Solution 2.9.2.6 f(t)=t 2 [1(t;T);1(t ;2T)] Then F(s) = Lft 2 [1(t;T)g;Lft 2 1(t ;2T)]g = Lf(t;T) 2 1(t; T)+2Tt1(t;T); T 2 1(t; T)g ;Lf(t ; 2T) 2 1(t;2T)+4Tt1(t ;2T); 4T 2 1(t; 2T)g = Lf(t;T) 2 1(t; T)g+Lf2Tt1(t ;T)g;LfT 2 1(t; T)g ;Lf(t ; 2T) 2 1(t;2T)g+ Lf4Tt1(t; 2T)g;Lf4T 2 1(t; 2T)g = 2e ;Ts s 3 + 2Te ;Ts s 2 ; T 2 e ;Ts s ; 2e ;2Ts s 3 ; 4Te ;2Ts s 2 + 4T 2 e ;2Ts s = 2e ;Ts +2Tse ;Ts ;T 2 s 2 e ;Ts ;2e ;2Ts ;4Tse ;2Ts +4T 2 s 2 e ;2Ts s 3 = [4T 2 e ;2Ts ;T 2 e ;Ts ]s 2 +[2Te ;Ts ; 4Te ;2Ts ]s +[2e ;Ts +;2e ;2Ts ] s 3 1