?GA
6.分析:按材料力学方法计算,截面的弯矩以及 点的
正应力 分别为,
GA GA,
x?
? ?
? ? q
q
h
hqh
J
My
qh
qh
qhM
Ax
Gx
25.2
25.2
)2(
12
1
)(5.1
5.1
2
2
3
2
2
2
2
?
??
?
??
???
?
?
161
The max tensile stress and compressing stress calculated by
difference solution are separately less 43% and 24% than the
result calculated by material mechanics,But if we make the grids
more thick,then the we can get more exact answer,
2/20 cmN
2/5.0 cmN
[Exercise 2]There is a rectangle girder
in the Fig.2,the length and height of
which is, Its above boundary bears
equal load and its below
boundary bears equal load at
point, Suppose, Try to
calculate inside stress of the girder with
difference solution and draw of
section and of section,
cm16
DC,cmh 4?
JA x? EF
y?
y
Fig.2
Solution, 1,Because of the symmetry of structure and loads we can
make serial numbers of the gird as in Fig.2,The serial numbers of
nodes are symmetry of y axis, Where node 1 to node 6 are inside
nodes,node A to node J are boundary nodes,and node 7 to node 13 are
outside void nodes,
162
差分法计算出的最大拉应力、最大压应力分别比材料力
学相应的解答小了 43%与 24%。但如果网格进一步细分,则将
得到更精确的解答。
解,1.由结构及载荷的对称性,
对网格进行编号如图,结点编号
对称于 y 轴,其中结点 1至结点 6
为内部结点,结点 A至结点 J为边
界结点,结点 7至结点 13为外部虚
结点。
2/5.0 cmN
[练习 2]长和高均为 的矩形梁,
上边界受集度为 的均布载荷
作用,下边界的支座反力在 点
范围内均匀分布,集度为,如
图所示。设,试用差分法求梁
内应力并画出 截面上的 和
cm16
DC,
2/20 cmN
cmh 4?
JA
x?
EF
截面上的 分布图。
y?
y
y
图 2
163
node A B C D,E,F,G,H I J
0
0
0
-4
-2
0
0
0
0
0
0
0
0 0 0 -4 8 12
x?
??
y?
??
?
4????x?
?
0???y?3,Because in the above and below boundaries,and in the left boundary,so we can calculate the values of
every void node in a row out of the boundary,
2.Make middle point A of the below of the girder as base
point,and assume that, Calculate of
other points in the boundary,yxx ?
?
?
? ???,,0???????
AAA yx )()(
???
The value and derivate value of boundary nodes are in
the below table,
?
164
结点 A B C D,E,F,G,H I J
0 0 0 -4 -2 0
0 0 0 0 0 0
0 0 0 -4 8 12
x?
??
y?
??
?
2.取梁底中点 A作为基点,设,计算出边
界上其他各结点的,见下表。
边界结点的 值及偏导数值
3.因为在上下边界上有,在左边界上有,所
以,可求出边界外一行各虚结点的 值为,
0??????? AAA yx )()( ???
yxx ?
?
?
? ???,,
0???y? 4????x?
?
?
165
4.Establish difference equations of every inside boundary node,
Towards node 1,because of its symmetry,we have,
68,57,212113,???????? ????
32,32,32 69410211 ?????? ??????
0)2()22(2)2(820 1354321 ????????? ????????? GIJ
0724)2(821 54321 ?????? ?????
72481621 54321 ????? ?????
5682238 64321 ?????? ?????
448162048 654321 ???????? ??????
?Substitute values of boundary nodes and void nodes into the
formula,we get,
Similarly we can establish difference equations of other five
inside nodes,The six equations are,
166
68,57,212113,???????? ????
32,32,32 69410211 ?????? ??????
0)2()22(2)2(820 1354321 ????????? ????????? GIJ
0724)2(821 54321 ?????? ?????
72481621 54321 ????? ?????
5682238 64321 ?????? ?????
448162048 654321 ???????? ??????
4.建立边界内各结点的差分方程。对于结点 1,注意到对称性,
有,
将边界上结点及虚结点的 值代入得
同理,可建立其他五个内结点的差分方程,六个方程整理如
下,
?
167
88222882 654321 ?????? ??????
8162148 65431 ????? ?????
1623882 65431 ????? ?????
5.Calculate the values of every node, The values of inside
nodes are,
? ?
,10.111 ??
,03.64 ??
,50.72 ?? 72.83 ??
,53.45 ?? 29.36 ??
,10.11113 ?? ??,50.7212 ?? ??,50.2432211 ???? ??
,97.2532410 ???? ??,71.283269 ???? ??
,29.368 ?? ?? 53.457 ?? ??
?The values of void nodes in a row out of the boundary are,
6,Calculate the stress of every node,Where,positive stress of
inside nodes are in the below table,
168
88222882 654321 ?????? ??????
8162148 65431 ????? ?????
1623882 65431 ????? ?????
,10.111 ??
,03.64 ??
,50.72 ?? 72.83 ??
,53.45 ?? 29.36 ??
,10.11113 ?? ??,50.7212 ?? ??,50.2432211 ???? ??
,97.2532410 ???? ??,71.283269 ???? ??
,29.368 ?? ?? 53.457 ?? ??
5.求出个结点的 值。内结点的 值为
边界外一行各虚结点的 值为
6,可求得各结点处的应力,其中,内结点的正应力如下表所
示。
??
?
169
Positive stress component of inside nodes,
node 1 2 3 4 5 6
-0.093 -0.06 -0.113 -0.079 -0.021 -0.034
-0.45 -0.494 -0.336 -0.459 -0.156 -0.378
Positive stress of every boundary node are in the below table,
node A B E F G I J
0.566 0.411 0 0 0 -0.063 -0.113
0 -0.25 -1.089 -0.746 -0.563 -0.5 -0.5
The distributing of positive stress along JA and EF section is in
Fig.2,So we can calculate the shearing stress of every node,
x?
x?
y?
y?
Positive stress component of boundary nodes,
170
内结点处的正应力分量
结点号 1 2 3 4 5 6
-0.093 -0.06 -0.113 -0.079 -0.021 -0.034
-0.45 -0.494 -0.336 -0.459 -0.156 -0.378
各边界结点处的正应力如下表所示。
边界结点处的正应力分量
结点号 A B E F G I J
0.566 0.411 0 0 0 -0.063 -0.113
0 -0.25 -1.089 -0.746 -0.563 -0.5 -0.5
正应力沿 JA及 EF截面的分布情况见图,可求得各结点处的剪
应力。
x?
x?
y?
y?
171
172