Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
16.422 Alerting Systems
Prof. R.
John
Hansman
Acknowledgements to Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Consider Sensor System
System
Threshold
Display
Or
Alert
Sensor
y
Radar
y
Engine Fire Detection
y
Other
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Decision-Aiding / Alerting
System
Architecture
Sensors
Displays
Human
Actuator
Sensors
Automation
Actuator
Environment
P
r
o
c
e
s
s
Information Transduction
Decision Making
Control / Actuation
Interface
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Fundamental Tradeoff in
Alerting Decisions
y
When to alert?
?
Too earl
y
o
Unnecessar
y
Alert
?
Operator would have avoided hazard without alert
?
Leads to distrust of s
y
stem, dela
y
ed response
?
Too late
o
Missed Detection
?
Incident occurs even with the alerting s
y
stem
y
Must balance Unnecessary
Al
erts and Missed Detections
Hazard
Uncertain
Future Trajectory
Uncertain
current state
x
1
x
2
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
The Alerting Decision
y
Examine consequences of alerting / not alerting
?
Alert is not issued: Nominal Trajector
y (N)
?
Alert is issued: Avoidance Trajector
y (A)
A
Hazard
A
Current State
Hazard
N
Compute probabilit
y of Incident along each trajector
y
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Threshold Placement
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
.
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0
Probability of False Alarm
P(FA)
Probability of Successful Alert
P(SA)
Example Alerting
Threshold Locations
Ideal Alerting System
1
2
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Engine Fire Alerting
207.7
+10c
LBS X
1000
TOTAL
FUELTEMP
FIRE ENG R
1,250
1,380
CRZ
723394
1,250
1,380
723394
EPR
N
1
EGT
TAT
+15c
y
C(F
A
)
high on takeoff
y
A
l
erts suppressed during
TO
No
w
let’s take
a quick look at non-normal checklists.
T
he 777 EICAS message list
is similar to other Boeing EICAS airplanes.
[
For 747-400 o
perators
: It doesn’t use the “caret” s
y
mbol to indicate
a chec
klist
w
i
t
h
no QRH items, like the 747-
400s do.]
But it has an additio
nal featur
e, called t
he “c
hecklist ico
n”. T
he icon is displayed ne
xt to an EICAS message
w
h
enev
er
there i
s
an EC
L checklist that
needs to be c
o
mpleted.
Once the chec
klist is full
y
c
o
mplete, the icon is removed fr
om
displ
ay
next to the message.
T
h
is helps
the cre
w
k
eep t
r
ack of w
h
ic
h c
hecklists remai
n
to be completed.
W
015.
8
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Crew Alerting Levels
Non-Normal Procedures
Time
Critical
Operational condition that requires immediate cre
w aw
areness an
d
i
mmediate
action
Warning
Operatio
n
al or sy
stem con
d
itio
n th
at
requires immediate crew
a
w
a
r
e
n
ess
and
definite correcti
ve or
compensatory
action
Ca
ution
Operatio
n
al or sy
stem con
d
itio
n th
at
requires immediate crew
a
w
a
r
e
n
ess
and
possible correcti
v
e
or compensatory
action
Ad
viso
ry
Operatio
n
al or sy
stem con
d
itio
n th
at
requires cre
w
a
wareness an
d
p
ossible
correcti
v
e
or compensatory
action
Alternate Normal Procedures
Comm
A
l
erts cre
w to incoming datalink communication
Memo
Cre
w
r
e
minders of the current state
of certain manually
selected
normal
conditions
Source: Brian Kelly Boe
ing
Don’t hav
e time to discuss these levels.
Important thing
to kno
w
is that
w
e
ri
goro
usl
y
define a
nd def
end these l
e
vel
s
We appl
y them
across all the
s
y
stems.
T
he indications
are consistent
for all alerts at each lev
el.
T
hus the pilots instantl
y
kno
w
the criticalit
y a
nd nature of an
alert even bef
ore the
y
k
n
o
w
w
h
at the prob
l
e
m is
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Boeing Color Use Guides
Red
Warnings, warning level limitations
Amber
Cautions, caution level limitations
White
C
urrent status information
Green
Pilot selected data, mode annunciations
Magenta
Target information
Cyan
Background data
Again,
w
e
don’
t have time to describe these
definiti
ons in detail.
T
he important thing to note is
t
hat our phi
losophy
is definite, and as simple
as practical.
It fits on one
p
a
g
e
,
in bi
g
font no less.
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Access To Non-Normal
Checklists
y
Prevents choosing w
r
ong
checklist
FIR
E E
N
G R
FIRE ENG R
When an al
ert message is d
i
s
p
la
ye
d, the pilo
t simpl
y
p
u
she
s the CHKL but
ton and the cor
rect non-nor
m
a
l checklist is di
spla
ye
d.
T
his prevents the cr
e
w
from acc
identall
y
choosi
ng the
w
r
ong check
list.
T
he non-norm
al checkl
ists have
p
riorit
y
over
the normal ch
ecklists.
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Non-Normal Checklists
W
015.
12
NORM
AL
ITEM
OVRD
NOTES
CHKL
OVRD
CHKL
RESET
Fire is detected in the right engi
ne.
RIGHT AUTO
THROTTLE ARM SWITCH . . . . . . . . .
.
. OFF
RIGHT THRUST LEVER . . . . . . . . . . . . . . . . . . . . . .CLOSERIGHT FUEL CONTROL SWITCH . . . . . . . . . . . . .
C
UTOFF
RIGHT ENGINE FI
RE SWITCH . . . . . . . . . . . . . . . . . .
P
ULL
If FIRE ENG R m
e
ssage remains displayed:
NORM
AL M
E
NU
RESETS
NON-NORM
AL M
E
NU
9 9 9 9
FIRE ENG R
RIGHT ENGINE FIRE SWITCH .
. . . . . . . . . . . . ROT
ATE
Rotate to the stop a
n
d
ho
ld fo
r 1
secon
d.
9
3 2 1
y
Checklist specific to left or right side
y
Exact s
w
itch
specified
y
Memory items already complete
y
Closed-loop conditional item
y
Page bar
T
h
is is
w
hat a typical normal c
hecklist looks like.
T
h
is is the
Preflight check
i
s
t.
T
here are t
w
o
kinds of line items,
w
hic
h
w
e
c
a
ll open-l
oop and
closed-loop
items.
T
he open-loop
items
have
a gray
check-box in front of
them.
T
hese are items that the airplane
s
y
stems cannot sense.
T
he pilot determines
w
h
ether the items have bee
n completed and clicks the CC
D thumbs
w
i
tch
w
hen eac
h item
is
complete.
Close
d-lo
op ite
ms are for s
w
it
ches and se
lec
tors that are sensed b
y
the
air
plan
e s
y
stems.
T
h
e
y
automat
icall
y
turn gr
ee
n
w
h
en th
e s
w
i
tch has been positioned correctl
y
.
If the
cre
w
actuates the
w
r
ong s
w
itc
h,
the closed-l
oop item
w
i
l
l
not
turn green and the crew
w
i
ll c
a
tch their error.
In this exampl
e, th
e procedur
e
w
a
s
alre
ad
y
complete, so th
e last t
w
o
items are sho
w
n
in gree
n as soon as the che
cklist is displ
a
yed.
that has been i
n
tention
all
y
ov
erridd
en b
y
the
cre
w
us
ing the
IT
EM
OVRD button. In this e
x
am
ple, the flig
ht is dispatchi
n
g
w
i
t
h
au
tobr
ak
es
inop
erative,
so the cre
w
h
a
s
overridden the
AUT
OBRAKE i
t
em. Overriding the item allow
s
the checklis
t to be completed.
T
h
e
w
hite curr
ent line item b
o
x
le
ads
the pi
lo
t through the checklist an
d pr
ev
ents accid
en
tall
y
sk
ipp
ing a
line item.
Color is us
ed to indic
ate lin
e i
t
em status.
Incomplete items
ar
e disp
la
ye
d w
h
ite an
d com
plete items are
displa
ye
d gre
e
n. C
y
an (
or b
l
ue) indicates an inapplic
abl
e i
t
em, or an item
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Internal vs External Threat
Systems
y
Internal
?
S
ystem normall
y
well defined
?
Logic relatively
static
?
Simple ROC approach
valid
?
Examples (Oil Pressure, Fire, Fuel, ...)
y
External
?
External environment ma
y not be well defined
?
Stochastic elements
?
Controlled s
y
stem trajector
y
m
a
y
be important
?
Human response
?
Need ROC like approach which considers entire s
y
s
t
em
?
S
ystem Operating Characteristic (SOC) approach of Kuchar
?
Examples (Traffic, Terrain, Weather, …)
Enhanced GPWS Impro
v
es Terrain/Situational Aw
a
r
eness
+ 2,000-ft high density
(50%
)
red
+ 1,000-ft high density
(50%
)
y
ellow
Referen
ce altitud
e
-
250/-500-ft medium density
(25
%
)
y
e
llow
-
1
,000-ft medium densit
y
(25
%
)
green
-
2
,000-ft medium densit
y
(12.5
%
) green
EFIS map display color legend
W002W.14
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Aircraft Collision Avoidance
human
ai
rc
ra
ft
sen
s
ors
ex
peri
ence,
t
r
ai
ni
n
g
ot
he
r
i
n
f
o
.
(e.g. w
i
ndo
w
v
i
e
w
)
hu
m
an s
e
nses
diagnosis and
control
con
t
rol
s
GPW
S
alert and
decis
ion aid
c
a
ut
i
o
n:
"
t
e
r
r
a
i
n
"
automation
w
a
rni
n
g:
"
p
ul
l
up"
d
i
sp
la
ys
a
l
t
i
tude
a
nd al
ti
t
u
de ra
t
e
ot
h
e
r sensor
i
n
form
ati
on
t
e
rr
ai
n dat
a
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Conflict Detection and
Resolution Framework
Environment
Dynamic Model
Conflict Detection
Conflict Resolution
Current States
Projected
States
Metrics
Human Operator
State Estimation
Intent
Metric
Definition
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Trajectory Modeling Methods
Nominal
Worst-case
Probabilistic
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Nominal Trajectory Prediction-
Based Alerting
y
Alert w
h
e
n
projected trajectory
encounters hazard
y
Look ahead time and trajector
y
model are design parameters
y
Examples: TCAS, GPWS, AILS
hazard
system state
predicted nominal trajectory
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Airborne Information for Lateral Spacing
(AILS)
(nominal trajectory
prediction-based)
Endangered aircraft
vectored away
Alert
occurs with prediction
of near miss in given time interval
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Alert Trajectory Prediction-
Based Alerting
y
Alert is issued as soon as
safe escape path is threatened
y
A
t
tempt to ensure minimum lev
el of safety
y
Some loss of control ov
er false alarms
y
Example: Probabilistic parallel approach logic (Carpe
nter & Kuchar)
hazard
system state
predicted escape path
(alert trajectory)
n
o
m
i
n
a
l
t
r
a
j
e
c
t
o
r
y
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Monte Carlo Simulation
Structure
Monte Carlo
Simulation Engine
Protected Zone size
Uncertainties
(probability density functions)
Current
states
Along- and cross-track error
Maneuvering
characteristics
Confidence in intent information
Current state information
(position, velocity)
Intent information: Waypoints (2D, 3D, 4D) Target heading Target speed Target altitude Target altitude rate Maneuvering limitations
Probability of conflict
Implemented in real-time simulation studies at NASA AmesComputational time on the order of 1 sec
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Example State Uncertainty
Propagation
Computed via Monte Carlo
-50
0
50
0 50 100 150
Nautical Miles
Nautical Miles
t = 2 min
t = 5 min
t = 10 min t = 15 min
t = 20 min
along-track
V
= 15 kt
cross-track
V
= 1 nmi
(from NASA
Ames)
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Generating the System Operating
Characteristic Curve
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
.
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0
Probability of False Alarm
P(FA)
Probability of Successful Alert
P(SA)
Example Alerting
Threshold Locations
Ideal Alerting System
1
2
Courtesy: Jim Kuchar
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Multiple Alerting System
Disonance
?
Already occurred
w
i
t
h
on-board aler
t
i
ng s
ystem & air
traf
f
i
c controller
mid-air
collision
and
sev
eral near
misses
Ger
m
an
y
,
Jul
y
1
st
,2002; Zurich, 19
99; Japan, 2001
?
Potential for automation/automation dissona
nce is gro
w
ing
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Example: Russian (TU154) and a DHL (B757) collide over Germany On July 1
st
, 2002
B757T-50 seconds
T-50 seconds
collision
TCAS“traffic”
T=0
TU154
T-43
ATC
“descen
d”
TCAS
“descen
d”
T-36
T-36TCAS
“climb”
ATC
“expedite
descent”
T-29
T-22
TCAS
“increase
descent”
T-8
TCAS
“increase
climb”
TCAS“traffic”
TCAS: on-board collis
ion avoidance system
ATC: Air Traffic Controller
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Dissonance
y
Indicated Dissonance: mismatch of information bet
w
een alerting s
ystems
?
alert stage
?
resolution command
y
Indicated dissonance may not be perceived as dissonance
?
Human operator knows
w
h
y dissonance is indicated
?
Indicated consonance may be perceived as dissonance
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Causes of Indicated Dissonance
y
Different alerting threshold and/or resolution logic
y
Different sensor error or sensor co
v
e
rage
,
Alerting
Thresholds
Resolution
Logic
Attention-getting and
urgency
Resolution commands or
guidance
i
y
?
i
y
?
i
R
i
T
i
a
i
c
filter
i
n
i
y
?
i
y
i
G
x
Sensor systems
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Example Perceived
Dissonance
System 1
System 2
No threat
caution
warning
?
I
nfluenced by other factors
(system dynamics, trend data, nominal information, human mental model, etc.)
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Current Mitigation Methods
Prioritization
Alerting s
ystem
for traffic
Alerting s
ystem
for terrain
prioritize
The alert for traffic is inhibited
or onl
y
displa
y
ed passivel
y
Procedures for responding to dissonance
Human operator can be trained to know how the alerting s
ystems
work and how to deal with dissonanceTraining ma
y
be inadequate
2 B-757 accidents in 1996, dissonant alertfrom airspeed data s
y
stems
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Terrain Alerting
TAWS Look-Ahead Alerts
(Terrain Database)
“Caution Terrain”
approx 45 sec
“Terrain, Terrain, Pull Up...”
approx
22 sec.
Basic GPWS modes (radar altitude)
Courtesy: Brian Kelly, Boeing
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
TAWS Look-ahead
Warning
y
Threat terrain is sho
w
n
in solid red
y
“Pull up” light or PFD message
y
Colored terrain on na
v
i
gation displa
y
Courtesy: Brian Kelly, Boeing
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Current Mitigation Methods
(2)
Modify procedures to av
oid dissonance
AILS alert
turn cli
mb
,
turn cli
m
b….
A
B
C
TCAS com
mand
descend,
descend,….
AILS --
-
A
irborne Infor
mation for
Lateral Spacing parallel approach
Special aler
ting s
ystem for
closel
y-
spaced r
u
n
w
a
y
approaches
TCAS --
-
T
raffic alert and
Collision Avoidance Sy
stem
W
a
rns the pilots to an immediate collision with other aircraft
Modify
air traffic control procedures to reduce the likelihood of
a simultaneous TCAS alert and parallel traffic alert
Changing operation pr
ocedure ma
y largel
y reduce the efficiency
of the airspace around the airport
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
Multiple Alerting System
Representation
Un
certainties
[
Process
F
exp
erience
,
training, etc.
System 1
Hu
man
x
G
1
y
1
T
1
D
1
z
1
H
1
,
a
R
1
c
1
System 2
G
2
y
2
D
2
Al
erting
threshold
Resolution
logic
Attention-getting
and urgency
Resolution
commands
or guidance
Displays
filter
filter
1
n
2
n
1
?
y
1
?
y
T
2
2
,
a
R
2
c
2
2
?
y
2
?
y
y
nom
D
nom
G
nom
z
nom
nominal
informati
on sources
e
Control
u
x
3
z
2
Sensor systems
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
SIMPLE REPRESENTATION OF
CONFORMANCE MONITORING
-3 -2 -1
0 1 2 3
0
1
02
03
04
05
0
Cross-track deviation (nm)
Time
(mins
)
-3 -2 -1
0 1 2 3
0
1
0
2
0
3
04
05
0
Cross-track deviation (nm)
Time (mins)
A320
(1990s)
B737-200
(1960s)
NON-
CONFORMING
A
I
RCRA
FT
Clearance
e.g. assigned trajectory,
heading v
ector, altitude, etc.
Observ
ed behav
ior
Conformance Region
CONFORMING
A
I
RCRA
FT
Non-Conformance Region
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
CORE RESEARCH APPROACH
y
Conformance Monitoring as “fault detection”
?
Aircraft non-conformance a “fault” in ATC s
y
stem needing to be detected
?
Existing fault detection techniques can be used for new application
MODEL OF
SYSTEM
Resi
dual
Generation
Schem
e
Decision-
Making
Scheme
CO
MMAND
IN
PU
T
ACT
UAL
SYSTEM
FAULT DETECTIO
N FUNCTIO
NS
Observ
ed state
behav
iors
Expected state
behav
iors
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
CONFORMANCE MONITORING
ANALYSIS FRAMEWORK
y
Fault detection frame
w
ork tailored for conformance monitoring
Ob
se
rv
e
d
st
at
e
b
e
ha
v
i
ors
Expect
ed
state
be
ha
v
i
o
r
s
A/
C
INTENT
CONTROL
SY
ST
E
M
AI
R
C
R
AF
T
DY
NA
MI
C
S
A
C
TUA
L
S
YSTE
M
R
EPR
ESE
NTA
TI
O
N
P
o
si
tion
V
e
l
o
city
Accel.
CO
N
F
O
R
M
A
NC
E M
O
N
I
TO
RI
N
G
M
O
DE
L
CON
FOR
MA
NC
E MONITORIN
G
FUN
CTIONS
Ex
t
e
rn
al d
i
s
t
urba
nc
es
,
e.g. w
i
nd
s
Ext
er
na
l
di
st
ur
ba
n
c
e
m
o
d
e
l
PI
LO
T
IN
T
E
N
T
A/
C
IN
T
E
N
T
MODE
L
C
O
NTROL
S
YSTEM
MODE
L
A
I
RC
RA
FT
D
Y
NA
M
I
CS
MODE
L
PI
LO
T
INTENTMOD
EL
Target
states
Gu
i
d
an
ce
mod
e
Nav.
ac
curacy
e.g. AN
P
Co
nt
ro
l
surf
ac
e
in
pu
ts
A/c
property
e.g
.
w
e
ight
SURVEILLA
NCE
Tr
aj
ec
to
ry
D
e
stin
atio
n
SU
RVEILLA
NCE MODEL
Conf
orm
a
nc
e
Re
sidua
l
G
e
ne
r
a
t
i
on
Scheme
Decision-
Making
Scheme
CONFORMA
NCE
BA
SIS
Sy
ste
m
Su
pe
rvi
so
ry
Co
ntr
ol
Co
mp
ute
r
Int
erf
ac
e
Di
sp
lay
Co
ntr
ol
Se
nsor
s
Di
rec
t O
bs
erv
ati
on
INTENT REPRESENTATION
IN ATC
y
Intent formalized in “Surv
e
i
llance State Vector”
y
Accuratel
y
m
imics intent communication & execution in ATC
° ° ° °