Solution 2.9.2.10 f(t) = e ;3t [1(t); 1(t;T 1 )]+ e ;3T 1 [1(t; T 1 );1(t ;T 2 )] +C [1(t; T 2 );1(t ;T 3 )] Then F(s) = Lfe ;3t 1(t)g;Lfe ;3T 1 e ;3(t;T 1 ) 1(t; T 1 )g +Lfe ;3T 1 1(t ;T 1 )g;Lfe 3 T 1 1(t;T 2 )g +LfC1(t ;T 2 )g;LfC1(t;T 3 )g = 1 s +3 ; e ;3T 1 e ;T 1 s s +3 + e ;3T 1 e ;T 1 s s ; e ;3T 1 e ;T 2 s s + Ce ;T 2 s s ; Ce ;T 3 s s = 1;e ;3T 1 e ;T 1 s s +3 + e ;3T 1 (e ;T 1 s ; e ;T 2 s )+C(e ;T 2 s ; e ;T 3 s ) s 1