solution 9.10.1.3
The rst step is to put the transfer function in time constant form. So we
have
G(s) =
50
s(s + 5)(s+50)
=
50
(5)(50)s(1+ s=5)(1+ s=50)
=
0:2
s(1 + s=5)(1+ s=50)
:
Then the terms to be plotted are
0:2 ;;
1
s
;;
1
1+s=5
;;
1
1+s=50
log
10
(0:2) = ;14 db
Atlowfrequencies the only terms that contribute are the gain and 1=s. The
term 1=s, whichisastraight line crossing the 0-dB line at ! =1,will, when
the gain is added in, cross at -14 dB. The other terms are straight lines. The
asymptotic magnitude plot is shown in Figure 1 along with the accurate plot.
The accurate magnitude plot was generated with the MATLAB statements
w=logspace(-2,3,200);;
s=j*w;;
p1 = 0;;
p2 = 5;;
p3 = 50;;
K=50;;
mag = 20.*log10( K./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
axis([0.1 1000 -100 20])
print -deps 91013a.eps
The phase plot, shown in Figure 2, is generated with the MATLAB
statements
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = (- angle(s + p1)-angle(s + p2) - angle(s + p3))*180/pi;;
phase1 =( - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -270 -80])
print -deps 91013b.eps
1
10
-1
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
20
Figure 1: Accurate and asymptotic Bode magnitude plots
Note that twentypoint spread over vedecades will giveafairly accurate
phase plot. The complete MATLAB program to drawbothplots is
w=logspace(-2,3,200);;
s=j*w;;
p1 = 0;;
p2 = 5;;
p3 = 50;;
K=50;;
mag = 20.*log10( K./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
axis([0.1 1000 -100 20])
print -deps 91013a.eps
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = (- angle(s + p1)-angle(s + p2) - angle(s + p3))*180/pi;;
phase1 =( - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
2
10
-1
10
0
10
1
10
2
10
3
-260
-240
-220
-200
-180
-160
-140
-120
-100
-80
Figure 2: Accurate and approximate Bode phase plots
axis([0.1 1000 -270 -80])
print -deps 91013b.eps
3