solution 9.10.1.6
The rst step is to put the transfer function in time constant form. So we
have
G(s) =
1000
s(s
2
+2s +101)
=
1000
101s(s=
p
101)
2
+ s=50:5+1)
=
9:909
s(s=
p
101)
2
+ s=50:5+1)
:
Then the terms to be plotted are
9:90099 ;;
1
s
;;and
1
s=
p
101)
2
+ s=50:5+1
:
20log
10
(9:90099) = 19:91 dB
Atlowfrequencies the only terms that contribute are the gain and 1=s. The
term 1=s, whichisastraight line crossing the 0-dB line at ! =1,will, when
the gain is added in, cross at 19.91 dB. The quadratic term is a straight
line oout to the vicinityofthe natural frequency !
n
,and a straightline for
frequencies much larger than !
n
. The twostraightline asymptotes shown in
Figure 1 capture the behavior awayfromthe vicinityof!
n
.Notethat the
slope changes to ;60 dB when the plot crosses the 0-dB line. The damping
ratio of the complex poles is about 0.1. Referring to Figure 9.11(a) wesee
that the hump should be up about 12 dB at the resonant frequency ( which
is very close to !
n
). Using Figure 9.11(a), wecould sketchinthe hump.
The accurate magnitude plot, also shown in Figure ??,was generated with
the MATLAB statements
w=logspace(-2,3,200);;
s=j*w;;
p1 = 0
p2 = 1 -j*10
p3 = 1 + j*10
K=1000
mag = 20.*log10( K ./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
axis([0.1 1000 -100 60])
print -deps 91016a.eps
The phase plot, shown in Figure 2, is generated with the MATLAB
statements
1
10
-1
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
20
40
60
Figure 1: Accurate and asymptotic Bode magnitude plots
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = (- angle(s + p1)-angle(s + p2) - angle(s + p3))*180/pi;;
phase1 =( - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -270 -90])
print -deps 91016b.eps
Note that twentypoint spread over vedecades will giveafairly accurate
phase plot. The complete MATLAB program to drawbothplots is
w=logspace(-2,3,200);;
s=j*w;;
p1 = 0
p2 = 1 -j*10
p3 = 1 + j*10
K=1000
mag = 20.*log10( K ./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
2
10
-1
10
0
10
1
10
2
10
3
-260
-240
-220
-200
-180
-160
-140
-120
-100
Figure 2: Accurate and approximate Bode phase plots
axis([0.1 1000 -100 60])
print -deps 91016a.eps
pause
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = (- angle(s + p1)-angle(s + p2) - angle(s + p3))*180/pi;;
phase1 =( - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -270 -90])
print -deps 91016b.eps
3