MIT
ICAT
Human and Automation Integration
Considerations for UAV Systems
Prof. R. John Hansman
Roland Weibel
MIT International Center for Air Transportation
Department of Aeronautics & Astronautics
MIT
ICAT
Possible Commercial UAV
Applications - Motivation
y Remote Sensing
? Meteorology
? Scientific Research
? Aerial Photography/ Mapping
? Pipeline Spotting
? Disaster Monitoring
? Agriculture
y Surveillance
? Border Patrol
? Homeland Security/ Law Enforcement
? Traffic Monitoring
? Search and Rescue
y Data Delivery
? Communications Relay
? Multimedia Broadcast
y Cargo Transport
MIT
ICAT
Possible Military UAV
Missions - Motivation
y Intelligence
? Reconnaissance
? Target Monitoring
? Forward Air Control
? Electronic Warfare
? Search and Rescue
? Battle Damage Assessment (BDA)
y Offensive Operation
? Suppression of Enemy Air Defenses (SEAD)
? Close Air Support
? Deep Strike
y Cargo Transport
MIT
ICAT
Current Unmanned Aerial Vehicles
Aerovironment Black
Widow – 2.12 oz.
BAE Systems
Microstar – 3.0 oz.
Sig Kadet II RC
Trainer – 5 lb
Aerovironment
Pointer – 9.6 lb
Boeing/ Insitu Scaneagle – 33 lb
IAI Scout – 351 lb
Boeing X-45A UCAV – 12,195 lb (est)
Micro Mini Tactical High Alt / UCAVShort Range
Bell Eagle Eye – 2,250 lb
Allied Aero.
LADF – 3.8 lb
NOAA
Weather
Balloon
2-6 lb
Gen. Atomics – Predator B – 7,000 lb
Northrop-Grumman
Global Hawk 25,600 lb
UAV Weight (lb)
0 1 10 100 1,000 10,000 100,000
**Mass Range**
Large range of UAV types as users of NAS
-propulsion, configuration, capabilities, etc
MIT
ICAT
Ceiling
S
hed M
k
3
Fo
x
G
nat
G
nat
2
P
r
edat
or
B
Pr
o
w
l
e
r
I
I
He
ro
n
S
eas
c
a
n
R
oboc
opt
er
H
unt
er
D
r
agon E
y
e
C
a
m
c
opt
er
H
e
r
m
es
1500
Mi
n
i
-
V
S
u
rv
e
y
-Co
p
t
e
r
1
S
hadow
200
He
l
i
o
s
Po
i
n
te
r
Az
i
m
u
t
B
i
odr
one
Pe
r
s
e
u
s
P
h
oeni
x
E
agl
e E
y
e
S
heddon
E
agl
e 2
Luna
Al
tu
s
II
P
r
edat
or
S
ear
c
h
er
S
c
out
Sp
e
c
tr
e
S
o
l
a
r B
i
rd
R
apt
or
G
l
obal
H
a
w
k
F
i
r
e S
c
out
S
e
nder
RM
A
X
0
10000
20000
30000
40000
50000
60000
70000
1 10 100 1000 10000 100000
Max TO Weight (lb)
Ce
i
l
i
n
g
(ft)
Electric
Piston
Turbocharged
Turboprop
Turboshaft
Turbofan
+
*
Micro
Mini
Tactical
MALE
HALE
Rotary
Legend
FL 600
18,000 ft
Class
A
Class
G
Classes
B-E, G
MIT
ICAT
Takeoff Method
Hand-launched: Aerovironment Pointer
Rocket-Assisted: Hunter UAV
Rail-Launched: Sperwar
Tilt-Rotor: Eagle Eye
Runway Takeoff: X-45 UCAV
MIT
ICAT
Basic Supervisory Control
Architecture
Human
Operator
Displays
Controls
Human Int.
Computer
Communications
Channel
Task Int.
Computer
Vehicle
Sensors
Controlled
Process
Adapted from Sheridan, Humans and Automation
MIT
ICAT
UAV Operation Basic
Functional Architecture
UAV
vehicle
Environment
(A)
controls
operator
(vehicle)
operator
(sensors)
commands
Payload
displays
feedback
transmission
sensors
sensors
sensors
Air Traffic Control
surveillance
reporting
direct
control
commands
reporting/
negotiation
operations
controller
(dispatch)
(customer)
(field commander)
displays
Other A/C
surveillance
MIT
ICAT
Pointer UAV
y Used for Short-Range Surveillance
? Battlefield commanders
? Law Enforcement
y Vehicle Capabilities
? Manual Control
? Autopilot
? Sensor Integration and Display
? Loss of Link Return to Base
y Bandwidth Requirements
? Transmission of Vehicle Commands
? Receipt of Sensor Intelligence, Vehicle State
MIT
ICAT
Pointer UAV Tasking & Control
pilot
sensor operator
speech
ground
station
vehicle
CDU
MCP
controls
control
surfaces
UAV
displays displays
manual
control
state
commands
traj
commands
FMC
auto-
pilot
Lost Link
Procedure
Aircraft Control
Plan Actions
Monitor
experience,
training
tasking/interpretation
Plan Actions
Monitor-
Interpret
Control
Camera
Implement
tasking
Commander
Interpret
tasking
experience,
traininggoals
Recording
camera
guidance
sensor
integration
goals
Camera
sensors
General Atomics Predator
Medium Altitude, Endurance
MIT
ICAT
Predator Air Vehicle Operator (AVO) Station
from – M. Draper, Air Force Research Lab (2001)
Northrop-Grumman Global Hawk
HALE UAV
MIT
ICAT
MIT
ICAT
Global Hawk Mission Control
Elements
y Navigation Plan
y Communications Plan
y Sensor Plan
y Dissemination Plan
y Dynamic Retasking
y View Imagery
y Monitor Sensor Status
y Calibrate Sensors
y Process & Disseminate
Imagery
Mission Planning Station
Sensor Data and
Processing Station
y Interface with ATC
y Uplink Mission Changes
y Monitor Vehicle Health
and Status
y Monitor Threat Warning
and Deception
Air Vehicle Operator
Station
y Maintain Health and
Status of Comm.
Subsystems
y Construct and Monitor
Comm. Plan
Communication and
Control Station
Command &
Control
ATC
Battlefield
Intelligence
U.S. Air Force photo
MIT
ICAT
Global Hawk MCE
MIT
ICAT
Boeing X-45 UCAV
Boeing X-45A Control Station
from – DARPA Website (2003)
MIT
ICAT
Multiple UAV Control Station for Simulated Scenario
from – J. Nalepka, Air Force Research Lab (2003)
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
UAV-Related Human Factors
Issues - (Partial List)
y Allocation/ Level of Autonomy
y Bandwidth/ Latency
y Situation Awareness
y Cognitive Complexity Limitations
? Single & Multiple UAVs
y Information Saturation/ Boredom
y Simulator Sickness
y Operator Orientation Confusion
y Culture Resistance
y Judgment
? Acceptable Risk
? Weapons Release Authorization
MIT
ICAT
UAV Task Analysis
y Situation (Battlespace)
Awareness
? Perception
? Comprehension
? Projection
y Diagnosis
? Environment
? Threat
? Targets
y Strategic Planning/
Re-planning
? Goal Management
? Route planning
y Tactical Decisions
? Weapons Authorization
? Avoidance of Hazards
? Systems Management
y Control
? Navigation
? Aircraft Configuration
? Sensor Operation
y Monitoring
? Vehicle Health
? External Environment
? Threats, Targets, Traffic
? Risk Assessment
? Communications Link
? Sensor Data
y Communication
? Current State
? Intent
? Intelligence
? Tasking
MIT
ICAT
AFRL Levels of Autonomy
Remote Manual Control
1. Remotely Guided
2. Real Time Health Diagnosis
3. Adapt to Failures & Flight
Conditions
4. Onboard Route Replan
5. Group Coordination
6. Group Tactical Replan
7. Group Tactical Goals
8. Distributed Control
9. Group Strategic Goals
10. Fully Autonomous Swarms
Fully Autonomous,
World Aware
Currently
Realized
Supervisory
Control
Full
Continuum
MIT
ICAT
Level of Autonomy Trend
Source: DOD UAV
Roadmap, 2000
MIT
ICAT
MIT
ICAT
UAV Design Space - Military
Level of Autonomy/
System Complexity
Waypoint
Designation
Health
Monitoring
Tactical
Replan
Group
Coord
Pointer
Pioneer
Shadow
Predator
Global Hawk
X-45
@add pictures@
Manual
Pilotage
Tactical
Scout
Battlefield
Monitoring
Multiship
Coord
Mission Complexity
MIT
ICAT
Diagnosis Procedure Role
Intelligence
Goals
Target
Detection
Diagnosis
Procedure
Experience
Training
UAV
Platform
Sensors
Command
Console
Display
Human
Lethal Force Authorization
Importance of Situation Awareness
MIT
ICAT
Endsley Situation Awareness Model
?System Capability
?Interface Design
?Stress & Workload
Performance
Of
Actions
Decision
Perception Of
Elements In
Current
Situation
Level 1
Comprehension Of
Current Situation
Level 2
Projection Of
Future Status
Level 3
?Goals & Objectives
?Preconceptions
(Expectations)
Information Processing
Mechanisms
Long Term Memory
Stores
Automatically
?Abilities
?Experience
?Training
State of the
Environment
Feedback
Situation Awareness
?Complexity
?Automation
Task/System Factors
Individual Factors
MIT
ICAT
Bandwidth Limits
Human
Operator
Displays
Controls
Human Int.
Computer
Communications
Channel
Bandwidth Limits
Task Int.
Computer
Vehicle
Sensors
Controlled
Process
Adapted from Sheridan, Humans and Automation
MIT
ICAT
Bandwidth Limit
Downlink
y Video
? Forward View, Surveillance
y Imagery
? Reconnaissance, Target Selection
y Voice
? ATC Comm, Intelligence
y Schematic Data
? System Health, Location
Uplink
y Voice
? ATC Comm, Comm to Ground
y Manual Control
y Commands
? Waypoint/ Tasking Commands
MIT
ICAT
Task Performance & Bandwidth
Frame Rate
Constant Task
Performance
Color
Depth
Constant
Bitrate
Resolution
Diagram from Sheridan, Teleoperation
MIT
ICAT
Communications Latency
Problems
Air Traffic
Control
Other
Traffic
Operator
+
+
+
+
UAV
Satellite
Link
communication
over time
channel used
channel free
receipt
delay
transmission
delay
Satellite Latency Cycle Times : 2-5 sec
PIO Issues due to lags.
MIT
ICAT
Multiple Vehicle Control
y Situation Awareness
? “Big Picture” Overview of Battlefield
? Orientation Confusion Multiple Reference Frames
? N Vehicle states
? N Vehicle status
? Kindergarten Model
y Human/ Machine Allocation
? Level of Vehicle Autonomy
? Need for Higher Level of Abstraction (Macro vs Micro Management)
? Organizational vs Operator Model
? Directed vs Behavioral Automation
? Dynamic re-allocation
y Cognitive Workload - Taskload
? How many vehicles can be reliably managed
? Cognitive Complexity Limitations
? ATC Analogy (Acceptable Level of Traffic)
MIT
ICAT
AIR
TRAFFIC
SITUATION
ATC
OPERATIONAL
CONTEXT
AIR TRAFFIC CONTROLLER
SITUATION AWARENESS
LEVEL 1
Perception
LEVEL 2
Comprehension
LEVEL 3
Projection
DECISION
PROCESSES
x Monitoring
x Evaluating
x Planning
PERFORMANCE
OF ACTIONS
x Implementing
“CURRENT
PLAN”
WORKING
MENTAL
MODEL
Surveillance
Path
Command
Path
Complexity Concepts &
Controller Process Model
COGNITIVE
COMPLEXITY
PERCEIVED
COMPLEXITY
Adapted from Endsley
Situation Awareness
Model, Pawlak Key ATC
Processes
STRUCTURE
SITUATION
COMPLEXITY
MIT
ICAT
Human-System Interface
Issues
y Interface Comparison - UAV vs Commercial
? DARPA USAF Boeing X-45 Example
? Boeing B-777
y Source: Build 2 Operational Simulation Overview Briefing
? Caveats:
? Prototype not operational system
? Briefing may not reflect actual system
? PC based interface
MIT
ICAT
Interface Design Comparison
PC vs Commercial Avionics Conventions
MIT
ICAT
X-45
Primary Flight Display (PFD)
Analogue vs Digital Indications
Color Conventions
Readability
Hidden Info
MIT
ICAT
Commercial B-777
Primary Flight Display (PFD)
MIT
ICAT
Quiet Dark Philosophy
? Reduction of Clutter
? No indications for
“normal”
? No “ON” indicators
? No indications for
“do nothing”
? Indicate limits, not
normal range
Elements of quiet dark …
So once the procedure for this failure is taken care of ….
When the gear is safely up and locked …
When the flaps are up …
Only the engine indications remain. Maybe in the future we can eliminate most of them as well.
MIT
ICAT
Mode Awareness
Cognitive Models
Operator Directed Process
MIT
ICAT
Example: Flight Automation
y Mode Awareness is becoming a serious
issues in Complex Automation Systems
? automation executes an unexpected action
(commission), or fails to execute an action
(omission) that is anticipated or expected by one
or more of the pilots
y Multiple accidents and incidents
? Strasbourg A320 crash: incorrect vertical mode
selection
? Orly A310 violent pitchup: flap overspeed
? B757 speed violations: early leveloff conditions
y Pilot needs to
? Identify current state of automation
? Understand implications of current state
? Predict future states of automation
Reference: Aviation Week &
Space Technology. McGraw-
Hill, January 30, 1995.
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT
MIT
ICAT