solution 9.10.1.8
The rst step is to put the transfer function in time constant form. So we
have
G(s) =
100
s
2
(s
2
+8s +25)
=
100
25s(s=
p
25)
2
+(8=25)s+1)
=
4
s
2
(s=
p
25)
2
+(8=25)s+1)
:
Then the terms to be plotted are
4 ;;
1
s
;;and
1
s=
p
25)
2
+(8=25)s+1
:
20log
10
(4) = 12:042 dB
Atlowfrequencies the only terms that contribute are the gain and 1=s. The
term 1=s, whichisastraightline crossing the 0-dB line at ! =1,withslope
;20 dB/dec. When the gain is added in, it will cross ! =1rad/s at 12.042
dB. The quadratic term is a straightlineout to the vicinityofthe natural
frequency !
n
,and a straightline for frequencies muchlarger than !
n
. The
twostraightline asymptotes shown in Figure 1 capture the behavior away
from the vicinityof!
n
. Note that the slope changes to ;60 dB when the
plot crosses the 0-dB line. The damping ratio of the complex poles is about
0.8. Referring to Figure 9.11(a) weseethat there will be no hump at the
resonantfrequency ( whichisvery close to !
n
). The accurate magnitude
plot, also shown in Figure ??,was generated with the MATLAB statements
w=logspace(-2,3,200);;
s=j*w;;
p1 = 0
p2 = 4 -j*3
p3 = 4 + j*3
K=100
mag = 20.*log10( K ./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
axis([0.1 1000 -100 60])
print -deps 91018a.eps
The phase plot, shown in Figure 2, is generated with the MATLAB
statements
1
10
-1
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
20
40
60
Figure 1: Accurate and asymptotic Bode magnitude plots
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = (- angle(s + p1)-angle(s + p2) - angle(s + p3) )*180/pi;;
phase1 =( - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -270 -90])
print -deps 91018b.eps
Note that twentypoint spread over vedecades will giveafairly accurate
phase plot. The complete MATLAB program to drawbothplots is
w=logspace(-2,3,200);;
s=j*w;;
p1 = 0
p2 = 4 -j*3
p3 = 4 + j*3
K=100
mag = 20.*log10( K ./( abs( s + p1) .* abs(s + p2).*abs(s + p3) ) );;
semilogx(w,mag);;
grid on
2
10
-1
10
0
10
1
10
2
10
3
-260
-240
-220
-200
-180
-160
-140
-120
-100
Figure 2: Accurate and approximate Bode phase plots
axis([0.1 1000 -100 60])
print -deps 91018a.eps
pause
w1 = logspace(-2,3,20);;
s1 = j*w1;;
phase = (- angle(s + p1)-angle(s + p2) - angle(s + p3) )*180/pi;;
phase1 =( - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3))*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 1000 -270 -90])
print -deps 91018b.eps
3