Solution 2.9.2.6
f(t)=t
2
[1(t;T);1(t ;2T)]
Then
F(s) = Lft
2
[1(t;T)g;Lft
2
1(t ;2T)]g
= Lf(t;T)
2
1(t; T)+2Tt1(t;T); T
2
1(t; T)g
;Lf(t ; 2T)
2
1(t;2T)+4Tt1(t ;2T); 4T
2
1(t; 2T)g
= Lf(t;T)
2
1(t; T)g+Lf2Tt1(t ;T)g;LfT
2
1(t; T)g
;Lf(t ; 2T)
2
1(t;2T)g+ Lf4Tt1(t; 2T)g;Lf4T
2
1(t; 2T)g
=
2e
;Ts
s
3
+
2Te
;Ts
s
2
;
T
2
e
;Ts
s
;
2e
;2Ts
s
3
;
4Te
;2Ts
s
2
+
4T
2
e
;2Ts
s
=
2e
;Ts
+2Tse
;Ts
;T
2
s
2
e
;Ts
;2e
;2Ts
;4Tse
;2Ts
+4T
2
s
2
e
;2Ts
s
3
=
[4T
2
e
;2Ts
;T
2
e
;Ts
]s
2
+[2Te
;Ts
; 4Te
;2Ts
]s +[2e
;Ts
+;2e
;2Ts
]
s
3
1