solution 9.10.1.4
The rst step is to put the transfer function in time constant form. So we
have
G(s) =
100(s+10)
s(s + 2)(s+50)
=
1000(1+ s=10)
(2)(50)s(1+ s=2)(1+ s=50)
=
10(1+ s=10)
s(1 + s=2)(1+ s=50)
:
Then the terms to be plotted are
10 ;;
1
s
;;
1
1+s=2
;;
1
1+s=50
;;and 1+s=10
log
10
(10) = 20 db
Atlowfrequencies the only terms that contribute are the gain and 1=s. The
term 1=s, whichisastraight line crossing the 0-dB line at ! =1,will, when
the gain is added in, cross at 20 dB. The other terms are straightlines. The
asymptotic magnitude plot is shown in Figure 1 along with the accurate plot.
The accurate magnitude plot was generated with the MATLAB statements
w=logspace(-2,3,200);;
s=j*w;;
z=10
p1 = 0
p2 = 2
p3 = 50
K=100
mag = 20.*log10( ( K*abs(s + z) )./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
axis([0.1 1000 -100 60])
print -deps 91014a.eps
The phase plot, shown in Figure 2, is generated with the MATLAB
statements
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = ( angle(s + z)- angle(s + p1)-angle(s + p2) - angle(s + p3))*180/pi;;
phase1 =( angle(s1 + z)- angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
1
10
-1
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
20
40
60
Figure 1: Accurate and asymptotic Bode magnitude plots
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -180 -80])
print -deps 91014b.eps
Note that twentypoint spread over vedecades will giveafairly accurate
phase plot. The complete MATLAB program to drawbothplots is
w=logspace(-2,3,200);;
s=j*w;;
z=10
p1 = 0
p2 = 2
p3 = 50
K=100
mag = 20.*log10( ( K*abs(s + z) )./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
axis([0.1 1000 -100 60])
print -deps 91014a.eps
pause
2
10
-1
10
0
10
1
10
2
10
3
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
Figure 2: Accurate and approximate Bode phase plots
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = ( angle(s + z)- angle(s + p1)-angle(s + p2) - angle(s + p3))*180/pi;;
phase1 =( angle(s1 + z)- angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -180 -80])
print -deps 91014b.eps
3