solution 9.10.1.20
The rst step is to put the transfer function in time constant form. So we
have
G(s) =
100(s+20)
s
2
(s +200)
=
(100)(20)(1+ s=20)
(200)s
2
(1 + s=200)
=
10(1+ s=20)
s
2
(1 + s=200)
:
Then the terms to be plotted are
10 ;;
1
s
2
;;
1
1+s=200
;;and 1 + s=20:
log
10
(10) = 20 db
Atlow frequencies the only terms that contribute are the gain and 1=s
2
.
The term 1=s
2
,whichisastraight line crossing the 0-dB line at ! =1,will,
when the gain is added in, cross the vertical line through ! =1rad/sat
20 dB. The other terms are straightlines. The asymptotic magnitude plot
is shown in Figure 1 along with the accurate plot. The accurate magnitude
plot was generated with the MATLAB statements
w=logspace(-2,4,300);;
s=j*w;;
z1 = 20
p1 = 0
p2 = 0
p3 = 200
K=100
mag = 20.*log10( abs( ( K*(s + z1) ) ./( ( s + p1) .*(s + p2).*(s + p3) ) ) );;
semilogx(w,mag);;
grid on
axis([0.1 10000 -100 40])
print -deps 910120a.eps
The phase plot, shown in Figure 2, is generated with the MATLAB
statements
w1 = logspace(-2,4,30);;
s1 = j*w1;;
phase = (angle(s + z1)- angle(s + p1)-angle(s + p2) - angle(s + p3) )*180/pi;;
1
10
-1
10
0
10
1
10
2
10
3
10
4
-100
-80
-60
-40
-20
0
20
40
Figure 1: Accurate and asymptotic Bode magnitude plots
phase1 =(angle(s1 + z1) - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3) )*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 10000 -200 -120])
print -deps 910120b.eps
20*log10(0.2)
Note that twentypoint spread over vedecades will giveafairly accurate
phase plot. The complete MATLAB program to drawbothplots is
w=logspace(-2,4,300);;
s=j*w;;
z1 = 20
p1 = 0
p2 = 0
p3 = 200
K=100
mag = 20.*log10( abs( ( K*(s + z1) ) ./( ( s + p1) .*(s + p2).*(s + p3) ) ) );;
semilogx(w,mag);;
grid on
axis([0.1 10000 -100 40])
2
10
-1
10
0
10
1
10
2
10
3
10
4
-200
-190
-180
-170
-160
-150
-140
-130
-120
Figure 2: Accurate and approximate Bode phase plots
print -deps 910120a.eps
pause
w1 = logspace(-2,4,30);;
s1 = j*w1;;
phase = (angle(s + z1)- angle(s + p1)-angle(s + p2) - angle(s + p3) )*180/pi;;
phase1 =(angle(s1 + z1) - angle(s1 + p1)-angle(s1 + p2) - angle(s1 + p3) )*180/pi;;
semilogx(w,phase,'k-',w1,phase1,'rd');;
grid on
axis([0.1 10000 -200 -120])
print -deps 910120b.eps
20*log10(0.2)
3