Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
16.422 Information & Signal
Detection Theory
Prof. R.
John
Hansman
Acknowledgements to Profs Tom Sheridan and Jim Kuchar
whose notes are the core of this lecture
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Outline
y
Information Theory
y
Signal Detection Theor
y
y
Alerting Introduction
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Information Theory
y
What is information?
y
Control Theoretic Vie
w
?
Lines in Control Block Diagram
y
Ba
yesian Vie
w
?
Information is something which reduces uncertaint
y
in a world model
System
Supervisory
Control
Computer
Interface
DisplayControl
Sensors
Direct Observation
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Bayes
Theory
H = Hypothesis, D = Datap(H
| D)
=
p(D | H) p(H)/p(D)
With new datap(H
| D1,D2)
=
p(D2 | H) [p(D1 | H) p(H)/p(D1) /p(D2)
With 2 hypothesesp(H1
| D1,D2)
=
p(D2 | H1)
p(D1 | H1)
p(H1)
p(H
2
| D1,D2)
p(D2 | H2) p(D1 | H2) p(H2)
Posterier
odds ratio
prior odds ratio
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
y
Shannon Information Theor
y
?
Bell Labs
?
Telephon
y
y
Tom Sheridan Notes
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
y
Bit view
of
Information
?
# of bits to disambiguate
?
Bit = binar
y
discrimination
?
Drive uncertaint
y to zero
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Info Transmission
H = information, D = Data
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Information Value
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Information Bandwidth
y
Information Rate
?
Bits/Sec
y
Information Densit
y
y
Raster Example
?
(# Pixels) ( # Bits/Pixel) (Update Rate)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Task Performance & Bandwidth
Frame Rate
Constant Task
Performance
ColorDepth
Constant
Bitrate
Resolution
Diagram from Sheridan, Teleoperation
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Signal Detection Theory
y
Originall
y
De
veloped for Radar Threshold Detection
y
Becomes the Basis for Alerting Theor
y
y
Signal v
e
rsus
N
oise
y
A-Scope Example
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(Courtesy of Thomas Sheridan. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Consider Sensor System
System
Threshold
Display
Or
Alert
Sensor
y
Radar
y
Engine Fire Detection
y
Other
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Threshold Placement
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0
Probability of False Alarm
P(FA)
Probability of Successful Alert
P(SA)
Example Alerting
Threshold Locations
Ideal Alerting System
1
2
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Engine Fire Alerting
207.7
+10c
LBS X
1000
TOTAL
FUELTEMP
FIRE ENG R
1,250
1,380
CRZ
723394
1,250
1,380
723394
EPR
N
1
EGT
TAT
+15c
y
C(F
A
)
high on takeoff
y
A
l
erts suppressed during
TO
No
w
let’s take
a quick look at non-normal checklists.
T
he 777 EICAS message list
is similar to other Boeing EICAS airplanes.
[
For 747-400 o
perators
: It doesn’t use the “caret” s
y
mbol to indicate
a chec
klist
w
i
t
h
no QRH items, like the 747-
400s do.]
But it has an additio
nal featur
e, called t
he “c
hecklist ico
n”. T
he icon is displayed ne
xt to an EICAS message
w
h
enev
er
there i
s
an EC
L checklist that
needs to be c
o
mpleted.
Once the chec
klist is full
y
c
o
mplete, the icon is removed fr
om
displ
ay
next to the message.
T
h
is helps
the cre
w
k
eep t
r
ack of w
h
ic
h c
hecklists remai
n
to be completed.
W
015.
23
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Crew Alerting Levels
Non-Normal Procedures
Time Critical
Operational conditi
on t
h
at requires immediate crew
aw
areness and
immediate action
Warning
Operational or s
y
s
t
e
m
condition that requires immediate crew
aw
areness and definite
corrective or compen
sator
y
actio
n
Caution
Operational or s
y
s
t
e
m
condition that requires immediate crew
aw
areness and possible
corrective or compen
sator
y
actio
n
Adv
i
s
o
r
y
Operational or s
y
s
t
e
m
condition that requires crew
aw
areness and
possible corrective or
compensatory
action
A
l
ternate Nor
mal Procedures
Comm
A
l
erts crew
to i
n
co
mi
ng datalink communication
Memo
Crew
remin
ders of the current state of
certain manually selected
n
ormal co
nd
iti
o
n
s
Source: Brian Kelly
Boein
g
Don’t hav
e time to discuss these levels.
Important thing
to kno
w
is that
w
e
ri
goro
usl
y
define a
nd def
end these l
e
vel
s
We appl
y them
across all the
s
y
stems.
T
he indications
are consistent
for all alerts at each lev
el.
T
hus the pilots instantl
y
kno
w
the criticalit
y a
nd nature of an
alert even bef
ore the
y
k
n
o
w
w
h
at the prob
l
e
m is
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Boeing Color Use Guides
Red
Warnings, warning level limitations
Amber
Cautions, caution level limitations
White
C
urrent status information
Green
Pilot selected data, mode annunciations
Magenta
Target information
Cyan
Background data
Again,
w
e
don’
t have time to describe these
definiti
ons in detail.
T
he important thing to note is
t
hat our phi
losophy
is definite, and as simple
as practical.
It fits on one
p
a
g
e
,
in bi
g
font no less.
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Access To Non-Normal
Checklists
y
Prevents choosing w
r
ong
checklist
FIR
E E
N
G R
FIRE ENG R
When an al
ert message is d
i
s
p
la
ye
d, the pilo
t simpl
y
p
u
she
s the CHKL but
ton and the cor
rect non-nor
m
a
l checklist is di
spla
ye
d.
T
his prevents the cr
e
w
from acc
identall
y
choosi
ng the
w
r
ong check
list.
T
he non-norm
al checkl
ists have
p
riorit
y
over
the normal ch
ecklists.
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Non-Normal Checklists
W
015.
27
NORM
AL
ITEM
OVRD
NOTES
CHKL
OVRD
CHKL
RESET
Fire is detected in the right engi
ne.
RIGHT AUTO
THROTTLE ARM SWITCH . . . . . . . . .
.
. OFF
RIGHT THRUST LEVER . . . . . . . . . . . . . . . . . . . . . .CLOSERIGHT FUEL CONTROL SWITCH . . . . . . . . . . . . .
C
UTOFF
RIGHT ENGINE FI
RE SWITCH . . . . . . . . . . . . . . . . . .
P
ULL
If FIRE ENG R m
e
ssage remains displayed:
NORMAL MENU
RESETS
NON-NORMAL MENU
9 9 9 9
FIRE ENG R
RIGHT ENGINE FIRE SWITCH .
. . . . . . . . . . . . ROT
ATE
Rotate to the stop a
n
d
ho
ld fo
r 1
secon
d.
9
3 2 1
y
Checklist specific to left or right side
y
Exact s
w
itch
specified
y
Memory items already complete
y
Closed-loop conditional item
y
Page bar
T
h
is is
w
hat a typical normal c
hecklist looks like.
T
h
is is the
Preflight check
i
s
t.
T
here are t
w
o
kinds of line items,
w
hic
h
w
e
c
a
ll open-l
oop and
closed-loop
items.
T
he open-loop
items
have
a gray
check-box in front of
them.
T
hese are items that the
airpl
ane s
y
stems cannot sense.
T
he pilot determines
w
h
et
her th
e
i
tems h
a
ve bee
n com
pleted a
nd clic
ks the CCD thu
mbs
w
itch
w
h
e
n
ea
ch
item is
complete.
Close
d-lo
op ite
ms are for s
w
it
ches and se
lec
tors that are sensed b
y
the
air
plan
e s
y
stems.
T
h
e
y
automat
icall
y
turn gr
ee
n
w
h
en th
e s
w
i
tch has been positioned correctl
y
.
If the crew
actuates the
w
r
ong s
w
itch, the
closed-loop item
w
i
ll no
t turn green and the crew
w
i
ll catch their error. In this
exa
mpl
e, the procedur
e
w
as
already
c
o
mpl
ete,
so the last t
w
o
items are sho
w
n
in green as soon as the che
cklist is displ
ayed.
T
h
e
w
hite curr
ent line item b
o
x
le
ads
the pi
lo
t through the checklist an
d pr
ev
ents accid
en
tall
y
sk
ipp
ing a
line item.
Color is us
ed to indic
ate lin
e i
t
em status.
Incomplete items
ar
e disp
la
ye
d w
h
ite an
d com
plete items are
displa
ye
d gre
e
n. C
y
an (
or b
l
ue) indicates an inapplic
abl
e i
t
em,
or an item that has been intentional
l
y
overridden by
the crew
u
s
ing the ITEM OVRD button. In this example, the flight
is dispa
tc
h
i
ng
w
i
t
h
autobr
ake
s
inoper
ative, so the
cre
w
has overr
i
dden the AUT
OBRAKE item. Overriding
the item allo
w
s
t
he checkl
ist to be compl
eted.
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Internal vs External Threat
Systems
y
Internal
?
S
ystem normall
y
well defined
?
Logic relatively
static
?
Simple ROC approach
valid
?
Examples (Oil Pressure, Fire, Fuel, ...)
y
External
?
External environment ma
y not be well defined
?
Stochastic elements
?
Controlled s
y
stem trajector
y
m
a
y
be important
?
Human response
?
Need ROC like approach which considers entire s
y
s
t
em
?
S
ystem Operating Characteristic (SOC) approach of Kuchar
?
Examples (Traffic, Terrain, Weather, …)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Decision-Aiding / Alerting
System
Architecture
Sensors
Displays
Human
Actuator
Sensors
Automation
Actuator
Environment
P
r
o
c
e
s
s
Information Transduction
Decision Making
Control / Actuation
Interface
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Fundamental Tradeoff in
Alerting Decisions
y
When to alert?
?
Too earl
y
o
Unnecessar
y
Alert
?
Operator would have avoided hazard without alert
?
Leads to distrust of s
y
stem, dela
y
ed response
?
Too late
o
Missed Detection
?
Incident occurs even with the alerting s
y
stem
y
Must balance Unnecessary
Al
erts and Missed Detections
Hazard
Uncertain
Future Trajectory
Uncertain
current state
x
1
x
2
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
The Alerting Decision
y
Examine consequences of alerting / not alerting
?
Alert is not issued: Nominal Trajector
y (N)
?
Alert is issued: Avoidance Trajector
y (A)
A
Hazard
A
Current State
Hazard
N
Compute probabilit
y of Incident along each trajector
y
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
System Operating
Characteristic Curve
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0
Probability of False Alarm
P(FA)
Probability of Successful Alert
P(SA)
Example Alerting
Threshold Locations
Ideal Alerting System
1
2
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Trajectory Modeling Methods
Nominal
Worst-case
Probabilistic
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Nominal Trajectory Prediction-
Based Alerting
y
Alert w
h
e
n
projected trajectory
encounters hazard
y
Look ahead time and trajector
y
model are design parameters
y
Examples: TCAS, GPWS, AILS
hazard
system state
predicted nominal trajectory
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Airborne Information for Lateral Spacing
(AILS)
(nominal trajectory
prediction-based)
Endangered aircraft
vectored away
Alert
occurs with prediction
of near miss in given time interval
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Alert Trajectory Prediction-
Based Alerting
y
Alert is issued as soon as
safe escape path is threatened
y
A
t
tempt to ensure minimum lev
el of safety
y
Some loss of control ov
er false alarms
y
Example: Probabilistic parallel approach logic (Carpe
nter & Kuchar)
hazard
system state
predicted escape path
(alert trajectory)
n
o
m
i
n
a
l
t
r
a
j
e
c
t
o
r
y
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Example State Uncertainty
Propagation
Computed via Monte Carlo
-50
0
50
0 50 100 150
Nautical Miles
Nautical Miles
t = 2 min
t = 5 min
t = 10 min t = 15 min
t = 20 min
along-track
V
= 15 kt
cross-track
V
= 1 nmi
(from NASA
Ames)
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Monte Carlo Simulation
Structure
Monte Carlo
Simulation Engine
Protected Zone size
Uncertainties
(probability density functions)
Current
states
Along- and cross-track error
Maneuvering
characteristics
Confidence in intent information
Current state information
(position, velocity)
Intent information: Waypoints (2D, 3D, 4D) Target heading Target speed Target altitude Target altitude rate Maneuvering limitations
Probability of conflict
Implemented in real-time simulation studies at NASA AmesComputational time on the order of 1 sec
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
System Operating
Characteristic Curve
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0
Probability of False Alarm
P(FA)
Probability of Successful Alert
P(SA)
Example Alerting
Threshold Locations
Ideal Alerting System
1
2
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Aircraft Collision Avoidance
human
ai
rc
ra
ft
sen
s
ors
ex
peri
ence,
t
r
ai
ni
n
g
ot
he
r
i
n
f
o
.
(e.g. w
i
ndo
w
v
i
e
w
)
hu
m
an s
e
nses
diagnosis and
control
con
t
rol
s
GPW
S
alert and
decis
ion aid
c
a
ut
i
o
n:
"
t
e
r
r
a
i
n
"
automation
w
a
rni
n
g:
"
p
ul
l
up"
d
i
sp
la
ys
a
l
t
i
tude
a
nd al
ti
t
u
de ra
t
e
ot
h
e
r sensor
i
n
form
ati
on
t
e
rr
ai
n dat
a
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Fatal Accident Causes
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Prototype MIT Terrain
Alerting Displays
Enhanced GPWS Impro
v
es Terrain/Situational Aw
a
r
eness
+ 2,000-ft high density
(50%
)
red
+ 1,000-ft high density
(50%
)
y
ellow
Referen
ce altitud
e
-
250/-500-ft medium density
(25
%
)
y
e
llow
-
1
,000-ft medium densit
y
(25
%
)
green
-
2
,000-ft medium densit
y
(12.5
%
) green
EFIS map display color legend
W002W.43
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Terrain Alerting
TAWS Look-Ahead Alerts
(Terrain Database)
“Caution Terrain”
approx 45 sec
“Terrain, Terrain, Pull Up...”
approx
22 sec.
Basic GPWS modes (radar altitude)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
TAWS Look-ahead
Warning
y
Threat terrain is sho
w
n
in solid red
y
“Pull up” light or PFD message
y
Colored terrain on na
v
i
gation displa
y
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Conflict Detection and
Resolution Framework
Environment
Dynamic Model
Conflict Detection
Conflict Resolution
Current States
Projected
States
Metrics
Human Operator
State Estimation
Intent
Metric
Definition
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Multiple Alerting System
Conflicts
?
D
ev
eloping formal methods for system analysis
? Identification of conflicts and methods to mitigate? Driv
ers / implications for human interaction
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Design Principles for
Alerting and Decision-Aiding Systems
for Automobiles
James K. Kuchar
Departme
nt
of
A
e
ronautics and A
s
tronautics
Massachu
setts Institute of Tech
n
o
l
o
gy
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Kinematics
y
A
l
ert time: t
alert
= (r -
d)/
v
t
alert
= 0
J
braking must begin immediately
t
alert
=
W
J
alert is issued
W
seconds before braking is required
y
Determine P(UA
) and P(S
A) a
s
function of t
alert
Vehicle
Hazard
r
Alert Issue
d
d
Total
Braking Distance
Response
Latency
Braking Distance
v
W
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Example Human Response Time
Distribution
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
012
34
5
Time (s)
Lognormal distribution (mode = 1.07 s, dispersion = 0.49) [Najm et al.]
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Case 3: Add Response Delay
Uncertainty
0
0.2 0.4 0.6 0.8
1
0
0.2
0.4
0.6
0.8
1
P(UA)
P(SA)
?
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
t
alert
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Case 4: Add Deceleration
Uncertainty
0
0.2 0.4 0.6 0.8
1
0
0.2
0.4
0.6
0.8
1
P(UA)
P(SA)
4.
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
? 0.0
t
alert
V
a
= 3 ft/s
2
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Conformance Monitoring for
Internal and Collision Alerting
y
Simple Sensor Based Collision Alerting S
ystems Do Not Pro
v
ide
Adequate Alert Performance due to Kinematics
?
SOC Curve Anal
y
s
is
?
P(FA), P(MD) Performance
y
Enhanced Collision Alerting Sy
s
t
ems Require Inference or
Measurement of Higher Order Intent States
?
Automatic Dependent Surveillance (Broadcast)
?
Environment Inferencing
?
Observed States
(
Courtesy
of
J
a
m
es
Kuchar
. Used with permission.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erfa
ce
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
SURVEILLANCE STATE VECTOR
y
Aircraft Sur
v
eillance State Vector,
X
(
t
)
containing unce
rtainty & errors
G
X
(
t
)
is given b
y:
?
Traditional d
y
namic states
?
Intent and goal states
X(t)
P
osition,
R(t)
Velocity,
V(t)
Acceleration,
A(t)
Intent,
I(t)
Goals,
G(t)
-
? °