Solution 2.9.2.3
f(t)=A[1(t);1(t ;T)] + B [1(t; T); 1(t; 2T)]
Then
F(s) = LfA[1(t)g;LfA1(t ;T)]g+ LfB1(t ;T)g;LfB1(t ; 2T)g
=
A
s
;
Ae
;Ts
s
+
Be
;Ts
s
;
Be
;2Ts
s
=
A(1;e
;Ts
)+B(e
;Ts
; e
;2Ts
)
s
Check:
F(s) =
Z
T
0
Ae
;st
dt +
Z
2T
T
Be
;st
dt
=
;A
s
h
e
;st
i
T
0
;
B
s
h
e
;st
i
2T
T
=
A(1; e
;sT
)+B(e
;sT
; e
;2sT
)
s
1