APPENDIX 1
PHYSICAL PROPERTIES
A-1
Compound name
Alkanes
Methane
Ethane
Propane
Butane
2-Methylpropane
Pentane
2-Methylbutane
2,2-Dimethylpropane
Hexane
Heptane
Octane
Nonane
Decane
Dodecane
Pentadecane
Icosane
Hectane
Cycloalkanes
Cyclopropane
Cyclobutane
Cyclopentane
Cyclohexane
Cycloheptane
Cyclooctane
Cyclononane
Cyclodecane
Cyclopentadecane
Alkenes and cycloalkenes
Ethene (ethylene)
Propene
1-Butene
2-Methylpropene
Cyclopentene
Molecular
formula
CH
4
C
2
H
6
C
3
H
8
C
4
H
10
C
4
H
10
C
5
H
12
C
5
H
12
C
5
H
12
C
6
H
14
C
7
H
16
C
8
H
18
C
9
H
20
C
10
H
22
C
12
H
26
C
15
H
32
C
20
H
42
C
100
H
202
C
3
H
6
C
4
H
8
C
5
H
10
C
6
H
12
C
7
H
14
C
8
H
16
C
9
H
18
C
10
H
20
C
15
H
30
C
2
H
4
C
3
H
6
C
4
H
8
C
4
H
8
C
5
H
8
Melting
point, °C
H11002182.5
H11002183.6
H11002187.6
H11002139.0
H11002160.9
H11002129.9
H11002160.5
H1100216.6
H1100294.5
H1100290.6
H1100256.9
H1100253.6
H1100229.7
H110029.7
10.0
36.7
115.1
H11002127.0
H1100294.0
6.5
H1100213.0
13.5
9.6
60.5
H11002169.1
H11002185.0
H11002185
H11002140
H1100298.3
Boiling
point, °C
(1 atm)
H11002160
H1100288.7
H1100242.2
H110020.4
H1100210.2
36.0
27.9
9.6
68.8
98.4
125.6
150.7
174.0
216.2
272.7
205 (15 mm)
H1100232.9
13.0
49.5
80.8
119.0
149.0
171
201
112.5 (1 mm)
H11002103.7
H1100247.6
H110026.1
H11002 6.6
44.1
Structural
formula
CH
4
CH
3
CH
3
CH
3
CH
2
CH
3
CH
3
CH
2
CH
2
CH
3
(CH
3
)
3
CH
CH
3
(CH
2
)
3
CH
3
(CH
3
)
2
CHCH
2
CH
3
(CH
3
)
4
C
CH
3
(CH
2
)
4
CH
3
CH
3
(CH
2
)
5
CH
3
CH
3
(CH
2
)
6
CH
3
CH
3
(CH
2
)
7
CH
3
CH
3
(CH
2
)
8
CH
3
CH
3
(CH
2
)
10
CH
3
CH
3
(CH
2
)
13
CH
3
CH
3
(CH
2
)
18
CH
3
CH
3
(CH
2
)
98
CH
3
CH
2
?CH
2
CH
3
CH?CH
2
CH
3
CH
2
CH?CH
2
(CH
3
)
2
C?CH
2
(Continued)
TABLE A Selected Physical Properties of Representative Hydrocarbons
A-2 APPENDIX 1
Molecular
formula
C
2
H
2
C
3
H
4
C
4
H
6
C
4
H
6
C
6
H
10
C
6
H
10
C
8
H
14
C
9
H
16
C
10
H
18
C
6
H
10
C
5
H
10
C
5
H
10
C
6
H
12
C
6
H
12
C
7
H
14
C
8
H
16
C
10
H
20
C
6
H
6
C
7
H
8
C
8
H
8
C
8
H
10
C
8
H
10
C
10
H
8
C
13
H
12
C
19
H
16
Melting
point, °C
H1100281.8
H11002101.5
H11002125.9
H1100232.3
H11002132.4
H1100278.2
H1100279.6
H1100236.0
H1100240.0
H11002104.0
H11002138.0
H11002134.1
H11002138.0
H1100274.6
H11002119.7
H11002104
H1100280.0
5.5
H1100295
H1100233
H1100213
H1100294
80.3
26
94
Boiling
point, °C
(1 atm)
H1100284.0
H11002 23.2
8.1
27.0
71.4
37.7
126.2
160.6
182.2
83.1
30.2
38.4
63.5
73.5
94.9
119.2
172.0
80.1
110.6
145
138
136.2
218
261
Compound name
Alkynes
Ethyne (acetylene)
Propyne
1-Butyne
2-Butyne
1-Hexyne
3,3-Dimethyl-1-butyne
1-Octyne
1-Nonyne
1-Decyne
Cyclohexene
1-Pentene
2-Methyl-2-butene
1-Hexene
2,3-Dimethyl-2-butene
1-Heptene
1-Octene
1-Decene
Arenes
Benzene
Toluene
Styrene
p-Xylene
Ethylbenzene
Naphthalene
Diphenylmethane
Triphenylmethane
Structural
formula
HCPCH
CH
3
CPCH
CH
3
CH
2
CPCH
CH
3
CPCCH
3
CH
3
(CH
2
)
3
CPCH
(CH
3
)
3
CCPCH
CH
3
(CH
2
)
5
CPCH
CH
3
(CH
2
)
6
CPCH
CH
3
(CH
2
)
7
CPCH
CH
3
CH
2
CH
2
CH?CH
2
(CH
3
)
2
C?CHCH
3
CH
3
CH
2
CH
2
CH
2
CH?CH
2
(CH
3
)
2
C?C(CH
3
)
2
CH
3
(CH
2
)
4
CH?CH
2
CH
3
(CH
2
)
5
CH?CH
2
CH
3
(CH
2
)
7
CH?CH
2
(C
6
H
5
)
2
CH
2
(C
6
H
5
)
3
CH
CH
3
CH CH
2
CH
3
H
3
C
CH
2
CH
3
TABLE A Selected Physical Properties of Representative Hydrocarbons (Continued)
APPENDIX 1 A-3
Boiling point, °C (1 atm) Density, g/mL (20°C)
Fluoride
H1100278
H1100232
H110023
H1100211
16
65
92
143
Chloride
H1100224
12
47
35
78
68
68
51
108
134
183
114
142
Bromide
3
38
71
59
102
91
91
73
129
155
202
138
167
Iodide
42
72
103
90
130
120
121
99
157
180
226
166
192
Chloride
0.903
0.890
0.859
0.887
0.873
0.878
0.847
0.884
0.879
0.892
1.005
0.977
Bromide
1.460
1.353
1.310
1.276
1.261
1.264
1.220
1.216
1.175
1.118
1.388
1.324
Iodide
2.279
1.933
1.739
1.714
1.615
1.597
1.603
1.570
1.516
1.439
1.336
1.626
1.694
Structural
formula
CH
3
X
CH
3
CH
2
X
CH
3
CH
2
CH
2
X
(CH
3
)
2
CHX
CH
3
CH
2
CH
2
CH
2
X
CH
3
CHCH
2
CH
3
(CH
3
)
2
CHCH
2
X
(CH
3
)
3
CX
CH
3
(CH
2
)
3
CH
2
X
CH
3
(CH
2
)
4
CH
2
X
CH
3
(CH
2
)
6
CH
2
X
X
X
W
X
Compound
name
Alkyl Halides
Halomethane
Haloethane
1-Halopropane
2-Halopropane
1-Halobutane
2-Halobutane
1-Halo-2-methylpropane
2-Halo-2-methylpropane
1-Halopentane
1-Halohexane
1-Halooctane
Halocyclopentane
Halocyclohexane
Compound
Aryl Halides
C
6
H
5
X
o-C
6
H
4
X
2
m-C
6
H
4
X
2
p-C
6
H
4
X
2
1,3,5-C
6
H
3
X
3
C
6
X
6
Halogen substituent (X)*
Fluorine Chlorine Bromine Iodine
mp
H1100241
H1100234
H1100259
H1100213
H110025
5
bp
85
91
83
89
76
80
mp
H1100245
H1100217
H1100225
53
63
230
bp
132
180
173
174
208
322
mp
H1100231
7
H110027
87
121
327
bp
156
225
218
218
271
mp
H1100231
27
35
129
184
350
bp
188
286
285
285
*All boiling points and melting points cited are in degrees Celsius.
TABLE B Selected Physical Properties of Representative Organic Halogen Compounds
A-4 APPENDIX 1
Compound
name
Alcohols
Methanol
Ethanol
1-Propanol
2-Propanol
1-Butanol
2-Butanol
2-Methyl-1-propanol
2-Methyl-2-propanol
1-Pentanol
1-Hexanol
1-Dodecanol
Ethers
Dimethyl ether
Diethyl ether
Dipropyl ether
Diisopropyl ether
1,2-Dimethoxyethane
Diethylene glycol
dimethyl ether
(diglyme)
Cyclohexanol
Ethylene oxide
Tetrahydrofuran
Melting
point, °C
H1100294
H11002117
H11002127
H1100290
H1100290
H11002115
H11002108
26
H1100279
H1100252
26
H11002138.5
H11002116.3
H11002122
H1100260
25
H11002111.7
H11002108.5
Boiling
point, °C
(1 atm)
65
78
97
82
117
100
108
83
138
157
259
H1100224
34.6
90.1
68.5
83
161
161
10.7
65
Solubility,
g/100 mL H
2
O
H11009
H11009
H11009
H11009
9
26
10
H11009
0.6
Insoluble
Very soluble
7.5
Slight
0.2
H11009
H11009
3.6
H11009
H11009
(Continued)
Structural
formula
CH
3
OH
CH
3
CH
2
OH
CH
3
CH
2
CH
2
OH
(CH
3
)
2
CHOH
CH
3
CH
2
CH
2
CH
2
OH
CH
3
CHCH
2
CH
3
(CH
3
)
2
CHCH
2
OH
(CH
3
)
3
COH
CH
3
(CH
2
)
3
CH
2
OH
CH
3
(CH
2
)
4
CH
2
OH
CH
3
(CH
2
)
10
CH
2
OH
W
OH
CH
3
OCH
3
CH
3
CH
2
OCH
2
CH
3
CH
3
CH
2
CH
2
OCH
2
CH
2
CH
3
(CH
3
)
2
CHOCH(CH
3
)
2
CH
3
OCH
2
CH
2
OCH
3
CH
3
OCH
2
CH
2
OCH
2
CH
2
OCH
3
OH
O
O
TABLE C Selected Physical Properties of Representative Alcohols, Ethers, and Phenols
APPENDIX 1 A-5
Compound name
Phenols
Phenol
o-Cresol
m-Cresol
p-Cresol
o-Chlorophenol
m-Chlorophenol
p-Chlorophenol
o-Nitrophenol
m-Nitrophenol
p-Nitrophenol
1-Naphthol
2-Naphthol
Pyrocatechol
Resorcinol
Hydroquinone
Melting
point, °C
43
31
12
35
7
32
42
45
96
114
96
122
105
110
170
Boiling
point, °C
182
191
203
202
175
214
217
217
279
279
285
246
276
285
Solubility,
g/100 mL H
2
O
8.2
2.5
0.5
1.8
2.8
2.6
2.7
0.2
1.3
1.6
Slight
0.1
45.1
147.3
6
TABLE C Selected Physical Properties of Representative Alcohols, Ethers, and Phenols (Continued)
(Continued)
Compound
name
Aldehydes
Formaldehyde
Acetaldehyde
Propanal
Butanal
Benzaldehyde
Melting
point, °C
H1100292
H11002123.5
H1100281
H1100299
H1100226
Boiling
point, °C
(1 atm)
H1100221
20.2
49.5
75.7
178
Solubility,
g/100 mL H
2
O
Very soluble
H11009
20
4
0.3
Structural formula
HCH
X
O
CH
3
CH
X
O
CH
3
CH
2
CH
X
O
CH
3
CH
2
CH
2
CH
X
O
C
6
H
5
CH
X
O
TABLE D Selected Physical Properties of Representative Aldehydes and Ketones
A-6 APPENDIX 1
Compound
name
Ketones
Acetone
2-Butanone
2-Pentanone
3-Pentanone
Cyclopentanone
Cyclohexanone
Acetophenone
Benzophenone
Melting
point, °C
H1100294.8
H1100286.9
H1100277.8
H1100239.9
H1100251.3
H1100245
21
48
Boiling
point, °C
(1 atm)
56.2
79.6
102.4
102.0
130.7
155
202
306
Solubility,
g/100 mL H
2
O
H11009
37
Slight
4.7
43.3
Insoluble
Insoluble
Structural formula
CH
3
CCH
3
X
O
CH
3
CCH
2
CH
3
X
O
CH
3
CCH
2
CH
2
CH
3
X
O
CH
3
CH
2
CCH
2
CH
3
X
O
C
6
H
5
CCH
3
X
O
C
6
H
5
CC
6
H
5
X
O
O
O
TABLE D Selected Physical Properties of Representative Aldehydes and Ketones (Continued)
Carboxylic acids
Dicarboxylic acids
Compound name
Formic acid
Acetic acid
Propanoic acid
Butanoic acid
Pentanoic acid
Decanoic acid
Benzoic acid
Oxalic acid
Malonic acid
Succinic acid
Glutaric acid
Melting
point, °C
8.4
16.6
H1100220.8
H110025.5
H1100234.5
31.4
122.4
186
130¨C135
189
97.5
Boiling
point, °C
(1 atm)
101
118
141
164
186
269
250
Sublimes
Decomposes
235
Solubility,
g/100 mL H
2
O
H11009
H11009
H11009
H11009
3.3 (16°C)
0.003 (15°C)
0.21 (17°C)
10 (20°C)
138 (16°C)
6.8 (20°C)
63.9 (20°C)
Structural
formula
HCO
2
H
CH
3
CO
2
H
CH
3
CH
2
CO
2
H
CH
3
CH
2
CH
2
CO
2
H
CH
3
(CH
2
)
3
CO
2
H
CH
3
(CH
2
)
8
CO
2
H
C
6
H
5
CO
2
H
HO
2
CCO
2
H
HO
2
CCH
2
CO
2
H
HO
2
CCH
2
CH
2
CO
2
H
HO
2
CCH
2
CH
2
CH
2
CO
2
H
TABLE E Selected Physical Properties of Representative Carboxylic Acids and Dicarboxylic Acids
APPENDIX 1 A-7
Melting
point, °C
H1100292.5
H1100280.6
H1100250
H1100285
H11002104
H1100267.5
H1100219
H1100218
10
H1100210.5
H1100292.2
H1100250
3
H11002117.1
H11002114.7
Boiling
point, °C
H110026.7
16.6
77.8
68
66
45.2
129
134.5
184.5
106.4
6.9
55.5
62.4
107
2.9
89.4
Solubility,
g/100 mL H
2
O
Very high
H11009
H11009
H11009
H11009
Slightly soluble
H11009
H11009
H11009
Very soluble
Very soluble
Soluble
41
H11009
Compound name
Alkylamines
Methylamine
Ethylamine
Butylamine
Isobutylamine
sec-Butylamine
tert-Butylamine
Hexylamine
Cyclohexylamine
Benzylamine
Piperidine
Primary amines
Dimethylamine
Diethylamine
N-Methylpropylamine
Secondary amines
N-Methylpiperidine
Trimethylamine
Triethylamine
Tertiary amines
Structural
formula
CH
3
NH
2
CH
3
CH
2
NH
2
CH
3
CH
2
CH
2
CH
2
NH
2
(CH
3
)
2
CHCH
2
NH
2
CH
3
CH
2
CHNH
2
(CH
3
)
3
CNH
2
CH
3
(CH
2
)
5
NH
2
C
6
H
5
CH
2
NH
2
NH
2
W
CH
3
(CH
3
)
2
NH
(CH
3
CH
2
)
2
NH
CH
3
NHCH
2
CH
2
CH
3
N
H
(CH
3
)
3
N
(CH
3
CH
2
)
3
N
N
CH
3
(Continued)
TABLE F Selected Physical Properties of Representative Amines
A-8 APPENDIX 1
Melting
point, °C
H110026.3
H1100214.7
H1100230.4
44
H1100214
H1100210
72.5
71.5
114
148
H1100257
H1100263
2.4
127
Boiling
point, °C
184
200
203
200
209
230
232
284
306
332
196
205
194
365
Compound name
Arylamines
Aniline
o-Toluidine
m-Toluidine
p-Toluidine
o-Chloroaniline
m-Chloroaniline
p-Chloroaniline
o-Nitroaniline
m-Nitroaniline
p-Nitroaniline
Primary amines
N-Methylaniline
N-Ethylaniline
Secondary amines
N,N-Dimethylaniline
Triphenylamine
Tertiary amines
TABLE F Selected Physical Properties of Representative Amines (Continued)
APPENDIX 2
ANSWERS TO IN-TEXT PROBLEMS
A-9
Problems are of two types: in-text problems that appear within the body of each chapter, and end-
of-chapter problems. This appendix gives brief answers to all the in-text problems. More detailed
discussions of in-text problems as well as detailed solutions to all the end-of-chapter problems are
provided in a separate Study Guide and Student Solutions Manual. Answers to part (a) of those
in-text problems with multiple parts have been provided in the form of a sample solution within
each chapter and are not repeated here.
CHAPTER 1
1.1 4
1.2 All the third-row elements have a neon core containing 10 electrons (1s
2
2s
2
2p
6
). The ele-
ments in the third row, their atomic numbers Z, and their electron configurations beyond the neon
core are Na(Z H1100511)3s
1
; Mg(Z H11005 12)3s
2
; Al(Z H11005 13) 3s
2
3p
x
1
; Si(Z H11005 14) 3s
2
3p
x
1
3p
y
1
; P (Z H11005 15)
3s
2
3p
x
1
3p
y
1
3p
z
1
; S (Z H11005 16) 3s
2
3p
x
2
3p
y
1
3p
z
1
; Cl (Z H11005 17) 3s
2
3p
x
2
3p
y
2
3p
z
1
; Ar (Z H11005 18)
3s
2
3p
x
2
3p
y
2
3p
z
2
.
1.3 Those ions that possess a noble gas electron configuration are (a) K
H11001
; (c) H
H11002
; (e) F
H11002
; and
(f) Ca
2H11001
.
1.4 Electron configuration of C
H11001
is 1s
2
2s
2
2p
1
; electron configuration of C
H11002
is 1s
2
2s
2
2p
3
. Nei-
ther C
H11001
nor C
H11002
possesses a noble gas electron configuration.
1.5
1.6
1.7 (b) (c)
1.8 Carbon bears a partial positive charge in CH
3
Cl. It is partially negative in both CH
4
and
CH
3
Li, but the degree of negative charge is greater in CH
3
Li.
1.9 (b) Sulfur has a formal charge of H110012 in the Lewis structure given for sulfuric acid, the two
oxygens bonded only to sulfur each have a formal charge of H110021, and the oxygens and hydrogens
of the two OH groups have no formal charge; (c) none of the atoms have a formal charge in the
Lewis structure given for nitrous acid.
1.10 The electron counts of nitrogen in ammonium ion and boron in borohydride ion are both 4
(half of 8 electrons in covalent bonds). Since a neutral nitrogen has 5 electrons in its valence shell,
an electron count of 4 gives it a formal charge of H110011. A neutral boron has 3 valence electrons, so
that an electron count of 4 in borohydride ion corresponds to a formal charge of H110021.
H
C
H
H
CC
N
FF
CC
F F
CH
H
H
H
HH
C
FH
A-10 APPENDIX 2
1.11
1.12 (b) (c) (d)
(e) (f)
1.13 (b) (CH
3
)
2
CHCH(CH
3
)
2
(c) (d)
1.14
1.15 (b) CH
3
CH
2
CH
2
OH, (CH
3
)
2
CHOH, and CH
3
CH
2
OCH
3
. (c) There are seven isomers of
C
4
H
10
O. Four have ±OH groups: CH
3
CH
2
CH
2
CH
2
OH, (CH
3
)
2
CHCH
2
OH, (CH
3
)
3
COH, and
. Three have C±O±C units: CH
3
OCH
2
CH
2
CH
3
, CH
3
CH
2
OCH
2
CH
3
, and
(CH
3
)
2
CHOCH
3
1.16 (b)
(c)
and
C
O
H11002
O
O
H11002
C
O
O
H11002
O
H11002
C
O
H11002
O
O
H11002
C
O
H11002
O
H11002
O
C
HO
O
O
H11002
H
C
O
H11002
O
O
CH
3
CHCH
2
CH
3
OH
H N
H
C O
O
H
CH
2
CH
CH
2
CH
2
CH
2
CH
2
C(CH
3
)
3
HOCH
2
CHCH(CH
3
)
2
CH
3
H C
H
H
C
H
C
H
O
CH H
H
H C
H
H
N
H
C
H
H
C
H
H
H
C
H
H
C
H
Cl
H ClCl C
H
H
C
H
H
ClH C C H
HHH
HH
C
C HH
H
N
H
H
HH
H9254H11001
H9254H11001
H9254H11001H9254H11001 H9254H11001
B
H
H
HH
H9254H11002
H9254H11002
H9254H11002H9254H11002 H9254H11002
APPENDIX 2 A-11
(d)
and
1.17 The H±B±H angles in BH
4
H11002
are 109.5° (tetrahedral).
1.18 (b) Tetrahedral; (c) linear; (d) trigonal planar
1.19 (b) Oxygen is negative end of dipole moment directed along bisector of H±O±H angle;
(c) no dipole moment; (d) dipole moment directed along axis of C±Cl bond, with chlorine at
negative end, and carbon and hydrogens partially positive; (e) dipole moment directed along bisec-
tor of H±C±H angle, with oxygen at negative end; (f) dipole moment aligned with axis of lin-
ear molecule, with nitrogen at negative end.
1.20 The sp
3
hybrid state of nitrogen is just like that of carbon except nitrogen has one more
electron. Each N±H bond in NH
3
involves overlap of an sp
3
hybrid orbital of N with a 1s orbital
of hydrogen. The unshared pair of NH
3
occupies an sp
3
orbital.
1.21 Carbon and silicon are both sp
3
-hybridized. The C±Si bond involves overlap of a half-
filled sp
3
orbital of carbon with a half-filled sp
3
hybrid orbital of silicon. The C±H and Si±H
bonds involve hydrogen 1s orbitals and sp
3
hybrid orbitals of C and Si, respectively. The princi-
pal quantum number of the valence orbitals of silicon is 3.
1.22 (b) sp
2
; (c) carbon of CH
2
group is sp
2
, and carbon of C?O is sp; (d) two doubly bonded
carbons are each sp
2
, while carbon of CH
3
group is sp
3
; (e) carbon of C?O is sp
2
, and carbons
of CH
3
group are sp
3
; (f) two doubly bonded carbons are each sp
2
, and carbon bonded to nitro-
gen is sp.
CHAPTER 2
2.1
2.2 CH
3
(CH
2
)
26
CH
3
2.3 The molecular formula is C
11
H
24
; the condensed structural formula is CH
3
(CH
2
)
9
CH
3
.
Carboxylic acidKetone
OH
O
OH
HO
O
Energy
2p
2s
Ground electronic
state of nitrogen
2sp
3
sp
3
Hybrid
state of nitrogen
2p
2s
Higher energy electronic
state of nitrogen
B
O
O
H11002
O
H11002
B
O
O
H11002
O
H11002
B
O
O
H11002
O
H11002
B
O
H11002
O
H11002
O
A-12 APPENDIX 2
2.4
2.5 (b) CH
3
(CH
2
)
26
CH
3
; (c) undecane
2.6
2.7 (b) CH
3
CH
2
CH
2
CH
2
CH
3
(pentane), (CH
3
)
2
CHCH
2
CH
3
(2-methylbutane), (CH
3
)
4
C (2,2-
dimethylpropane); (c) 2,2,4-trimethylpentane; (d) 2,2,3,3-tetramethylbutane
2.8 CH
3
CH
2
CH
2
CH
2
CH
2
± (pentyl, primary); (1-methylbutyl, sec-
ondary); (1-ethylpropyl, secondary); (CH
3
)
2
CHCH
2
CH
2
± (3-methylbutyl,
primary); CH
3
CH
2
CH(CH
3
)CH
2
± (2-methylbutyl, primary); (1,1-dimethyl-
propyl, tertiary); and (1,2-dimethylpropyl, secondary)
2.9 (b) 4-Ethyl-2-methylhexane; (c) 8-ethyl-4-isopropyl-2,6-dimethyldecane
2.10 (b) 4-Isopropyl-1,1-dimethylcyclodecane; (c) cyclohexylcyclohexane
2.11 2,2,3,3-Tetramethylbutane (106°C); 2-methylheptane (116°C); octane (126°C); nonane
(151°C)
2.12
2.13 13,313 kJ/mol
2.14 Hexane (CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
) H11022 pentane (CH
3
CH
2
CH
2
CH
2
CH
3
) H11022 isopentane
[(CH
3
)
2
CHCH
2
CH
3
] H11022 neopentane [(CH
3
)
4
C]
2.15 (b) Oxidation of carbon; (c) reduction of carbon
CHAPTER 3
3.1 (b) Butane; (c) 2-methylbutane; (d) 3-methylhexane
3.2 Red circles gauche: 60° and 300°. Red circles anti: 180°. Gauche and anti relationships
occur only in staggered conformations; therefore, ignore the eclipsed conformations (0°, 120°,
240°, 360°).
3.3 Shape of potential energy diagram is identical with that for ethane (Figure 3.4). Activation
energy for rotation about the C±C bond is higher than that of ethane, lower than that of butane.
3.4 (b) (c) (d)
3.5 (b) Less stable; (c) methyl is equatorial and down
X
A
3
X
A
3
X
A
9O
2
6CO
2
6H
2
OH11001H11001
(CH
3
)
2
CHCHCH
3
(CH
3
)
2
CCH
2
CH
3
CH
3
CH
2
CHCH
2
CH
3
CH
3
CH
2
CH
2
CHCH
3
orandorCH
3
CHCHCH
3
CH
3
CH
3
CH
3
CH
2
CCH
3
CH
3
CH
3
orCH
3
CH
2
CHCH
2
CH
3
CH
3
APPENDIX 2 A-13
3.6
3.7 Ethylcyclopropane: 3384 kJ/mol (808.8 kcal/mol); methylcyclobutane: 3352 kJ/mol (801.2
kcal/mol)
3.8 1,1-Dimethylcyclopropane, ethylcyclopropane, methylcyclobutane, and cyclopentane
3.9 cis-1,3,5-Trimethylcyclohexane is more stable.
3.10 (b) (c)
(d)
3.11
3.12
Other pairs of bond cleavages are also possible.
3.13 (b) (c) (d)
3.14
CHAPTER 4
4.1
Substitutive name:
Functional class names:
CH
3
CH
2
CH
2
CH
2
Cl
1-Chlorobutane
n-Butyl chloride
or butyl chloride
1-Chloro-2-methylpropane
Isobutyl chloride
or 2-methylpropyl chloride
(CH
3
)
2
CHCH
2
Cl
CH
3
CHCH
2
CH
3
Cl
2-Chlorobutane
sec-Butyl chloride
or 1-methylpropyl chloride
2-Chloro-2-methylpropane
tert-Butyl chloride
or 1,1-dimethylethyl chloride
(CH
3
)
3
CCl
N
CH
3
H11013
CH
3
CH
3
CH
2
CH
3
CH
2
CH
3
CH
3
CH
2
CH
3
CH CH
2
and CH
2
C(CH
3
)
3
H
H
CH
3
C(CH
3
)
3
H
H
3
C
H
C(CH
3
)
3
HH
H
3
C
CH
3
C(CH
3
)
3
A-14 APPENDIX 2
4.2
4.3
4.4 The carbon¡ªbromine bond is longer than the carbon¡ªchlorine bond; therefore, although the
charge e in the dipole moment expression H9262 H11005 e H11080 d is smaller for the bromine than for the chlo-
rine compound, the distance d is greater.
4.5 Hydrogen bonding in ethanol (CH
3
CH
2
OH) makes its boiling point higher than that of
dimethyl ether (CH
3
OCH
3
), in which hydrogen bonding is absent.
4.6
4.7 K
a
H11005 8 H11003 10
H1100210
; hydrogen cyanide is a weak acid.
4.8 Hydrogen cyanide is a stronger acid than water; its conjugate base (CN
H11002
) is a weaker base
than hydroxide (HO
H11002
).
4.9
4.10 Greater than 1
4.11
4.12 (b) (CH
3
CH
2
)
3
COH H11001 HCl ±¡ê (CH
3
CH
2
)
3
CCl H11001 H
2
O
(c) CH
3
(CH
2
)
12
CH
2
OH H11001 HBr ±¡ê CH
3
(CH
2
)
12
CH
2
Br H11001 H
2
O
4.13 (CH
3
)
2
C
H11001
CH
2
CH
3
4.14 1-Butanol: Rate-determining step is bimolecular; therefore, S
N
2.
1. CH
3
CH
2
CH
2
CH
2
O
H
H11001 H Br Br
H11002fast
H
CH
3
CH
2
CH
2
CH
2
O
H11001
H
H11001
(CH
3
)
3
CO Cl
H9254H11002H9254H11001
H
H
H11001 Cl
H11002
Conjugate base
H Cl
Acid
(CH
3
)
3
CO
H
O
Base
H11001
H
(CH
3
)
3
CO
H
O
Conjugate
acid
H11001
Cl
H11002
Conjugate base
H11001
H11001
HH
3
N
Conjugate acid
H
3
N
Base
H11001 H Cl
Acid
CH
3
CH
2
CH
2
CH
2
OH
Primary
CH
3
CHCH
2
CH
3
OH
Secondary
(CH
3
)
2
CHCH
2
OH
Primary Tertiary
(CH
3
)
3
COH
Substitutive name:
Functional class names:
CH
3
CH
2
CH
2
CH
2
OH
1-Butanol
n-Butyl alcohol
or butyl alcohol
2-Methyl-1-propanol
Isobutyl alcohol
or 2-methylpropyl alcohol
(CH
3
)
2
CHCH
2
OH
CH
3
CHCH
2
CH
3
OH
2-Butanol
sec-Butyl alcohol
or 1-methylpropyl alcohol
2-Methyl-2-propanol
tert-Butyl alcohol
or 1,1-dimethylethyl alcohol
(CH
3
)
3
COH
APPENDIX 2 A-15
2.
2-Butanol: Rate-determining step is unimolecular, therefore, S
N
1.
1.
2.
3.
4.15
4.16 (b) The carbon¡ªcarbon bond dissociation energy is lower for 2-methylpropane because it
yields a more stable (secondary) radical; propane yields a primary radical. (c) The carbon¡ªcarbon
bond dissociation energy is lower for 2,2-dimethylpropane because it yields a still more stable ter-
tiary radical.
4.17 Initiation:
Propagation:
4.18 CH
3
CHCl
2
and ClCH
2
CH
2
Cl
4.19 1-Chloropropane (43%); 2-chloropropane (57%)
4.20 (b) (c)
Br
C(CH
3
)
2
CH
3
Br
H11001Cl C Cl
H
H
Dichloromethane
H11001 Cl Cl
Chlorine
Cl C
H
H
Chloromethyl radical Chlorine atom
Cl
Cl
Chlorine atom
H11001H11001Cl CH
H
H
Chloromethane
Cl C
H
H
Chloromethyl radical
ClH
Hydrogen chloride
Cl Cl
Chlorine
Cl ClH11001
2 Chlorine atoms
(CH
3
)
2
CCH
2
CH
3
Br
H11002
H11001 CHCH
3
H11001
CH
3
CH
2
Br
CH
3
CH
2
CHCH
3
fast
H11001
O
CH
3
CH
2
CHCH
3
H11001
HH
CH
3
CH
2
CHCH
3
H11001
slow
O
HH
O
CH
3
CH
2
CHCH
3
H
H11001
fast
H Br Br
H11002
H11001
O
CH
3
CH
2
CHCH
3
H11001
HH
CH
2
CH
3
CH
2
CH
2
Br
H11002
H
O
H11001
H
slow
CH
3
CH
2
CH
2
CH
2
Br H11001
H
O
H
A-16 APPENDIX 2
CHAPTER 5
5.1 (b) 3,3-Dimethyl-1-butene; (c) 2-methyl-2-hexene; (d) 4-chloro-1-pentene; (e) 4-penten-2-ol
5.2
5.3 (b) 3-Ethyl-3-hexene; (c) two carbons are sp
2
-hybridized, six are sp
3
-hybridized; (d) there
are three sp
2
¨Csp
3
H9268 bonds and three sp
3
¨Csp
3
H9268 bonds.
5.4
5.5
5.6 (b) Z; (c) E; (d) E
5.7
5.8 (CH
3
)
2
C?C(CH
3
)
2
5.9 2-Methyl-2-butene (most stable) H11022 (E)-2-pentene H11022 (Z)-2-pentene H11022 1-pentene (least sta-
ble)
5.10 Bulky tert-butyl groups are cis to one another on each side of the double bond and cause
the alkene to be highly strained and unstable.
5.11 (c) (d)
CH
3
1
3
2
H
H
H
H
CH
3
3
2
1
CH
3
CH
3
CH
2
CH
3
H
CC
2-Methyl-2-pentene
CH
3
H CH
2
CH
3
CH
3
CC
(E)-3-Methyl-2-pentene
CH
3
H
CH
2
CH
3
CH
3
CC
(Z)-3-Methyl-2-pentene
CH
3
(CH
2
)
7
H
(CH
2
)
12
CH
3
H
CC
1-Pentene cis-2-Pentene trans-2-Pentene
2-Methyl-1-butene 2-Methyl-2-butene 3-Methyl-1-butene
1-Chlorocyclopentene
1
5
4
3
2
Cl
3-Chlorocyclopentene
2
3
5
1
Cl
4
5
4
3
2
1
Cl
4-Chlorocyclopentene
APPENDIX 2 A-17
(e) (f)
5.12 (b) Propene; (c) propene; (d) 2,3,3-trimethyl-1-butene
5.13 (b) (c)
5.14 1-Pentene, cis-2-pentene, and trans-2-pentene
5.15 (b)
and
(c)
and
H
2
O HH
H11001
H
H
H
H11001 H
3
O
H11001
H11001
H
H11001
OH
2
OH
3
H11001
OH
H
H11001
H
H
2
OH11001
CH
2
H11001H
3
O
H11001
CH
2
H
H11001
H
2
O
H
CH
3
H11001H
3
O
H11001
CH
3
H11001
H
H
H
2
O
H
3
C OH
CH
3
H11001
H11001 H
2
O
Major
and
H
Minor
CH
3
Major
CH
2
Minor
and
1
H
CH
3
H
5
2
3
4
H
H
CH
3
3
2
1
5
4
A-18 APPENDIX 2
5.16
5.17 (b) (CH
3
)
2
C?CH
2
; (c) CH
3
CH?C(CH
2
CH
3
)
2
; (d) CH
3
CH?C(CH
3
)
2
(major) and
CH
2
?CHCH(CH
3
)
2
(minor); (e) CH
2
?CHCH(CH
3
)
2
; (f) 1-methylcyclohexene (major) and
methylenecyclohexane (minor)
5.18 CH
2
?CHCH
2
CH
3
, cis-CH
3
CH?CHCH
3
, and trans-CH
3
CH?CHCH
3
.
5.19
5.20
CHAPTER 6
6.1 2-Methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene
6.2 2-Methyl-2-butene (112 kJ/mol, 26.7 kcal/mol), 2-methyl-1-butene (118 kJ/mol, 28.2
kcal/mol), and 3-methyl-1-butene (126 kJ/mol, 30.2 kcal/mol)
6.3 (b) (c) (d)
6.4 (b) (c) (d)
6.5
6.6 Addition in accordance with Markovnikov¡¯s rule gives 1,2-dibromopropane. Addition oppo-
site to Markovnikov¡¯s rule gives 1,3-dibromopropane.
6.7 Absence of peroxides: (b) 2-bromo-2-methylbutane; (c) 2-bromobutane; (d) 1-bromo-1-eth-
ylcyclohexane. Presence of peroxides: (b) 1-bromo-2-methylbutane; (c) 2-bromobutane; (d) (1-bro-
moethyl)cyclohexane.
CH
3
C
CH
3
CH
3
CH CH
2
CH
3
C
CH
3
CH
3
CHCH
3
H11001
CH
3
C
CH
3
CH
3
Cl
CHCH
3
CH
3
C
CH
3
CH
3
CHCH
3
H11001
CH
3
C
CH
3
CH
3
CHCH
3
Cl
HCl
Cl
H11002
Cl
H11002
CH
3
shift
CH
3
CH
2
H11001
CH
3
CHCH
2
CH
3
H11001
(CH
3
)
2
CCH
2
CH
3
H11001
Cl
CH
3
CH
2
CH
3
CHCH
2
CH
3
Cl
(CH
3
)
2
CCH
2
CH
3
Cl
H
(CH
3
)
3
C
(CH
3
)
3
C O
H11002
Br
H11002
Cl
H11002
H11001H
2
C C(CH
3
)
2
H11001HCH
3
O
CH
3
O
H
CH
H
C
CH
3
CH
3
H11002
Cl
CH
3
CH
3
H
OH
H
H11001
H11002H
2
O
H11002H
H11001
CH
3
H
H11001
CH
3
CH
3
H
CH
3
H11001
CH
3
CH
3
APPENDIX 2 A-19
6.8
6.9 The concentration of hydroxide ion is too small in acid solution to be chemically sig-
nificant.
6.10 is more reactive, because it gives a tertiary carbocation
when it is protonated in acid solution.
6.11 E1
6.12 (b) (c) (d)
(e) (f) HOCH
2
CH
2
CH(CH
2
CH
3
)
2
6.13
6.14
6.15 2-Methyl-2-butene (most reactive) H11022 2-methyl-1-butene H11022 3-methyl-1-butene (least reactive)
6.16 (b) (c) (d)
6.17 cis-2-Methyl-7,8-epoxyoctadecane
6.18 cis-(CH
3
)
2
CHCH
2
CH
2
CH
2
CH
2
CH?CH(CH
2
)
9
CH
3
6.19 2,4,4-Trimethyl-1-pentene
6.20
6.21 Hydrogenation over a metal catalyst such as platinum, palladium, or nickel
CHAPTER 7
7.1 (c) C-2 is a stereogenic center; (d) no stereogenic centers.
7.2 (c) C-2 is a stereogenic center; (d) no stereogenic centers.
(CH
3
)
3
CBr (CH
3
)
2
CCH
2
(CH
3
)
2
C
OH
CH
2
Br
NaOCH
2
CH
3
heat
Br
2
H
2
O
Br
CH
3
OH
BrCH
2
CHCH(CH
3
)
2
OH
(CH
3
)
2
C
OH Br
CHCH
3
Br
82
Br
82
Br
H
H
3
C
H
HO
H
H
3
CCH
3
CH
3
CHCH(CH
2
CH
3
)
2
OH
OH
H
CH
2
OH
CH
3
CHCH
2
CH
3
OH
CH
3
CH
3
H11001
CCCH
2
CH
3
Cyclohexene
H
2
SO
4
OSO
2
OH
Cyclohexyl hydrogen sulfate
A-20 APPENDIX 2
7.3 (b) (Z)-1,2-Dichloroethene is achiral. The plane of the molecule is a plane of symmetry. A
second plane of symmetry is perpendicular to the plane of the molecule and bisects the carbon-
carbon bond.
(c) cis-1,2-Dichlorocyclopropane is achiral. It has a plane of symmetry that bisects the
C-1±C-2 bond and passes through C-3.
(d) trans-1,2-Dichlorocyclopropane is chiral. It has neither a plane of symmetry nor a cen-
ter of symmetry.
7.4 [H9251]
D
H11002 39°
7.5 Two-thirds (66.7%)
7.6 (H11001)-2-Butanol
7.7 (b) R; (c) S; (d) S
7.8 (b)
7.9 (b) (c) (d)
7.10 S
7.11
7.12 2S,3R
7.13 2,4-Dibromopentane
7.14 cis-1,3-Dimethylcyclohexane
7.15 RRR RRS RSR SRR SSS SSR SRS RSS
7.16 Eight
7.17 Epoxidation of cis-2-butene gives meso-2,3-epoxybutane; trans-2-butene gives a racemic
mixture of (2R,3R) and (2S,3S)-2,3-epoxybutane.
7.18 No. The major product cis-1,2-dimethylcyclohexane is less stable than the minor product
trans-1,2-dimethylcyclohexane.
7.19
7.20 No
7.21 (S)-1-Phenylethylammonium (S)-malate
H OH
H OH
CO
2
H
CO
2
H
HO
H OH
H
CO
2
H
CO
2
H
and
S
S
R
S
Erythro
H OH
H NH
2
CH
3
CH
3
Erythro
HO H
H
2
N H
CH
3
CH
3
Threo
HO
H NH
2
H
CH
3
CH
3
Threo
H
2
N
H OH
H
CH
3
CH
3
H OH
CH CH
2
CH
3
H CH
2
Br
CH
3
CH
2
CH
3
FCH
2
H
CH
3
CH
2
CH
3
F
F
H
3
C
H
APPENDIX 2 A-21
CHAPTER 8
8.1 (b) CH
3
OCH
2
CH
3
(c) (d)
(e) CH
3
CPN (f) CH
3
SH (g) CH
3
I
8.2 ClCH
2
CH
2
CH
2
CPN
8.3 No
8.4
8.5 Hydrolysis of (R)-(H11002)-2-bromooctane by the S
N
2 mechanism yields optically active (S)-(H11001)-
2-octanol. The 2-octanol obtained by hydrolysis of racemic 2-bromooctane is not optically active.
8.6 (b) 1-Bromopentane; (c) 2-chloropentane; (d) 2-bromo-5-methylhexane; (e) 1-bromodecane
8.7
8.8 Product is (CH
3
)
3
COCH
3
. The mechanism of solvolysis is S
N
1.
8.9 (b) 1-Methylcyclopentyl iodide; (c) cyclopentyl bromide; (d) tert-butyl iodide
8.10 Both cis- and trans-1,4-dimethylcyclohexanol are formed in the hydrolysis of either cis- or
trans-1,4-dimethylcyclohexyl bromide.
8.11 A hydride shift produces a tertiary carbocation; a methyl shift produces a secondary carbo-
cation.
8.12 (b) (c)
(d) cis- and trans-CH
3
CH?CHCH
3
and CH
2
?CHCH
2
CH
3
8.13
8.14 (b) CH
3
(CH
2
)
16
CH
2
I; (c) CH
3
(CH
2
)
16
CH
2
CPN; (d) CH
3
(CH
2
)
16
CH
2
SH;
(e) CH
3
(CH
2
)
16
CH
2
SCH
2
CH
2
CH
2
CH
3
CH
3
CHCH
2
CH
3
OCH
3
OCH
2
CH
3
(CH
3
)
3
C OCH
3
H
H11001
(CH
3
)
3
C OCH
3
H11002H
H11001
H11001 (CH
3
)
3
C OCH
3
H
H11001
(CH
3
)
3
C
H11001
OCH
3
H
H11001(CH
3
)
3
C Br (CH
3
)
3
C
H11001
Br
H11002
CH
3
CH(CH
2
)
5
CH
3
NO
2
CH
3
CH(CH
2
)
5
CH
3
ONO
and
HO H
CH
3
CH
2
(CH
2
)
4
CH
3
CH
3
N
H11001
N
H11002
NCH
3
OC
O
CH
3
(CH
2
)
16
CH
2
OH H11001 CH
3
SCl
O
O
pyridine
CH
3
(CH
2
)
16
CH
2
OS
O
O
CH
3
H11001 HCl
A-22 APPENDIX 2
8.15 The product has the R configuration and a specific rotation [H9251]
D
of H110029.9°.
8.16
CHAPTER 9
9.1
9.2 CH
3
CH
2
CH
2
CPCH (1-pentyne), CH
3
CH
2
CPCCH
3
(2-pentyne), (CH
3
)
2
CHCPCH
(3-methyl-1-butyne)
9.3 The bonds become shorter and stronger in the series as the electronegativity increases;
N±H longest and weakest, H±F shortest and strongest.
9.4 (b)
(c)
(d)
9.5 (b)
(c)
9.6 Both CH
3
CH
2
CH
2
CPCH and CH
3
CH
2
CPCCH
3
can be prepared by alkylation of acety-
lene. The alkyne (CH
3
)
2
CHCPCH cannot be prepared by alkylation of acetylene, because the
required alkyl halide, (CH
3
)
2
CHBr, is secondary and will react with the strongly basic acetylide
ion by elimination.
9.7 (CH
3
)
3
CCCH
3
Br
Br
(CH
3
)
3
CCHCH
2
Br
Br
(CH
3
)
3
CCH
2
CHBr
2
or or
CH
3
C CCH
2
O H
2-Butyn-1-ol
(stronger acid)
H11001 NH
2
H11002
Amide ion
(stronger base)
K H11022H11022 1
CH
3
C CCH
2
O
H11002
2-Butyn-1-olate
anion
(weaker base)
H11001 NH
3
Ammonia
(weaker acid)
CH
2
CH H
Ethylene
(weaker acid)
H11001 NH
2
H11002
Amide ion
(weaker base)
NH
3
Ammonia
(stronger acid)
K H11021H11021 1
CH
2
CH
H11002
Vinyl anion
(stronger base)
H11001
HC C H
Acetylene
(stronger acid)
H11001 CH
2
CH
3
H11002
Ethyl anion
(stronger base)
K H11022H11022 1
HC
H11002
C
Acetylide ion
(weaker base)
H11001
Ethane
(weaker acid)
CH
3
CH
3
H11001C
H11002H11002
C
Carbide ion
C
H11002
C H
Acetylide ion
HOHO
Water
H11001 HO
H11002
Hydroxide ion
C
H11002
C H
Acetylide ion
HOHO
Water
H11001 H O
H11002
Hydroxide ion
H11001 H C C H
Acetylene
CH
3
CH
2
C(CH
3
)
2
Cl
H
2
O
C
H
3
C
CH
3
(CH
2
)
5
H
OTs HO C
(CH
2
)
5
CH
3
H
CH
3
HC CH CH
3
C CH CH
3
C CCH
2
CH
2
CH
2
CH
3
1. NaNH
2
, NH
3
2. CH
3
Br
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
HC CH CH
3
CH
2
CH
2
C CH CH
3
CH
2
CH
2
C CCH
2
CH
3
1. NaNH
2
, NH
3
2. CH
3
CH
2
Br
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
Br
APPENDIX 2 A-23
9.8 (b)
(c) ; then proceed as in parts (a) and (b).
(d)
(e) ; then pro-
ceed as in part (d).
9.9
or
9.10 Oleic acid is cis-CH
3
(CH
2
)
7
CH?CH(CH
2
)
7
CO
2
H. Stearic acid is CH
3
(CH
2
)
16
CO
2
H.
9.11 Elaidic acid is trans-CH
3
(CH
2
)
7
CH?CH(CH
2
)
7
CO
2
H.
9.12
9.13 (b)
(c)
9.14
O
H
H
O
H11001
H
H
H
CH
3
CH
2
CCH
3
O
H11001H11001CH
3
CH
2
H11001
O
CCH
3
H
O
H
H
H11001
H O
H
H
CH
3
CH
OH
CCH
3
H11001H11001 CH
3
CH
2
H11001
OH
CCH
3
CH
3
C CCH
3
H
2
O, Hg
2H11001
H
2
SO
4
CH
3
C
OH
CHCH
3
CH
3
CCH
2
CH
3
O
CH
3
CHCl
2
CH
3
CHBr
2
2HCl1. NaNH
2
, NH
3
2. H
2
O
HC CH
CH
3
CHCl
2
CH
2
CHCl
HCl
CH
3
C CH
CH
3
C CCH
2
CH
2
CH
2
CH
3
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
CH
2
Br
H
2
Lindlar
Pd
Li, NH
3
C
H
H
CH
2
CH
2
CH
2
CH
3
C
H
3
C
C
HH
CH
2
CH
2
CH
2
CH
3
C
H
3
C
HC CH CH
3
(CH
2
)
5
C CH CH
3
(CH
2
)
6
CH
3
1. NaNH
2
, NH
3
2. CH
3
(CH
2
)
5
Br
H
2
Pt
HC CH CH
3
CH
2
CH
2
C CH
CH
3
CH
2
CH
2
C CCH
2
CH
2
CH
3
CH
3
(CH
2
)
6
CH
3
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
Br
1. NaNH
2
, NH
3
2. CH
3
CH
2
CH
2
Br
H
2
Pt
CH
3
CH
2
OH BrCH
2
CH
2
Br
H
2
SO
4
heat
CH
2
CH
2
Br
2
1. NaNH
2
2. H
2
O
HC CH
CH
3
CHCl
2
1. NaNH
2
2. H
2
O
HC CH CH
3
C CH
1. NaNH
2
2. CH
3
Br
(CH
3
)
2
CHBr CH
3
CH CH
2
NaOCH
2
CH
3
CH
3
CH
2
CH
2
OH CH
3
CH CH
2
CH
3
C CH
H
2
SO
4
heat
Br
2
1. NaNH
2
2. H
H11001
CH
3
CHCH
2
Br
Br
A-24 APPENDIX 2
9.15 2-Octanone is prepared as shown:
4-Octyne is prepared as described in Problem 9.9 and converted to 4-octanone by hydration with
H
2
O, H
2
SO
4
, and HgSO
4
.
9.16 CH
3
(CH
2
)
4
CPCCH
2
CH
2
CPC(CH
2
)
4
CH
3
CHAPTER 10
10.1 (b)
(c)
10.2
10.3 (b) (c)
10.4 (Propagation step 1)
(Propagation step 2)
10.5 2,3,3-Trimethyl-1-butene gives only . 1-Octene gives a mixture of
as well as the cis and trans stereoisomers of BrCH
2
CH?CH(CH
2
)
4
CH
3
.
10.6 (b) All the double bonds in humulene are isolated. (c) Two of the double bonds in cembrene
are conjugated to each other but isolated from the remaining double bonds in the molecule. (d) The
CH?C?CH unit is a cumulated double bond; it is conjugated to the double bond at C-2.
10.7 1,2-Pentadiene (3251 kJ/mol, 777.1 kcal/mol); (E)-1,3-pentadiene (3186 kJ/mol, 761.6
kcal/mol); 1,4-pentadiene (3217 kJ/mol, 768.9 kcal/mol)
Br
CHCH(CH
2
)
4
CH
3
CH
2
(CH
3
)
3
CC
CH
2
Br
CH
2
Br
H
H11001H H11001Br Br Br
H
H
H11001 Br H H11001 H Br
Allylic
CH
3CH3
H
H
H
H
Allylic
Allylic
Allylic
Allylic
CH
3
Br
and
CH
3
Cl
H11001
C(CH
3
)
2
C(CH
3
)
2
H11001
CH
2
CH
3
H11001
C CH
2
CH
2
CH
3
C CH
2
H11001
HC CH CH
3
(CH
2
)
4
CH
2
C CH
1. NaNH
2
, NH
3
2. CH
3
(CH
3
)
4
CH
2
Br
H
2
O, H
2
SO
4
HgSO
4
CH
3
(CH
2
)
4
CH
2
CCH
3
O
(d)
AllylicAllylic
HH
APPENDIX 2 A-25
10.8 2-Methyl-2,3-pentadiene is achiral. 2-Chloro-2,3-pentadiene is chiral.
10.9
10.10
10.11 3,4-Dibromo-3-methyl-1-butene; 3,4-dibromo-2-methyl-1-butene; and 1,4-dibromo-2-
methyl-2-butene
10.12
10.13 (b) CH
2
?CHCH?CH
2
H11001 cis-NPCCH?CHCPN
(c)
10.14
10.15 H9266
10.16 There is a mismatch between the ends of the HOMO of one 1,3-butadiene molecule and
the LUMO of the other (Fig. 10.9). The reaction is forbidden.
CHAPTER 11
11.1 (a) (b)
11.2 1,3,5-Cycloheptatriene resonance energy H11005 25 kJ/mol (5.9 kcal/mol). It is about six times
smaller than the resonance energy of benzene.
11.3 (b) (c)
NH
2
NO
2
Cl
CH CH
2
CH
3
CO
2
HCH
3
CH
3
CO
2
H CO
2
H
COCH
3
O
H
H
O
COCH
3
and
CH
3
CH CH
2
CHCH H11001
O
O
O
Cl
O
O
H
H
(CH
3
)
2
CCH
Cl
CH
2
CHCH
2
C
CH
3
CH
2
CHCH
3
CHCH
2
CCH
2
CH
3
CH
2
CH
2
and(cis H11001 trans)
A-26 APPENDIX 2
11.4
11.5
11.6 (b)
11.7
11.8 (b) C
6
H
5
CH
2
OC(CH
3
)
3
(c) (d) C
6
H
5
CH
2
SH
(e) C
6
H
5
CH
2
I
11.9 1,2-Dihydronaphthalene, 101 kJ/mol (24.1 kcal/mol); 1,4-dihydronaphthalene, 113 kJ/mol
(27.1 kcal/mol)
11.10 (b) (c) (d)
11.11 Styrene, 4393 kJ/mol (1050 kcal/mol); cyclooctatetraene, 4543 kJ/mol (1086 kcal/mol)
11.12 Diels¨CAlder reaction
11.13 (b) Five doubly occupied bonding orbitals plus two half-filled nonbonding orbitals plus five
vacant antibonding orbitals
11.14 Divide the heats of combustion by the number of carbons. The two aromatic hydrocarbons
(benzene and [18]-annulene) have heats of combustion per carbon that are less than those of the
nonaromatic hydrocarbons (cyclooctatetraene and [16]-annulene). On a per carbon basis, the aromatic
hydrocarbons have lower potential energy (are more stable) than the nonaromatic hydrocarbons.
11.15
C
6
H
5
CH CH
2
O
H11001 C
6
H
5
CO
2
HC
6
H
5
CHCH
2
Br
OH
C
6
H
5
CHCH
2
OH
CH
3
NC
6
H
5
CH
2
N N
H11002
H11001
CO
2
H
CO
2
H
(CH
3
)
3
C
OCH
3
O
2
N
BrCH
2
CH
3
CH
3
H
H
H
H
H
H H
H11001
H
H
H
H
H
H H
H11001
H
H
H
H
H
H H
H11001
H
H
H
H
H
H H
H11001
H
H
H
H
H
H H
H11001
H
H
H
H
H
H H
H11001
H
H
H
H
H
H H
H11001
APPENDIX 2 A-27
11.16
11.17
11.18 (b) Cyclononatetraenide anion is aromatic.
11.19 Indole is more stable than isoindole.
11.20
11.21
CHAPTER 12
12.1 The positive charge is shared by the three carbons indicated in the three most stable reso-
nance structures:
Provided that these structures contribute equally, the resonance picture coincides with the MO treat-
ment in assigning one third of a positive charge (H11001 0.33) to each of the indicated carbons.
H
H
H
H
H
HH
H11001
H
H
H
H
H
HH
H11001
H
H
H
H
H
HH
H11001
H
3
O
H11001
N
N
H
N
H
N
H11001
H
N
O
Benzoxazole
N
S
Benzothiazole
N
H
Indole:
more stable
Isoindole:
less stable
NH
Six-membered
ring corresponds
to benzene.
Six-membered
ring does not have
same pattern of
bonds as benzene.
NH
3
H11001
H11002
HNH
2
H11002
H
H
H11001
H
H
H
H
H
H11002 H
H
H
H
H
H11002
H
H
H
H
H
H11002
H
H
H
H
H
H11002
H
H
H
H
H
H11002
A-28 APPENDIX 2
12.2
12.3
12.4 The major product is isopropylbenzene. Ionization of 1-chloropropane is accompanied by a
hydride shift to give , which then attacks benzene.
12.5
12.6
12.7
12.8
O
CCH
2
CH
2
COH
O
OCH
3
OCH
3
CH
3
O
O
CCH
2
CH(CH
3
)
2
H11001
H
2
SO
4
benzoyl
peroxide,
heat
NBS
NaOCH
2
CH
3
heat
Br
H
H
H
H
H
H
H11001
H
H
H
H
H
H
H
H
H
H
H11001
H11001
H
H
H
H
H
H
H11001
H
H
H
H
H
H
H
H
H
H
H11001
H
H
H11001H11001H OSO
2
OH
H11002
OSO
2
OH
CH
3
CHCH
3
H11001
CH
3
CH
3
H
3
C
H
3
C
SO
3
H
NO
2
CH
3
CH
3
APPENDIX 2 A-29
12.9 (b) Friedel¨CCrafts acylation of benzene with , followed by reduction with
Zn(Hg) and hydrochloric acid
12.10 (b) Toluene is 1.7 times more reactive than tert-butylbenzene. (c) Ortho (10%), meta (6.7%),
para (83.3%)
12.11
12.12 (b)
(c)
12.13
12.14 (b) (c)
12.15 The group ±
H11001
N(CH
3
)
3
is strongly deactivating and meta-directing. Its positively charged
nitrogen makes it a powerful electron-withdrawing substituent. It resembles a nitro group.
12.16
12.17 (b) (c) (d)
(e) (f)
OCH
3
BrBr
NO
2
OCH
3
NO
2
CH
3
OCH
3
NO
2
CH
3
C
O
NO
2
NO
2
O
2
N
NO
2
Cl
Cl
CH
2
Cl
Cl and Cl CH
2
Cl
O
2
N
CCH
2
CH
3
O
O
2
N
COCH
3
O
and
O
2
N
NO
2
H11001
NH
2
BrH
H11001
NH
2
BrH
H11001
NH
2
BrH
H11001
NH
2
BrH
H11001
NH
2
Br
H
H11001
NH
2
Br
H
H11001
NH
2
Br
H
CH
2
Cl
Deactivating
ortho, para-directing
CHCl
2
Deactivating
ortho, para-directing
CCl
3
Deactivating
meta-directing
(CH
3
)
3
CCCl
O
A-30 APPENDIX 2
12.18 m-Bromonitrobenzene:
p-Bromonitrobenzene:
12.19
12.20
The hydrogen at C-8 (the one shown in the structural formulas) crowds the ±SO
3
H group in the
less stable isomer.
12.21
CHAPTER 13
13.1 1.41 T
13.2 25.2 MHz
13.3 (a) 6.88 ppm; (b) higher field; more shielded
13.4 H in CH
3
CCl
3
is more shielded than H in CHCl
3
. If H in CHCl
3
appears at H9254 7.28 ppm,
then H in CH
3
CCl
3
appears 4.6 ppm upfield of 7.28 ppm. Its chemical shift is H9254 2.7 ppm.
13.5 The chemical shift of the methyl protons is H9254 2.2 ppm. The chemical shift of the protons
attached to the aromatic ring is H9254 7.0 ppm.
13.6 (b) Five; (c) two; (d) two; (e) three; (f) one; (g) four; (h) three
13.7 (b) One; (c) one; (d) one; (e) four; (f) four
13.8 (b) One signal (singlet); (c) two signals (doublet and triplet); (d) two signals (both singlets);
(e) two signals (doublet and quartet)
13.9 (b) Three signals (singlet, triplet, and quartet); (c) two signals (triplet and quartet); (d) three
signals (singlet, triplet, and quartet); (e) four signals (three triplets and quartet)
SO
3
H
S
Formed faster
H SO
3
H
More stable
H
SO
3
H
H11001
CO
2
H
NO
2
CO
2
HCH
3
Na
2
Cr
2
O
7
H
2
SO
4
, H
2
O, heat
HNO
3
H
2
SO
4
Br Br
NO
2
Br
NO
2
HNO
3
H
2
SO
4
Br
2
FeBr
3
H11001
NO
2
Br
NO
2
HNO
3
H
2
SO
4
Br
2
FeBr
3
APPENDIX 2 A-31
13.10 Both H
b
and H
c
appear as doublets of doublets:
13.11 (b) The signal for the proton at C-2 is split into a quartet by the methyl protons, and each
line of this quartet is split into a doublet by the aldehyde proton. It appears as a doublet of quar-
tets.
13.12 (b) Six; (c) six; (d) nine; (e) three
13.13
13.14 1,2,4-Trimethylbenzene
13.15 Benzyl alcohol. Infrared spectrum has peaks for O±H and sp
3
C±H; lacks peak for C?O.
13.16 HOMO¨CLUMO energy difference in ethylene is greater than that of cis,trans-1,3-cycloocta-
diene.
13.17 2-Methyl-1,3-butadiene
13.18 (b) Three peaks (m/z 146, 148, and 150); (c) three peaks (m/z 234, 236, and 238); (d) three
peaks (m/z 190, 192, and 194)
13.19
13.20 (b) 3; (c) 2; (d) 3; (e) 2; (f) 2
CHAPTER 14
14.1 (b) Cyclohexylmagnesium chloride
14.2 (b)
14.3 (b) CH
2
?CHCH
2
MgCl (c) (d) MgBrMgI
H11001 2Li H11001 LiBrCH
3
CHCH
2
CH
3
Br
CH
3
CHCH
2
CH
3
Li
CH
3
H
3
C
CH
2
CH
3
Base peak C
9
H
11
H11001
(m/z 119)
CH
3
CH
2
CH
2
CH
3
Base peak C
8
H
9
H11001
(m/z 105)
CH
3
CH
CH
3
H
3
C
Base peak C
9
H
11
H11001
(m/z 119)
OCH
3
H
3
C
H9254 20 ppm H9254 55 ppm
H9254 157 ppm
C
O
2
N
C
H
c
H
b
H
a
H
b
12 Hz
2 Hz
16 Hz
2 Hz
H
c
2 Hz 2 Hz
14.4 (b) CH
3
(CH
2
)
4
CH
2
OH H11001 CH
3
CH
2
CH
2
CH
2
Li ±¡ê CH
3
CH
2
CH
2
CH
3
H11001 CH
3
(CH
2
)
4
CH
2
OLi
(c) C
6
H
5
SH H11001 CH
3
CH
2
CH
2
CH
2
Li ±¡ê CH
3
CH
2
CH
2
CH
3
H11001 C
6
H
5
SLi
A-32 APPENDIX 2
14.5 (b) (c) (d)
14.6
14.7 (b)
and
14.8 (b)
14.9 (b)
14.10 (b)
14.11
14.12 Fe(CO)
5
CHAPTER 15
15.1 The primary alcohols CH
3
CH
2
CH
2
CH
2
OH and (CH
3
)
2
CHCH
2
OH can each be prepared by
hydrogenation of an aldehyde. The secondary alcohol can be prepared by hydro-
genation of a ketone. The tertiary alcohol (CH
3
)
3
COH cannot be prepared by hydrogenation.
15.2 (b) (c) (d) DCH
2
OD
15.3
15.4 (b) MgBr
O
CH
3
CH
2
COCH(CH
3
)
2
C
6
H
5
COH
D
H
CH
3
CCH
3
D
OD
CH
3
CHCH
2
CH
3
OH
cis-2-Butene
Br
CH
3
CH
3
H H
Br
trans-2-Butene
Br
CH
3
H
H CH
3
Br
CH
2
LiCu(CH
3
)
2
H11001
Br
CH
3
CH
3
COCH
2
CH
3
O
H110012C
6
H
5
MgBr
H11001C
6
H
5
MgBr
O
CH
3
CCH
3
1. diethyl ether
2. H
3
O
H11001
C
6
H
5
CCH
3
CH
3
OH
H11001CH
3
MgI
O
C
6
H
5
CCH
3
1. diethyl ether
2. H
3
O
H11001
C
6
H
5
CCH
3
CH
3
OH
H11001H11001CH
3
CH
2
H11002
Ethyl anion
H CCCH
2
CH
2
CH
2
CH
3
1-Hexyne
C
H11002
CCH
2
CH
2
CH
2
CH
3
Conjugate base of 1-hexyneEthane
CH
3
CH
3
CH
3
CH
2
CH
2
COH
CH
3
CH
3
CH
2
CH
2
CH
2
CH
3
OH
C
6
H
5
CHCH
2
CH
2
CH
3
OH
APPENDIX 2 A-33
15.5
15.6 cis-2-Butene yields the meso stereoisomer of 2,3-butanediol:
trans-2-Butene gives equal quantities of the two enantiomers of the chiral diol:
15.7 Step 1:
Step 2:
Step 3:
15.8 (b) CH
3
OC
O O
COCH
3
O
H
O
H11001
H11001H11001 OSO
2
OH
H11002
OSO
2
OHH
H
H
O
H11001
O
H
H
O
H11001
H11001 H
2
O
H
CH
3
H
H
3
C
OsO
4
, (CH
3
)
3
COOH
(CH
3
)
3
COH, HO
H11002
H OH
HHO
CH
3
CH
3
H OH
HHO
CH
3
CH
3
H11001
H
CH
3
CH
3
H
OsO
4
, (CH
3
)
3
COOH
(CH
3
)
3
COH, HO
H11002
H OH
OHH
CH
3
CH
3
O O
CH
3
CH
3
OCCH
2
CHCH
2
COCH
3
CH
3
HOCH
2
CH
2
CHCH
2
CH
2
OH 2CH
3
OHH11001
1. LiAlH
4
2. H
2
O
O O
CH
3
HOCCH
2
CHCH
2
COH
CH
3
HOCH
2
CH
2
CHCH
2
CH
2
OH
1. LiAlH
4
2. H
2
O
HOCH
2
CH
2
CH
2
CH
2
CH
2
OH HOCH
2
CH
2
CH
2
CH
2
CH
2
H
H
H11001
OH11001 OSO
2
OHH OSO
2
OH
H11002
H11001
A-34 APPENDIX 2
15.9
15.10
15.11 (b) (c)
15.12 (b) One; (c) none
15.13 (b) (c)
15.14
15.15
15.16 The peak at m/z 70 corresponds to loss of water from the molecular ion. The peaks at m/z
59 and 73 correspond to the cleavages indicated:
CHAPTER 16
16.1 (b) (c)
16.2 1,2-Epoxybutane, 2546 kJ/mol (609.1 kcal/mol); tetrahydrofuran, 2499 kJ/mol (597.8
kcal/mol)
16.3 O
R
R R
O H
H
2
C CHCH CH
2
O
H
2
C CHCH
2
Cl
O
59
OH
CCH
3
CH
2
CH
3
CH
3
73
H11001
C
H
H
CH
2
SH
C
H
3
C
trans-2-Butene-1-thiol
CH
3
CHCH
2
CH
2
SH
CH
3
3-Methyl-1-butanethiol
C
HH
CH
2
SH
C
H
3
C
cis-2-Butene-1-thiol
CH
3
(CH
2
)
4
CH
2
OH
1-Hexanol
CH
3
(CH
2
)
4
CH
2
Br
1-Bromohexane
CH
3
(CH
2
)
4
CH
2
SH
1-Hexanethiol
HBr
heat
1. (H
2
N)
2
C?S
2. NaOH
HCH
O
O H11001(CH
3
)
2
CHCH
2
CH
O
C
6
H
5
CH
2
CH
O
H11001
CH
3
(CH
2
)
5
CH
O
CH
3
C(CH
2
)
5
CH
3
O
O
2
NOCH
2
CHCH
2
ONO
2
ONO
2
acetic
anhydride
(CH
3
)
3
C
OH
(CH
3
)
3
C
OCCH
3
O
acetic
anhydride
(CH
3
)
3
C
OH
(CH
3
)
3
C
OCCH
3
O
APPENDIX 2 A-35
16.4 1,4-Dioxane
16.5
16.6 C
6
H
5
CH
2
ONa H11001 CH
3
CH
2
Br ±¡ê C
6
H
5
CH
2
OCH
2
CH
3
H11001 NaBr
and CH
2
CH
2
ONa H11001 C
6
H
5
CH
2
Br ±¡ê C
6
H
5
CH
2
OCH
2
CH
3
H11001 NaBr
16.7 (b) (CH
3
)
2
CHONa H11001 CH
2
?CHCH
2
Br ±¡ê CH
2
?CHCH
2
OCH(CH
3
)
2
H11001 NaBr
(c) (CH
3
)
3
COK H11001 C
6
H
5
CH
2
Br ±¡ê (CH
3
)
3
COCH
2
C
6
H
5
H11001 KBr
16.8 CH
3
CH
2
OCH
2
CH
3
H11001 6O
2
±¡ê 4CO
2
H11001 5H
2
O
16.9 (b) C
6
H
5
CH
2
OCH
2
C
6
H
5
(c)
16.10
16.11 Only the trans epoxide is chiral. As formed in this reaction, neither product is optically
active.
16.12 (b) N
3
CH
2
CH
2
OH (c) HOCH
2
CH
2
OH (d) C
6
H
5
CH
2
CH
2
OH
(e) CH
3
CH
2
CPCCH
2
CH
2
OH
16.13 Compound B
16.14 Compound A
16.15 trans-2-Butene gives meso-2,3-butanediol on epoxidation followed by acid-catalyzed
hydrolysis. cis-2-Butene gives meso-2,3-butanediol on osmium tetraoxide hydroxylation.
16.16 The product has the S configuration.
16.17 Phenyl vinyl sulfoxide is chiral. Phenyl vinyl sulfone is achiral.
16.18 CH
3
SCH
3
H11001 CH
3
(CH
2
)
10
CH
2
I will yield the same sulfonium salt. This combination is not
as effective as CH
3
I H11001 CH
3
(CH
2
)
10
CH
2
SCH
3
, because the reaction mechanism is S
N
2 and CH
3
I
is more reactive than CH
3
(CH
2
)
10
CH
2
I in reactions of this type because it is less crowded.
16.19 CH
2
OCHCH
2
CH
3
CH
3
H11001
C
6
H
5
S
H
CH
3
(CH
2
)
5
CH
3
C
H11001H11001I
OH
2
H11001
H11002
I I
I
H
2
O
H11001H11001I
OH
I
OH
2
H11001
IH
H11002
I
H11001 OH
H11001
I
H11002
I
OH
H11001H11001O OH
H11001
IH
H11002
I
O
H
H11001
H11002H
H11001HOCH
3
(CH
3
)
2
C CH
2
(CH
3
)
2
C CH
3
H11001
(CH
3
)
3
C
H
OCH
3
H11001
(CH
3
)
3
COCH
3
A-36 APPENDIX 2
CHAPTER 17
17.1 (b) Pentanedial; (c) 3-phenyl-2-propenal; (d) 4-hydroxy-3-methoxybenzaldehyde
17.2 (b) 2-Methyl-3-pentanone; (c) 4,4-dimethyl-2-pentanone; (d) 4-penten-2-one
17.3 No. Carboxylic acids are inert to catalytic hydrogenation.
17.4
17.5 Cl
3
CCH(OH)
2
17.6
17.7 Step 1:
Step 2:
Step 3:
Formation of the hemiacetal is followed by loss of water to give a carbocation.
Step 4:
Step 5:
Step 6: C
6
H
5
CH
O
H11001
HCH
3
CH
2
OCH
2
CH
3
C
6
H
5
CH
H11001
OCH
2
CH
3
H11001 O
H
CH
2
CH
3
C
6
H
5
CH
O
H11001
HH
OCH
2
CH
3
C
6
H
5
CH
H11001
OCH
2
CH
3
H11001 HHO
C
6
H
5
CH
OH
H11001
O
H
CH
2
CH
3
C
6
H
5
CH
H11001
O H
O
H
CH
2
CH
3
H11001
C
6
H
5
CH
O
C
6
H
5
CH
O
H11001
H
H11001 H
H11001
O
H
CH
2
CH
3
O
H
CH
2
CH
3
H11001
CH
2
CC N
CH
3
O
CH
3
COH
O
CH
3
CHCH
3
CH
2
OH
1. LiAlH
4
2. H
2
O
PCC
CH
2
Cl
2
O
CH
3
CH
OH
CH
3
CHCH
2
CH
3
O
CH
3
CCH
2
CH
3
CH
3
CH
2
MgBr H11001
1. diethyl ether
2. H
3
O
H11001
PCC
CH
2
Cl
2
CH
3
CH
2
OH CH
3
CH
2
MgBrCH
3
CH
2
Br
HBr
heat
Mg
diethyl ether
C
6
H
5
CH
OH
OCH
2
CH
3
C
6
H
5
CH
OH
H11001
O
H
CH
2
CH
3
O
H
CH
2
CH
3
H11001 H11001
H11001
O
H
CH
2
CH
3
H
C
6
H
5
C
HO
H
OCH
2
CH
3
H11001
H11001
O
H
CH
2
CH
3
H C
6
H
5
C
HOH
H
H11001
OCH
2
CH
3
H11001 O
H
CH
2
CH
3
APPENDIX 2 A-37
Step 7:
17.8 (b) (c) (d)
17.9 Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7: C
6
H
5
CH
O
H11001C
6
H
5
CH
H11001
O H
O
H
CH
2
CH
3
H11001
H11001
O
H
CH
2
CH
3
H
C
6
H
5
CH
OH
H11001
O
H
CH
2
CH
3
C
6
H
5
CH
H11001
O H
O
H
CH
2
CH
3
H11001
O
H
H
C
6
H
5
CH
H11001
OCH
2
CH
3
H11001 C
6
H
5
CH
O
H11001
HH
OCH
2
CH
3
C
6
H
5
CH
O
H11001
HCH
3
CH
2
OCH
2
CH
3
O
H
CH
2
CH
3
C
6
H
5
CH
H11001
OCH
2
CH
3
H11001
CH
3
(CH
3
)
2
CHCH
2
CH
3
H
3
C
OO
CH
3
(CH
3
)
2
CHCH
2
O O
HC
6
H
5
OO
C
6
H
5
CH
OCH
2
CH
3
OCH
2
CH
3
C
6
H
5
CH
O
H11001
HCH
3
CH
2
OCH
2
CH
3
H11001H11001O
H
CH
2
CH
3
H11001
O
H
CH
2
CH
3
H
C
6
H
5
CH
OCH
2
CH
3
OCH
2
CH
3
C
6
H
5
CH
O
H11001
HCH
3
CH
2
OCH
2
CH
3
H11001H11001 O
H
CH
2
CH
3
H11001
O
H
CH
2
CH
3
H
C
6
H
5
C
O
H11001
HH
H
OCH
2
CH
3
H11001
H11001
O
H
CH
2
CH
3
HH11001O
H
CH
2
CH
3
C
6
H
5
C
HO
H
OCH
2
CH
3
C
6
H
5
CH
OH
OCH
2
CH
3
C
6
H
5
CH
OH
H11001
O
H
CH
2
CH
3
O
H
CH
2
CH
3
H11001H11001
H11001
O
H
CH
2
CH
3
H
A-38 APPENDIX 2
17.10
17.11 (b)
(c)
(d)
17.12 (b)
(c)
17.13 (b) CH
3
CH
2
CH
2
CH?CHCH?CH
2
(c)
17.14 (C
6
H
5
)
3
P?CH
2
17.15 (b)
17.16
CH
3
CCH
2
CH
3
H11002
H11001
P(C
6
H
5
)
3
CH
3
CHCH
2
CH
3
H11001
P(C
6
H
5
)
3
Br
H11002
NaCH
2
SCH
3
DMSO
O
X
CH
3
CHCH
2
CH
3
Br
CH
3
CHCH
2
CH
3
H11001
P(C
6
H
5
)
3
Br
H11002
H11001 (C
6
H
5
)
3
P
O
CH
3
CH
2
CH
2
CH
O
HCHorH11001H11001(C
6
H
5
)
3
P
H11001
H11002
CH
2
CH
3
CH
2
CH
2
CH
H11001
P(C
6
H
5
)
3
H11002
CCH
3
CH
2
N
C
6
H
5
CCH
3
OH
N
C
6
H
5
C CH
2
CH
3
CH
2
CCH
2
CH
3
N
OH
N
CH
3
CH CCH
2
CH
3
C
6
H
5
C
OH
CH
3
NH C
6
H
5
C
CH
3
N
OH
NHC(CH
3
)
3
NC(CH
3
)
3
C
6
H
5
CHNHCH
2
CH
2
CH
2
CH
3
OH
C
6
H
5
CH NCH
2
CH
2
CH
2
CH
3
C
O
O
CH
3
COH
O
C
O
O
CH
3
CH
2
OH
1. LiAlH
4
2. H
2
O
H
2
O
H
H11001
, heat
HOCH
2
CH
2
OH
H
H11001
, heat
CH
3
C COH
OO
CH
3
C CH
2
OH
O
APPENDIX 2 A-39
17.17
17.18 Hydrogen migrates to oxygen (analogous to a hydride shift in a carbocation).
CHAPTER 18
18.1 (b) Zero; (c) five; (d) four
18.2
18.3
18.4
18.5 (b) (c)
18.6 (b)
18.7 (b)
(c)
CH
O
O
H11002
CH
O
O
H11002CH
O
O
H11002
C
6
H
5
CCH
O
CCH
3
O
H11002
C
6
H
5
CCHCCH
3
H11002
O O
C
6
H
5
C CHCCH
3
OO
H11002
C
6
H
5
CCH
O
CCH
3
HO
C
6
H
5
C CHCCH
3
OOH
and
OH
CH
3
and OH
CH
3
C
6
H
5
C CH
2
OH
CH
2
CCH
2
CH
3
OH
CH
3
C CHCH
3
OH
Cl
2
Cl
2
O
ClCH
2
CCH
2
CH
3
O
CH
3
CCHCH
3
Cl
O
ClCH
2
CCH
2
CH
3
O
CH
3
CCHCH
3
Cl
and
HOC
O
H11001O
C
CH
3
O
O
H
O
CH
3
C
OC
O
CCH
3
O
H11001 COOH
O
C
OH
OOC
O
CH
3
Cl
H11002
H11001CH
2
CCH
2
CH
3
Cl Cl
OH
ClCH
2
CCH
2
CH
3
Cl
H11002
H11001
OH
CH
3
C
OH
Cl Cl
CHCH
3
H11001
OH
CH
3
CCHCH
3
Cl
A-40 APPENDIX 2
18.8 Hydrogen¨Cdeuterium exchange at H9251 carbons via enolate:
18.9 Product is chiral, but is formed as a racemic mixture because it arises from an achiral inter-
mediate (the enol); it is therefore not optically active.
18.10 (b) (c)
18.11 (b) (c)
18.12
18.13 (b) (c)
18.14
18.15 Acrolein (CH
2
?CHCH?O) undergoes conjugate addition with sodium azide in aqueous
solution to give N
3
CH
2
CH
2
CH?O. Propanal is not an H9251,H9252-unsaturated carbonyl compound and
cannot undergo conjugate addition.
18.16
18.17
CHAPTER 19
19.1 (b) (E)-2-butenoic acid; (c) ethanedioic acid; (d) p-methylbenzoic acid or 4-methylbenzoic
acid.
CH
3
CH
2
CH
2
CH
2
CH
O
CHCCH
3
LiCu(CH
3
)
2
H11001
O
C
6
H
5
CH
2
CCHC
6
H
5
O
CH
2
CH
2
CCH
3
and C
6
H
5
C
6
H
5
H
H
3
C
HO
O
O
CH
3
CCH
2
CCH
3
CH
2
O
C
6
H
5
CHC
6
H
5
CH
O
CHCC(CH
3
)
3
CH
3
CH
2
CH
2
CH
O
CH
2
CH
3
CCH
NaOH
H
2
O, heat
H
2
Pt
O
CH
3
CH
2
CH
2
CH CH
3
CH
2
CH
2
CH
2
CHCH
2
OH
CH
2
CH
3
(CH
3
)
2
CHCH
2
CH
HC
CCH(CH
3
)
2
O
CH
3
CH
2
CHCH
HO CH
3
CH
3
HC
CCH
2
CH
3
O
Cannot dehydrate; no protons
on H9251-carbon atom
H9251
(CH
3
)
2
CHCH
2
CH
OH
HC
CHCH(CH
3
)
2
O
CH
3
CH
2
CHCH
HO CH
3
CH
3
HC
CCH
2
CH
3
O
CH
2
CCH
3
CH
3
O
CH
3
O
O
CD
2
CCD
3
CH
3
O
CH
3
O
O
5D
2
OH11001
K
2
CO
3
APPENDIX 2 A-41
19.2 The negative charge in cannot be delocalized into the carbonyl group.
19.3 (b) CH
3
CO
2
H H11001 (CH
3
)
3
CO
H11002
BA CH
3
CO
2
H11002
H11001 (CH
3
)
3
COH
(The position of equilibrium lies to the right.)
(c) CH
3
CO
2
H H11001 Br
H11002
BA CH
3
CO
2
H11002
H11001 HBr
(The position of equilibrium lies to the left.)
(d) CH
3
CO
2
H H11001 HCPC
:
H11002
BA CH
3
CO
2
H11002
H11001 HCPCH
(The position of equilibrium lies to the right.)
(e) CH
3
CO
2
H H11001 NO
3
H11002
BA CH
3
CO
2
H11002
H11001 HNO
3
(The position of equilibrium lies to the left.)
(f) CH
3
CO
2
H H11001 H
2
N
H11002
BA CH
3
CO
2
H11002
H11001 NH
3
(The position of equilibrium lies to the right.)
19.4 (b) (c) (d)
19.5 HCPCCO
2
H
19.6 The ¡°true K
1
¡± for carbonic acid is 1.4 H11003 10
H110024
.
19.7 (b) The conversion proceeding by way of the nitrile is satisfactory.
Since 2-chloroethanol has a proton bonded to oxygen, it is not an appropriate substrate for con-
version to a stable Grignard reagent.
(c) The procedure involving a Grignard reagent is satisfactory.
The reaction of tert-butyl chloride with cyanide ion proceeds by elimination rather than substi-
tution.
19.8 Water labeled with
18
O adds to benzoic acid to give the tetrahedral intermediate shown. This
intermediate can lose unlabeled H
2
O to give benzoic acid containing
18
O.
19.9 (b) HOCH
2
(CH
2
)
13
CO
2
H; (c)
19.10 CH
3
(CH
2
)
15
CHCO
2
H
Br
CH
3
(CH
2
)
15
CHCO
2
H
I
NaI
acetone
Br
2
PCl
3
CH
3
(CH
2
)
15
CH
2
CO
2
H
HOCH
2
CH
OH
CH
2
HO
2
C
H
2
C
H
OH
CO
2
H
CH
2
C
6
H
5
C
OH
OH
18
OH C
6
H
5
C
O
18
OH
H11002H
2
O H11002H
2
O
18
O
C
6
H
5
COH
Mg 1. CO
2
2. H
3
O
H11001
(CH
3
)
3
CCl (CH
3
)
3
CMgCl (CH
3
)
3
CCO
2
H
NaCN hydrolysis
HOCH
2
CH
2
Cl HOCH
2
CH
2
CN HOCH
2
CH
2
CO
2
H
O
CH
3
SCH
2
CO
2
H
O
O
CH
3
CCO
2
H
OH
CH
3
CHCO
2
H
O
CH
3
COO
H11002
A-42 APPENDIX 2
19.11 (b)
(c)
19.12 (b)
CHAPTER 20
20.1 (b) (c)
(d) (e)
(f) (g)
20.2 Rotation about the carbon¨Cnitrogen bond is slow in amides. The methyl groups of N,N-
dimethylformamide are nonequivalent because one is cis to oxygen, the other cis to hydrogen.
20.3 (b) (c) (d)
(e) (f)
20.4 (b)
O
C
6
H
5
COCC
6
H
5
O
C
6
H
5
COCC
6
H
5
Cl
OO
H
H11001 HCl
O
C
6
H
5
COH
O
C
6
H
5
CN(CH
3
)
2
O
C
6
H
5
CNHCH
3
O
C
6
H
5
COCH
2
CH
3
O
C
6
H
5
COCC
6
H
5
O
C
6
H
5
CH
3
CH
2
CHC N
O
C
6
H
5
CH
3
CH
2
CHCNHCH
2
CH
3
O
C
6
H
5
CH
3
CH
2
CHCNH
2
O
CH
3
CH
2
CH
2
COCH
2
CHCH
2
CH
3
C
6
H
5
O
C
6
H
5
CH
3
CH
2
CHCOCH
2
CH
2
CH
2
CH
3
O
C
6
H
5
CH
3
CH
2
CHCOCCHCH
2
CH
3
C
6
H
5
O
H11002CO
2
CH
3
CCH(CH
3
)
2
O
CH
3
C
C
OH
CH
3
CH
3
C
C
O
H
O
CH
3
C
O
CH
3
H
3
C
CH
3
C
6
H
5
CHCO
2
H via
C
OH
O
C
O
H
O
C
CH
3
CH
3
(CH
2
)
6
CH
2
CO
2
H via CH
3
(CH
2
)
6
CH
C
HO
C
H
O
O
O
APPENDIX 2 A-43
(c)
(d)
(e)
(f)
20.5
20.6
20.7 (b) (c)
(d)
CO
H11002
Na
H11001
CO
H11002
Na
H11001
O
O
CN(CH
3
)
2
CO
H11002
O
O
H
2
N(CH
3
)
2
H11001
O
CH
3
CNH
2
H11001 CH
3
CO
2
H11002
H11001
NH
4
CH
3
C O
H11001
CH
3
C O
H11001
O
C
6
H
5
COCC
6
H
5
OO
C
6
H
5
COH
O
C
6
H
5
CCl H11001 HClH11001
O
C
6
H
5
COH
O
C
6
H
5
CCl H11001 HClH11001 H
2
O
O
C
6
H
5
COHC
6
H
5
COH
Cl
O
H
H11001 HCl
O
C
6
H
5
CN(CH
3
)
2
C
6
H
5
CN(CH
3
)
2
Cl
O
H
(CH
3
)
2
NH
H11001 (CH
3
)
2
NH
2
H11001
Cl
H11002
O
C
6
H
5
CNHCH
3
C
6
H
5
CNHCH
3
Cl
O
H
CH
3
NH
2
H11001 CH
3
NH
3
H11001
Cl
H11002
O
C
6
H
5
COCH
2
CH
3
C
6
H
5
COCH
2
CH
3
Cl
O
H
H11001 HCl
A-44 APPENDIX 2
20.8 (b)
(c)
(d)
20.9
20.10 Step 1: Protonation of the carbonyl oxygen
Step 2: Nucleophilic addition of water
Step 3: Deprotonation of oxonium ion to give neutral form of tetrahedral intermediate
C
6
H
5
C
HO
OH
OCH
2
CH
3
H11001H11001C
6
H
5
C
O
H11001
HH
OH
OCH
2
CH
3
O
H
H
H
H11001
O
H
H
O
H
H
C
6
H
5
C
OCH
2
CH
3
OH
H11001
C
6
H
5
C
O
H11001
HH
OH
OCH
2
CH
3
H11001
C
6
H
5
C
OCH
2
CH
3
O
C
6
H
5
C
OCH
2
CH
3
OH
H11001
H11001 H
H11001
O
H
H
H11001 O
H
H
OH
HOCH
2
CHCH
2
CH
2
CH
2
OH (C
5
H
12
O
3
)CH
3
CO
2
Hand
O
O
OH
O
HHO
H11002
O
COH
CO
H11002
O
H11001 H
2
O
O
O
N(CH
3
)
2
O
H
(CH
3
)
2
NH
CN(CH
3
)
2
CO
H11002
H
2
N(CH
3
)
2
H11001
O
O
O
CH
3
CNH
2
O
H
4
N OCCH
3
H11001H11002
CH
3
C
NH
2
O
OCCH
3
O
HH
3
N
H11001
APPENDIX 2 A-45
Step 4: Protonation of ethoxy oxygen
Step 5: Dissociation of protonated form of tetrahedral intermediate
Step 6: Deprotonation of protonated form of benzoic acid
20.11 The carbonyl oxygen of the lactone became labeled with
18
O.
20.12
20.13 The isotopic label appeared in the acetate ion.
20.14 Step 1: Nucleophilic addition of hydroxide ion to the carbonyl group
Step 2: Proton transfer from water to give neutral form of tetrahedral intermediate
Step 3: Hydroxide ion-promoted dissociation of tetrahedral intermediate
H11001H11001H11001HO
H11002
HOHC
6
H
5
C
OH
H O
OCH
2
CH
3
C
6
H
5
C
OH
O
OCH
2
CH
3
H11002
H11001H11001H OH C
6
H
5
C
OH
OH
OCH
2
CH
3
C
6
H
5
C
OH
O
H11002
OCH
2
CH
3
OH
H11002
C
6
H
5
C
OCH
2
CH
3
O
H11001HO
H11002
C
6
H
5
C
OH
O
H11002
OCH
2
CH
3
CH
3
(CH
2
)
12
CO OC(CH
2
)
12
CH
3
OO
OC(CH
2
)
12
CH
3
O
H11001H11001 C
6
H
5
C
OH
O
C
6
H
5
C
OH
O H
H11001
O
H
H
H
H11001
O
H
H
HOCH
2
CH
3
C
6
H
5
C
OH H
H11001
OH
OCH
2
CH
3
H11001C
6
H
5
C
OH
OH
H11001
C
6
H
5
C
HO H
H11001
OH
OCH
2
CH
3
H11001C
6
H
5
C
HO
OH
OCH
2
CH
3
H11001 H
H11001
O
H
H
O
H
H
A-46 APPENDIX 2
Step 4: Proton abstraction from benzoic acid
20.15
20.16
20.17 (b)
(c)
20.18
20.19 Step 1: Protonation of the carbonyl oxygen
Step 2: Nucleophilic addition of water
Step 3: Deprotonation of oxonium ion to give neutral form of tetrahedral intermediate
CH
3
C
OH
OH
NHC
6
H
5
H11001H11001CH
3
C
O
H11001
HH
OH
NHC
6
H
5
O
H
H
H
H11001
O
H
H
O
H
H
CH
3
C
NHC
6
H
5
OH
H11001
H11001 CH
3
C
O
H11001
HH
OH
NHC
6
H
5
CH
3
C
NHC
6
H
5
O
H11001 H
H11001
O
H
H
CH
3
C
NHC
6
H
5
OH
H11001
H11001 O
H
H
CNH
2
CO
H11002
NH
4
H11001
O
O
O
HCN(CH
3
)
2
CH
3
OHHN(CH
3
)
2
O
HCOCH
3
H11001H11001
O
CH
3
CNHCH
3
O
CH
3
CO
H11002
CH
3
NH
3
H11001
2CH
3
NH
2
O O
CH
3
COCCH
3
H11001H11001
OH
OCH
3
CH
3
CSCH
2
CH
2
OC
6
H
5
O
OH
CH
3
NHCCH
2
CH
2
CHCH
3
H11001H11001HOHC
6
H
5
C
O
O
H11002
C
6
H
5
C
HO
O
OH
H11002
APPENDIX 2 A-47
Step 4: Protonation of amino group of tetrahedral intermediate
Step 5: Dissociation of N-protonated form of tetrahedral intermediate
Step 6: Proton-transfer processes
20.20 Step 1: Nucleophilic addition of hydroxide ion to the carbonyl group
Step 2: Proton transfer to give neutral form of tetrahedral intermediate
Step 3: Proton transfer from water to nitrogen of tetrahedral intermediate
Step 4: Dissociation of N-protonated form of tetrahedral intermediate
H11001H11001H11001HO
H11002
H
2
O HN(CH
3
)
2
HC
OH
O
H
NH(CH
3
)
2
H11001
HC
OH
O
H11001H11001H OH OH
H11002
HC
OH
OH
N(CH
3
)
2
HC
OH
OH
NH(CH
3
)
2
H11001
H11001H11001H OH OH
H11002
HC
OH
O
H11002
N(CH
3
)
2
HC
OH
OH
N(CH
3
)
2
H11001HO
H11002
HC
OH
O
H11002
N(CH
3
)
2
HCN(CH
3
)
2
O
H
2
NC
6
H
5
H
3
NC
6
H
5
H11001
H11001
H11001
O H
H
H
O
H
H
H11001
H11001H11001 CH
3
C
OH
O
CH
3
C
OH
O H
H11001
O
H
H
H
H11001
O
H
H
H
2
NC
6
H
5
H11001CH
3
C
OH
OH
H11001
CH
3
C
OH H
H11001
OH H
NC
6
H
5
CH
3
C
OH H
H11001
OH H
NC
6
H
5
H11001CH
3
C
OH
OH
NHC
6
H
5
H11001 H
H11001
O
H
H
O
H
H
A-48 APPENDIX 2
Step 5: Irreversible formation of formate ion
20.21
20.22
20.23 In acid, the nitrile is protonated on nitrogen. Nucleophilic addition of water yields an imino
acid.
A series of proton transfers converts the imino acid to an amide.
20.24
The imine intermediate is .
CHAPTER 21
21.1 Ethyl benzoate cannot undergo the Claisen condensation.
Claisen condensation product of Claisen condensation product of
ethyl pentanoate: ethyl phenylacetate:
21.2 (b) (c)
C
CH
3
O
O
OCH
2
CH
3
O
CH
3
C
O OCH
2
CH
3
O O
C
6
H
5
C
6
H
5
CH
2
CCHCOCH
2
CH
3
O O
CH
2
CH
2
CH
3
CH
3
CH
2
CH
2
CH
2
CCHCOCH
2
CH
3
NH
C
6
H
5
CCH
2
CH
3
O
C
6
H
5
CCH
2
CH
3
CH
3
CH
2
CN C
6
H
5
MgBrH11001
1. diethyl ether
2. H
2
O, H
H11001
, heat
H11001H11001H11001RC
NH
2
O
RC
NH
OH
H
H11001
O
H
H
H
H11001
O
H
H
H11001
H
O
H
H
RC
NH
2
O
H11001H
2
O RC
NH
OH
2
H11001
RC
NH
OH
RC N
H11001
H
H
2
O
H
3
O
H11001
CH
3
CH
2
OH CH
3
CH
2
Br CH
3
CH
2
CN
PBr
3
or HBr
NaCN
O
CH
3
COH
O
CH
3
CNH
2
CH
3
CNCH
3
CH
2
OH
Na
2
Cr
2
O
7
, H
2
O
H
2
SO
4
, heat
1. SOCl
2
2. NH
3
P
4
O
10
O
CH
3
CH
2
CH
2
CNH
2
CH
3
CH
2
CH
2
CO
2
HCH
3
CH
2
CH
2
NH
2
1. SOCl
2
2. NH
3
Br
2
H
2
O, NaOH
H11001H11001HOHHC
O
O
H11002
HC
HO
O
OH
H11002
APPENDIX 2 A-49
21.3 (b)
(c)
21.4
21.5
21.6 (b)
(c)
21.7 (b)
(c)
1. NaOCH
2
CH
3
2. HO
H11002
, H
2
O
3. H
H11001
4. heat
H11001
O O
CH
3
CCH
2
COCH
2
CH
3
CH
2
CHCH
2
Br CH
2
CHCH
2
CH
2
CCH
3
O
1. NaOCH
2
CH
3
2. HO
H11002
, H
2
O
3. H
H11001
4. heat
C
6
H
5
CH
2
Br H11001
O O
CH
3
CCH
2
COCH
2
CH
3
O
C
6
H
5
CH
2
CH
2
CCH
3
CH
3
O
O
H11002
CH
3
CH
2
O
CH
3
O
O
H11002
OCH
2
CH
3
H11001
CH
2
CH
2
C
C
CH
3
CH
2
O
O
O
CHCH
3
H11002
CH
3
O
O
H11002
CH
3
CH
2
O
C
6
H
5
CHCH
O
COCH
2
CH
3
O
C
6
H
5
CHCCOCH
2
CH
3
OO
COCH
2
CH
3
O
O
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
1. NaOCH
2
CH
3
2. H
H11001
O
COCH
2
CH
3
O
O O
CH
3
CH
2
OCCH
2
CH
2
CH
2
CH
2
COCH
2
CH
3
NaOCH
2
CH
3
ethanol
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
H11001CH
3
(CH
2
)
5
CH
2
Br CH
2
(COOCH
2
CH
3
)
2
CH
3
(CH
2
)
5
CH
2
CH(COOCH
2
CH
3
)
2
CH
3
(CH
2
)
5
CH
2
CH
2
COH
O
NaOCH
2
CH
3
ethanol
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
H11001 CH
2
(COOCH
2
CH
3
)
2
CH
3
CH
2
CHCH
2
CH(COOCH
2
CH
3
)
2
CH
3
CH
3
CH
2
CHCH
2
Br
CH
3
CH
3
CH
2
CHCH
2
CH
2
COH
CH
3
O
A-50 APPENDIX 2
(d)
21.8
21.9
21.10
21.11
21.12
NaOCH
2
CH
3
O
C
6
H
5
CH
2
COCH
2
CH
3
H11001
O
CH
3
CH
2
OCOCH
2
CH
3
C
6
H
5
CH(COOCH
2
CH
3
)
2
O
H
O
CH
3
CH
2
H11002
S
N
NNa
H11001
CH
3
CH
2
CH
2
CH
CH
3
O
H
O
CH
3
CH
2
S
H11002
N
NNa
H11001
CH
3
CH
2
CH
2
CH
CH
3
COCH
2
CH
3
COCH
2
CH
3
CH
3
CH
2
CH
2
CH
C
CH
3
CH
2
CH
3
O
O
H11001 H
2
NCNH
2
O
H
O
H
O
CH
3
CH
2
O
N
N
CH
3
CH
2
CH
2
CH
CH
3
CH
2
(COOCH
2
CH
3
)
2
2. NaOCH
2
CH
3
, CH
3
CH
2
Br
Br
W CH
3
CH
2
CH
2
CH
C(COOCH
2
CH
3
)
2
CH
3
CH
2
CH
3
1. NaOCH
2
CH
3
, CH
2
CH
2
CH
2
CHCH
3
NaOCH
2
CH
3
O O
CH
3
CCH
2
COCH
2
CH
3
H11001 BrCH
2
CH
2
CH
2
CH
2
Br
1. HO
H11002
, H
2
O
2. H
H11001
, heat
CCH
3
CO
2
CH
2
CH
3
O
CCH
3
H
O
NaOCH
2
CH
3
CH
3
Br
NaOCH
2
CH
3
CH
3
Br
O O
CH
3
CCH
2
COCH
2
CH
3
O O
CH
3
CCHCOCH
2
CH
3
CH
3
O O
CH
3
CCCOCH
2
CH
3
CH
3
H
3
C
O
CH
3
CCH(CH
3
)
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
NaOCH
2
CH
3
ethanol
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
H11001C
6
H
5
CH
2
Br CH
2
(COOCH
2
CH
3
)
2
C
6
H
5
CH
2
CH(COOCH
2
CH
3
)
2
C
6
H
5
CH
2
CH
2
COH
O
NaOCH
2
CH
3
CH
3
CH
2
Br
H
2
NCNH
2
O
X
C
6
H
5
C(COOCH
2
CH
3
)
2
CH
2
CH
3
C
6
H
5
CH(COOCH
2
CH
3
)
2
H
O
H
O
CH
3
CH
2
O
N
N
C
6
H
5
APPENDIX 2 A-51
21.13
21.14 (b)
(c)
(d)
CHAPTER 22
22.1 (b) 1-Phenylethanamine or 1-phenylethylamine; (c) 2-propen-1-amine or allylamine
22.2 N,N-Dimethylcycloheptanamine
22.3 Tertiary amine; N-ethyl-4-isopropyl-N-methylaniline
22.4
22.5 pK
b
H11005 6; K
a
of conjugate acid H11005 1 H11003 10
H110028
; pK
a
of conjugate acid H11005 8
22.6 log (CH
3
NH
3
H11001
/CH
3
NH
2
) H11005 10.7 H11002 7 H11005 3.7; (CH
3
NH
3
H11001
/CH
3
NH
2
) H11005 10
3.7
H11005 5000
22.7 Tetrahydroisoquinoline is a stronger base than tetrahydroquinoline. The unshared electron
pair of tetrahydroquinoline is delocalized into the aromatic ring, and this substance resembles ani-
line in its basicity, whereas tetrahydroisoquinoline resembles an alkylamine.
22.8 (b) The lone pair of nitrogen is delocalized into the carbonyl group by amide resonance.
(c) The amino group is conjugated to the carbonyl group through the aromatic ring.
22.9
Cl
2
400°C
NH
3
CH
2
CHCH
3
CH
2
CHCH
2
Cl CH
2
CHCH
2
NH
2
H
2
NC
CH
3
O
H
2
N
H11001
C
CH
3
H11002
O
C
6
H
5
N
H
O
CCH
3
C
6
H
5
N
H
O
CCH
3
H11002
H11001
NH
2
O
H11002
O
N
H11001
H11002
H11001
NH
2
O
H11002
O
N
H11001
1. LDA, THF
2. cyclohexanone
3. H
2
O
CH
3
CO
2
C(CH
3
)
3
OH
CH
2
CO
2
C(CH
3
)
3
1. LDA, THF
2. C
6
H
5
CHO
3. H
2
O
O O
CHC
6
H
5
OH
1. LDA, THF
2. CH
3
I
C
6
H
5
CHCO
2
CH
3
CH
3
C
6
H
5
CH
2
CO
2
CH
3
O
CH
2
CCH
3
O
A-52 APPENDIX 2
22.10 Isobutylamine and 2-phenylethylamine can be prepared by the Gabriel synthesis; tert-butyl-
amine, N-methylbenzylamine, and aniline cannot.
(b)
(d)
22.11 (b) Prepare p-isopropylnitrobenzene as in part (a); then reduce with H
2
, Ni (or Fe H11001 HCl
or Sn H11001 HCl, followed by base). (c) Prepare isopropylbenzene as in part (a); then dinitrate with
HNO
3
H11001 H
2
SO
4
; then reduce both nitro groups. (d) Chlorinate benzene with Cl
2
H11001 FeCl
3
; then
nitrate (HNO
3
, H
2
SO
4
), separate the desired para isomer from the unwanted ortho isomer, and
reduce. (e) Acetylate benzene by a Friedel¨CCrafts reaction (acetyl chloride H11001 AlCl
3
); then nitrate
(HNO
3
, H
2
SO
4
); then reduce the nitro group.
22.12 (b)
(c)
(d)
22.13 (b) (c) CH
2
?CH
2
22.14 (b) Prepare acetanilide as in part (a); dinitrate (HNO
3
, H
2
SO
4
); then hydrolyze the amide
in either acid or base. (c) Prepare p-nitroacetanilide as in part (a); then reduce the nitro group with
H
2
(or Fe H11001 HCl or Sn H11001 HCl, followed by base).
22.15 N
O
N
H
3
C
H
3
C
N
H11001
O
H11002
N
H
3
C
H
3
C
(CH
3
)
3
CCH
2
C?CH
2
W
CH
3
H
2
, Ni
C
6
H
5
CH
O
H11001 HN C
6
H
5
CH
2
N
H
2
, Ni
C
6
H
5
CH
O
H11001 (CH
3
)
2
NH C
6
H
5
CH
2
N(CH
3
)
2
H
2
, Ni
C
6
H
5
CH
O
H11001 C
6
H
5
CH
2
NH
2
C
6
H
5
CH
2
NHCH
2
C
6
H
5
O
O
NH
NH
C
6
H
5
CH
2
CH
2
Br H11001
O
O
NK
O
O
NCH
2
CH
2
C
6
H
5
H
2
NNH
2
C
6
H
5
CH
2
CH
2
NH
2
H11001
O
O
NH
NH
(CH
3
)
2
CHCH
2
Br H11001
O
O
NK
O
O
NCH
2
CH(CH
3
)
2
H
2
NNH
2
(CH
3
)
2
CHCH
2
NH
2
H11001
APPENDIX 2 A-53
22.16 The diazonium ion from 2,2-dimethylpropylamine rearranges via a methyl shift on loss of
nitrogen to give 1,1-dimethylpropyl cation.
22.17 Intermediates: benzene to nitrobenzene to m-bromonitrobenzene to m-bromoaniline to m-
bromophenol. Reagents: HNO
3
, H
2
SO
4
; Br
2
, FeBr
3
; Fe, HCl then HO
H11002
; NaNO
2
, H
2
SO
4
, H
2
O,
then heat in H
2
O.
22.18 Prepare m-bromoaniline as in Problem 22.17; then NaNO
2
, HCl, H
2
O followed by KI.
22.19 Intermediates: benzene to ethyl phenyl ketone to ethyl m-nitrophenyl ketone to m-
aminophenyl ethyl ketone to ethyl m-fluorophenyl ketone. Reagents: propanoyl chloride, AlCl
3
;
HNO
3
, H
2
SO
4
; Fe, HCl, then HO
H11002
; NaNO
2
, H
2
O, HCl, then HBF
4
, then heat.
22.20 Intermediates: isopropylbenzene to p-isopropylnitrobenzene to p-isopropylaniline to p-iso-
propylacetanilide to 4-isopropyl-2-nitroacetanilide to 4-isopropyl-2-nitroaniline to m-isopropylni-
trobenzene. Reagents: HNO
3
, H
2
SO
4
; Fe, HCl, then HO
H11002
; acetyl chloride; HNO
3
, H
2
SO
4
; acid or
base hydrolysis; NaNO
2
, HCl, H
2
O, and CH
3
CH
2
OH or H
3
PO
2
.
CHAPTER 23
23.1 C
6
H
5
CH
2
Cl
23.2 (b) (c) (d)
23.3
23.4
23.5 FF
FF
FF
OCH
3
F
FF
FF
OCH
3
H11002
F
F
FF
FF
H11001H11001OCH
3
H11002
F
H11002
BrBr
NO
2
OCH
2
CH
3
N
CH
3
O F
H11001
O
H11002
O
H11002
NO
2
NO
2
NHCH
3
NO
2
NO
2
NH
2
NO
2
NO
2
SCH
2
C
6
H
5
CH
3
CCH
2
NH
2
CH
3
CH
3
HONO H11002N
2
CH
3
C
CH
3
CH
3
H11001
CH
2
N N CH
3
CCH
2
CH
3
H11001
CH
3
A-54 APPENDIX 2
23.6 Nitrogen bears a portion of the negative charge in the anionic intermediate formed in the
nucleophilic addition step in 4-chloropyridine, but not in 3-chloropyridine.
23.7 A benzyne intermediate is impossible because neither of the carbons ortho to the intended
leaving group bears a proton.
23.8 3-Methylphenol and 4-methylphenol (m-cresol and p-cresol)
23.9
CHAPTER 24
24.1 (b) (c) (d)
24.2 Methyl salicylate is the methyl ester of o-hydroxybenzoic acid. Intramolecular (rather than
intermolecular) hydrogen bonding is responsible for its relatively low boiling point.
24.3 (b) p-Cyanophenol is stronger acid because of conjugation of cyano group with phenoxide
oxygen. (c) o-Fluorophenol is stronger acid because electronegative fluorine substituent can stabi-
lize negative charge better when fewer bonds intervene between it and the phenoxide oxygen.
24.4
24.5
then H11001
H11002
OH OH
H11002
OH
H
2
O
H11002
OH Cl
H11002
H11001H
2
OH11001H11001
H
Cl
C
O
H
O
OCH
3
OH
Cl
OH
NO
2
OH
CH
2
C
6
H
5
OH
O
H
N
H11002
Cl
H
H
H
Y
is more stable and
formed faster than
Y
N
Cl
H
H11002
HH
H
H11002SO
3
2H11002
H11002
OH
SO
3
H11002
CH
3
OHCH
3
H11001SO
3
H11002
CH
3
H11002
OH
APPENDIX 2 A-55
24.6 (b)
(c)
(d)
24.7 (b)
(c)
24.8
24.9 p-Fluoronitrobenzene and phenol (as its sodium or potassium salt)
24.10
CHAPTER 25
25.1 (b) L-Glyceraldehyde; (c) D-glyceraldehyde
25.2 L-Erythrose
25.3
25.4 L-Talose
H OH
HO H
HO H
CH
2
OH
CHO
OH
CHCH
CH
3
CH
2
C
6
H
5
OCH
2
CHCH
3
OH
H11001 C
6
H
5
CCl
O
C
6
H
5
OCC
6
H
5
O
C
6
H
5
OH HClH11001
OH
H11001 CH
3
COCCH
3
OO
CH
3
CONa
O
NaOH
OCCH
3
O
H11001
CCH
2
CH
3
CH
3
OH
O
O
CH(CH
3
)
2
N
H
3
C
OH
CH
3
Br
(CH
3
)
3
C
OH
A-56 APPENDIX 2
25.5 (b)
(c)
(d)
25.6 (b) (c)
(d)
25.7 67% H9251, 33% H9252
25.8
25.9 (b)
25.10
O
OCH
3
OH
HOCH
2
HO
HO
H9251
O
OCH
3
OH
HOCH
2
HO
HO
H9252
H OH
H OH
HO H
HO H
CH
3
CHO
CO
H OH
CH
2
OH
CH
2
OH
CO
HO H
CH
2
OH
CH
2
OH
O
OH
OH
OH
HO
HOCH
2
O
OH
HO
HO
OH
O
OH
OH
HOCH
2
HO
HO
HO H
HOH
OH
H
O
HO H
HOH
OH
H
O
and
H
OH H
OHH
OH
HHOCH
2
O
H
OH H
OHH
OH
H
HOCH
2
O
and
HOCH
2
HO H
HOH
OH
HH
O HOCH
2
HO H
HOH
OH
H
H
O
and
APPENDIX 2 A-57
25.11 The mechanism for formation of the H9252-methyl glycoside is shown. The mechanism for for-
mation of the H9251 isomer is the same except that methanol approaches the carbocation from the axial
direction.
25.12
25.13 No. The product is a meso form.
25.14 All (b) through (f) will give positive tests.
25.15 L-Gulose
25.16 The intermediate is an enediol,
25.17 (b) Four equivalents of periodic acid are required. One molecule of formaldehyde and four
molecules of formic acid are formed from each molecule of D-ribose.
(c) Two equivalents
(d) Two equivalents
CHAPTER 26
26.1 Hydrolysis gives CH
3
(CH
2
)
16
CO
2
H (2 mol) and (Z)-CH
3
(CH
2
)
7
CH?CH(CH
2
)
7
CO
2
H
(1 mol). The same mixture of products is formed from 1-oleyl-2,3-distearylglycerol.
26.2 CH
3
C
S ACP
OH
SCoA
CH
CH HC
OCH
3
HH
O
O
O
O
H11001
O
HCH
H11001
O
O
HC
HC
HOCH
2
OCH
3
O
HCO
2
H
HOCH
OH
O
CCH
2
OP(OH)
2
O
HO
O
OH
HOCH
2
HO
OH
CH O
OH
HOCH
2
HO
O
H
HOCH
2
HO
HO
O
H
H11001
HOCH
2
HO
HO
H Cl
H
CH
3
O
±
±
O
O
H11001
CH
3
H
H
HOCH
2
HO
HO
O
OCH
3
H
HOCH
2
HO
HO
A-58 APPENDIX 2
26.3
26.4 R in both cases
26.5
26.6
26.7
26.8
Tail-to-tail link
Cembrene
OH
Vitamin A
H9251-Phellandrene
OH
Menthol
CH
O
Citral
CO
2
H
HO
HO
O
CH
3
(CH
2
)
14
CO(CH
2
)
15
CH
3
O
CH
3
(CH
2
)
12
CS
O
ACP CH
3
(CH
2
)
12
CCH
2
C
O O
ACP
H
H9251-Selinene
OH
Farnesol
CO
2
H
OH
O
Abscisic acid
CH
3
(CH
2
)
12
CHCH
2
CS
OH
O
ACP CH
3
(CH
2
)
12
CH
2
CH
2
CS
O
ACPCH
3
(CH
2
)
12
CH
O
CHCS ACP
APPENDIX 2 A-59
26.9
26.10
26.11 Four carbons would be labeled with
14
C; they are C-1, C-3, C-5, and C-7.
26.12 (b) Hydrogens that migrate are those originally attached to C-13 and C-17 (steroid num-
bering); (c) the methyl group attached to C-15 of squalene 2,3-epoxide; (d) the methyl groups at
C-2 and C-10 plus the terminal methyl group of squalene 2,3-epoxide.
26.13 All the methyl groups are labeled, plus C-1, C-3, C-5, C-7, C-9, C-13, C-15, C-17, C-20,
and C-24 (steroid numbering).
26.14 The structure of vitamin D
2
is the same as that of vitamin D
3
except that vitamin D
2
has a
double bond between C-22 and C-23 and a methyl substituent at C-24.
CHAPTER 27
27.1 (b) R; (c) S
27.2 Isoleucine and threonine
27.3 (b)
(c)
(d) CH
2
CHCO
2
H11002H11002
O
NH
2
CH
2
CHCO
2
H11002
HO
NH
2
CH
2
CHCO
2
H11002H11002
O
H11001
NH
3
or
CH
2
CHCO
2
H11002
HO
H11001
NH
3
OH
H
Isoborneol
O
Camphor
OPP
OPP
H11001
OPP
HH
H11002H
H11001
H
2
O
OPP
OH
A-60 APPENDIX 2
27.4 At pH 1: At pH 9:
At pH 13:
27.5
27.6
27.7 Treat the sodium salt of diethyl acetamidomalonate with isopropyl bromide. Remove the
amide and ester functions by hydrolysis in aqueous acid; then heat to cause
to decarboxylate to give valine. The yield is low because isopropyl bromide is a secondary alkyl
halide, because it is sterically hindered to nucleophilic attack, and because elimination competes
with substitution.
27.8
violet dye
N
H
CHR
O
O
NH
2
H
O
O
H
2
O
H11001 RCH
O
O
O
O
H11002
OH
N
H
O
O
O
O
N
H
CHR
O
O
CO
2
O
O
N
CH
O
R
O
H11002
H
C
OH
H11001
OH
OH
O
O
H11002H
2
O
O
O
O
O
O
NCHCO
2
H11002
R
H
3
NCHCO
2
H11002
W
H11001
R
(CH
3
)
2
CHC(CO
2
H)
2
H11001
NH
3
(CH
3
)
2
CHCH
O
(CH
3
)
2
CHCHCN
NH
2
(CH
3
)
2
CHCHCO
2
H11002
H11001
NH
3
NH
4
Cl
NaCN
1. H
2
O, HCl, heat
2. HO
H11002
(CH
3
)
2
CHCH
2
CO
2
H (CH
3
)
2
CHCHCO
2
H
Br
(CH
3
)
2
CHCHCO
2
H11002
H11001
NH
3
Br
2
P
NH
3
H
2
NCH
2
CH
2
CH
2
CH
2
CHCO
2
H11002
NH
2
H
3
NCH
2
CH
2
CH
2
CH
2
CHCO
2
H11002
H11001
NH
2
H
3
NCH
2
CH
2
CH
2
CH
2
CHCO
2
H
H11001
H11001
NH
3
APPENDIX 2 A-61
27.9 Glutamic acid
27.10 (b) (c)
(d) (e)
(f)
One-letter abbreviations: (b) AF; (c) FA; (d) GE; (e) KG; (f) D-A-D-A
27.11 (b) (c)
(d)
(e)
(f)
27.12 Tyr-Gly-Gly-Phe-Met; YGGFM
27.13
27.14 Val-Phe-Gly-Ala Val-Phe-Ala-Gly
27.15 OS
N
CH
2
C
6
H
5
C
6
H
5
HN
Val-Gly-Phe-Ala
Val-Gly-Ala-Phe
Val-Phe-Gly-Ala
Val-Phe-Ala-Gly
Val-Ala-Gly-Phe
Val-Ala-Phe-Gly
Phe-Gly-Ala-Val
Phe-Gly-Val-Ala
Phe-Ala-Gly-Val
Phe-Ala-Val-Gly
Phe-Val-Gly-Ala
Phe-Val-Ala-Gly
Gly-Ala-Phe-Val
Gly-Ala-Val-Phe
Gly-Phe-Ala-Val
Gly-Phe-Val-Ala
Gly-Val-Ala-Phe
Gly-Val-Phe-Ala
Ala-Gly-Phe-Val
Ala-Gly-Val-Phe
Ala-Phe-Gly-Val
Ala-Phe-Val-Gly
Ala-Val-Gly-Phe
Ala-Val-Phe-Gly
N
H
H
CH
3
O
CO
2
H11002
CH
3
H
H
3
N
H11001
N
H
O
CO
2
H11002
H
H
3
NCH
2
CH
2
CH
2
CH
2
H
3
N
H11001
H11001
N
H
CH
2
CH
2
CO
2
H11002
H
O
CO
2
H11002
H
3
N
H11001
N
H
CH
3
H
O
CO
2
H11002
H
C
6
H
5
CH
2
H
3
N
H11001
N
H
CH
2
C
6
H
5
H
O
CO
2
H11002
H
H
3
C
H
3
N
H11001
H
3
NCHCNHCHCO
2
H11002
H11001
CH
3
CH
3
O
H
3
NCHCNHCH
2
CO
2
H11002
H11001
H11001
H
3
NCH
2
CH
2
CH
2
CH
2
O
H
3
NCH
2
CNHCHCO
2
H11002
H11001
CH
2
CH
2
CO
2
H11002
O
H
3
NCHCNHCHCO
2
H11002
H11001
C
6
H
5
CH
2
CH
3
O
H
3
NCHCNHCHCO
2
H11002
H11001
CH
3
CH
2
C
6
H
5
O
A-62 APPENDIX 2
27.16
27.17
27.18 An O-acylisourea is formed by addition of the Z-protected amino acid to N,NH11032-dicyclo-
hexylcarbodiimide, as shown in Figure 27.13. This O-acylisourea is attacked by p-nitrophenol.
27.19 Remove the Z protecting group from the ethyl ester of Z-Phe-Gly by hydrogenolysis. Cou-
ple with the p-nitrophenyl ester of Z-Leu; then remove the Z group of the ethyl ester of Z-Leu-
Phe-Gly.
27.20 Protect glycine as its Boc derivative and anchor this to the solid support. Remove the pro-
tecting group and treat with Boc-protected phenylalanine and DCCI. Remove the Boc group with
HCl; then treat with HBr in trifluoroacetic acid to cleave Phe-Gly from the solid support.
27.21
F
O
O
N
H
HN
OCR
O
O
2
NH11001OHO
2
N RC
O
NRH11032
NHRH11032
H
H11001
O C RH11032NHCNHRH11032
O
H11001
H
2
Pd
C
6
H
5
CH
2
OCNHCHCNHCHCOCH
2
C
6
H
5
O O O
CH
3
CH
2
CH(CH
3
)
2
Ala-Leu
H
3
NCHCO
2
H11002
H11001
(CH
3
)
2
CHCH
2
H
2
NCHCO
2
CH
2
C
6
H
5
(CH
3
)
2
CHCH
2
H11001 C
6
H
5
CH
2
OH
1. H
H11001
, heat
2. HO
H11002
H
3
NCHCO
2
H11002
H11001
CH
3
H11001 C
6
H
5
CH
2
OCCl
O
C
6
H
5
CH
2
OCNHCHCO
2
H
O
CH
3
C
6
H
5
CH
2
OCNHCHCO
2
H
C
6
H
5
CH
2
OCNHCH
2
CH
2
CH
2
CH
2
O
O
H
2
NCHCOCH
2
C
6
H
5
O
(CH
3
)
2
CHCH
2
H11001
DCCl
C
6
H
5
CH
2
OCNHCHCO
2
H
O
CH
3
C
6
H
5
CH
2
OCNHCHCNHCHCOCH
2
C
6
H
5
O O O
CH
3
CH
2
CH(CH
3
)
2
APPENDIX 2 A-63
27.22 (b) Cytidine (c) Guanosine
27.23 The codons for glutamic acid (GAA and GAG) differ by only one base from two of the
codons for valine (GUA and GUG).
HOCH
2
OH OH
HH
H
2
N
O
N
N
N
HN
HH
O
HOCH
2
OH OH
HH
NH
O
NH
2
N
HH
O
A-64
APPENDIX 3
LEARNING CHEMISTRY WITH MOLECULAR MODELS:
USING SPARTANBUILD AND SPARTANVIEW
Alan J. Shusterman, Department of Chemistry, Reed College, Portland, OR
Warren J. Hehre, Wavefunction, Inc., Irvine, CA
SpartanBuild: AN ELECTRONIC MODEL KIT
SpartanBuild is a program for building and displaying molecular models. It gives detailed
information about molecular geometry (bond lengths and angles) and stability (strain
energy). The program is located on the CD Learning By Modeling included with your
text and may be run on any Windows (95/98/NT) or Power Macintosh computer.
SpartanBuild is intended both to assist you in solving problems in the text (these
problems are matched with the following icon)
and more generally as a ¡°replacement¡± to the plastic ¡°model kits¡± that have been a main-
stay in organic chemistry courses.
The tutorials that follow contain instructions for using SpartanBuild. Each tutorial
gives instructions for a related group of tasks (install software, change model display,
etc.). Computer instructions are listed in the left-hand column, and comments are listed
in the right-hand column. Please perform these instructions on your computer as you
read along.
BUILDING A MODEL WITH ATOMS
One way to build a model is to start with one atom and then add atoms one at a time
as needed. For example, propanal, CH
3
CH
2
CH?O, can be assembled from four ¡°atoms¡±
(sp
3
C, sp
3
C, sp
2
C, and sp
2
O).
SpartanBuild is ¡°CD-protected.¡± The CD
must remain in the drive at all times.
Starting the program opens a large Spar-
tanBuild window (blank initially), a
model kit, and a tool bar. Models are as-
sembled in the window.
Restart SpartanBuild to continue.
Installing SpartanBuild
1. Insert Learning By Modeling CD.
2. Double-click on the CD¡¯s icon.
Starting SpartanBuild
3. Double-click on the SpartanBuild
icon.
Quitting SpartanBuild
4. Select Quit from the File menu.
APPENDIX 3 A-65
You start building propanal using an sp
3
C from the model kit. Note that five dif-
ferent types of carbon are available. Each is defined by a particular number of unfilled
valences (these are used to make bonds) and a particular ¡°idealized geometry.¡± Valences
that are not used for bonds are automatically turned into hydrogen atoms, so it is nor-
mally unnecessary to build hydrogens into a model.
You can rotate a model (in this case, just an sp
3
C), move it around the screen,
and change its size using the mouse in conjunction with the keyboard (see the follow-
ing table). Try these operations now.
To finish building propanal, you need to add two carbons and an oxygen. Start by
adding another sp
3
C (it should still be selected), and continue by adding an sp
2
C and
an sp
2
O. Atoms are added by clicking on unfilled valences in the model (the valences
turn into bonds).
If you make a mistake at any point, you can undo the last operation by selecting Undo
from the Edit menu, or you can start over by selecting Clear from the Edit menu.
This selects the carbon atom with four
single valences.
To finish building propanal, CH
3
CH
2
CH?O
3. If necessary, click on sp
3
C in the
model kit.
Operation
Rotate
Translate
Scale
PC
Move mouse with left button
depressed.
Move mouse with right button
depressed.
Press shift key, and move mouse
with right button depressed.
Mac
Move mouse with button
depressed.
Press option key, and move
mouse with button depressed.
Simultaneously press option and
control keys, and move mouse
with button depressed.
Atom button
Atom label
Ideal bond angles
Unfilled valences
sp
3
C
109.5°
4 single
C
sp
2
C
120°
2 single
1 double
C
trigonal C
120°
3 single
C
H11001
sp C
180°
1 single
1 triple
C
delocalized C
120°
1 single
2 partial double
C
The button becomes highlighted.
A carbon atom with four unfilled va-
lences (white) appears in the Spartan-
Build window as a ball-and-wire model.
Starting to build propanal, CH
3
CH
2
CH?O
If necessary, start SpartanBuild.
1. Click on in the model kit.
2. Click anywhere in the window.
A-66 APPENDIX 3
MEASURING MOLECULAR GEOMETRY
Three types of geometry measurements can be made using SpartanBuild: distances
between pairs of atoms, angles involving any three atoms, and dihedral angles involv-
ing any four atoms. These are accessible from the Geometry menu and from the tool-
bar. Try these operations now.
CHANGING MODEL DISPLAY
The ball-and-wire display is used for model building. Although it is convenient for this
purpose, other model displays show three-dimensional molecular structure more clearly
and may be preferred. The space-filling display is unique in that it portrays a molecule
as a set of atom-centered spheres. The individual sphere radii are taken from experi-
mental data and roughly correspond to the size of atomic electron clouds. Thus, the
space-filling display attempts to show how much space a molecule takes up.
Changing the Model Display
1. One after the other, select Wire,
Tube, Ball and Spoke, and Space
Filling from the Model menu.
Geometry Menu
Distance
Angle
Dihedral
PC Mac
This makes a carbon¨Ccarbon single bond
(the new bond appears as a dashed line).
This selects the carbon atom with one
double and two single valences.
This makes a carbon¨Ccarbon single bond.
Bonds can only be made between va-
lences of the same type (single H11001 single,
double H11001 double, etc.).
This selects the oxygen atom with one
double valence.
This makes a carbon¨Coxygen double
bond. Note: If you cannot see which va-
lence is the double valence, then rotate
the model first.
4. Click on the tip of any unfilled va-
lence in the window.
5. Click on sp
2
C in the model kit.
6. Click on the tip of any unfilled va-
lence in the window.
7. Click on sp
2
O in the model kit.
8. Click on the tip of the double un-
filled valence in the window.
APPENDIX 3 A-67
BUILDING A MODEL USING GROUPS
Organic chemistry is organized around ¡°functional groups,¡± collections of atoms that dis-
play similar structures and properties in many different molecules. SpartanBuild simpli-
fies the construction of molecular models that contain functional groups by providing a
small library of prebuilt groups. For example, malonic acid, HO
2
C±CH
2
±CO
2
H, is
easily built using the Carboxylic Acid group.
BUILDING A MODEL USING RINGS
Many organic molecules contain one or more rings. SpartanBuild contains a small library
of prebuilt structures representing some of the most common rings. For example, trans-
1,4-diphenylcyclohexane can be constructed most easily using Benzene and Cyclo-
hexane rings.
This removes the existing model from
the SpartanBuild window.
This indicates that a ring is to be selected.
This makes this ring appear in the model
kit.
This places an entire cyclohexane ring in
the window.
Building trans-1,4-phenylcyclohexane
1. Select Clear from the Edit menu.
2. Click on the Rings button.
3. Select Cyclohexane from the Rings
menu.
4. Click anywhere in the SpartanBuild
window.
trans-1,4-Diphenylcyclohexane
H
H
This removes the existing model from
the SpartanBuild window.
This indicates that a functional group is
to be selected
This makes this group appear in the
model kit.
The carboxylic acid group has two struc-
turally distinct valences that can be used
to connect this group to the model. The
¡°active¡± valence is marked by a small cir-
cle and can be changed by clicking any-
where on the group.
A new carbon¨Ccarbon bond forms and
an entire carboxylic acid group is added
to the model.
This adds a second carboxylic acid group
to the model.
Building malonic acid, HO
2
C±CH
2
±CO
2
H
1. Select Clear from the Edit menu
2. Click on sp
3
C in the model kit, then
click in the SpartanBuild window.
3. Click on the Groups button in the
model kit.
4. Select Carboxylic Acid from the
Groups menu.
5. Examine the unfilled valences of
the carboxylic acid group, and find
the one marked by a small circle. If
necessary, click on the group to
make this circle move to the va-
lence on carbon.
6. Click on the tip of any unfilled va-
lence in the window.
7. Click on the tip of any unfilled va-
lence on carbon.
A-68 APPENDIX 3
ADDITIONAL TOOLS
Many models can be built with the tools that have already been described. Some mod-
els, however, require special techniques (or are more easily built) using some of the Spar-
tanBuild tools described in the following table.
This makes this ring appear in the model
kit.
This adds an entire benzene ring to the
model.
This adds a second benzene ring to the
model.
5. Select Benzene from the Rings
menu.
6. Click on the tip of any equatorial
unfilled valence.
7. Click on the tip of the equatorial
unfilled valence directly across the
ring (the valence on C-4).
Tool
Make Bond
Break Bond
Delete
Internal
Rotation
Atom
Replacement
PC Mac Use
Click on two unfilled valences. The valences
are replaced by a bond.
Click on bond. The bond is replaced by two
unfilled valences.
Click on atom or unfilled valence. Deleting
an atom removes all unfilled valences
associated with atom.
Click on bond to select it for rotation. Press
Alt key (PC) or space bar (Mac), and move
mouse with button depressed (left button
on PC). One part of the model rotates
about the selected bond relative to other
part.
Select atom from model kit, then double-
click on atom in model. Valences on the
new atom must match bonds in the model
or replacement will not occur.
Example
X
X
N
N
MINIMIZE: GENERATING REALISTIC STRUCTURES AND STRAIN
ENERGY
In some cases, the model that results from building may be severely distorted. For exam-
ple, using Make Bond to transform axial methylcyclohexane into bicyclo[2.2.1]heptane
(norbornane) gives a highly distorted model (the new bond is too long and the ring has
the wrong conformation).
APPENDIX 3 A-69
The distorted structure can be replaced by a ¡°more reasonable¡± structure using an empir-
ical ¡°molecular mechanics¡± calculation. This calculation, which is invoked in Spartan-
Build by clicking on Minimize, automatically finds the structure with the smallest strain
energy (in this case, a structure with ¡°realistic¡± bond distances and a boat conformation
for the six-membered ring).
It is difficult to tell which models contain structural distortions. You should ¡°minimize¡±
all models after you finish building them.
Molecular mechanics strain energies have another use. They can also be used to com-
pare the energies of models that share the same molecular formula, that is, models that
are either stereoisomers or different conformations of a single molecule (allowed com-
parisons are shown here).
SpartanBuild reports strain energies in kilocalories per mole (1 kcal/mol H11005 4.184 kJ/mol)
in the lower left-hand corner of the SpartanBuild window.
SpartanView: VIEWING AND INTERPRETING MOLECULAR-MODELING
DATA
Learning By Modeling contains a program, SpartanView, which displays preassembled
molecular models, and also a library of SpartanView models to which you can refer.
These models differ in two respects from the models that you can build with Spartan-
Build. Some models are animations that show how a molecule changes its shape during
a chemical reaction, vibration, or conformation change. Others contain information about
electron distribution and energy that can only be obtained from sophisticated quantum
chemical calculations. The following sections describe how to use SpartanView.
SpartanView models are intended to give you a ¡°molecule¡¯s eye view¡± of chemi-
cal processes and to help you solve certain text problems. The text uses the following
icon to alert you to corresponding models on the CD.
Each icon corresponds to a model or a group of models on the CD. All of the mod-
els for a given chapter are grouped together in the same folder. For example, the mod-
els for this appendix are grouped together in a folder named ¡°Appendix.¡± The location
make
bond minimize
versus
Anti Gauche
versusversus
A-70 APPENDIX 3
of models within each folder can be determined by paying attention to the context of the
icon. When an icon accompanies a numbered figure or problem, the figure or problem
number is used to identify the model on the CD. When an icon appears next to an unnum-
bered figure, the name of the model is listed next to the icon.
Some SpartanView procedures are identical to SpartanBuild procedures and are not
described in detail. In particular, the same mouse button-keyboard combinations are used
to rotate, translate, and scale models. Also, the same menu commands are used to change
the model display and obtain geometry data. Please refer back to the SpartanBuild
instructions for help with these operations.
START SpartanView, OPEN AND CLOSE MODELS, SELECT AND
MOVE ¡°ACTIVE¡± MODEL
One difference between SpartanView and SpartanBuild is the number of models that the
two programs can display. SpartanBuild can display only a single model, but Spartan-
View allows the simultaneous display of several models. Only one SpartanView model
can be ¡°active¡± at any time, and most mouse and menu operations affect only the ¡°active¡±
model.
The following tutorials contain instructions for using SpartanView. Please perform
these operations on your computer as you read along.
SpartanView and SpartanBuild are lo-
cated on Learning By Modeling. Both
programs are ¡°CD-protected.¡±
This causes the SpartanView window to
open. The window is blank initially.
¡°Appendix A¡± in the Appendix folder
contains three models: water, methanol,
and hydrogen chloride.
This makes hydrogen chloride the active
model. The name of the active model is
displayed at the top of the SpartanView
window. Only one model can be active at
any time.
Rotation and translation affect only the
active model, but scaling affects all mod-
els on the screen.
Close affects only the active model.
Installing Spartan View
1. Insert SpartanView CD.
2. Double-click on the CD¡¯s icon.
Starting SpartanView
3. Double-click on the SpartanView
icon.
Opening models
4. Select Open from the File menu.
5. Double-click on ¡°Appendix,¡± then
double-click on ¡°Appendix A.¡±
Making hydrogen chloride, HCI, the ¡°ac-
tive¡± model
6. Move the cursor to any part of the
hydrogen chloride model, and click
on it.
Moving a model
7. Rotate, translate, and scale the ac-
tive model using the same mouse
and keyboard operations as those
used with SpartanBuild.
Closing model
8. Select Close from the File menu.
APPENDIX 3 A-71
QUANTUM MECHANICAL MODELS
Most of the SpartanView models on the CD have been constructed using quantum
mechanical calculations, although some simplifications have been used to accelerate the
calculations. This means that the models, although closely resembling real molecules,
never precisely duplicate the properties of real molecules. Even so, the models are suf-
ficiently similar to real molecules that they can usually be treated as equivalent. This is
important because models can contain more types of information, and models can be
constructed for molecules that cannot be studied in the laboratory. Also, models can be
joined together to make ¡°animations¡± that show how molecules move.
MEASURING AND USING MOLECULAR PROPERTIES
SpartanView models provide information about molecular energy, dipole moment, atomic
charges, and vibrational frequencies (these data are accessed from the Properties menu).
Energies and charges are available for all quantum mechanical models, whereas dipole
moments and vibrational frequencies are provided for selected models only.
Energy is the most useful molecular property because changes in energy indicate
whether or not a chemical reaction is favorable and how fast it can occur. SpartanView
reports energies in ¡°atomic units,¡± or au (1 au H11005 2625.5 kJ/mol). The energy of any sys-
tem made up of infinitely separated (and stationary) nuclei and electrons is exactly 0 au.
A molecule¡¯s energy can therefore be thought of as the energy change that occurs when
its component nuclei and electrons are brought together to make the molecule. The
¡°assembly¡± process releases a vast amount of energy, so molecular energies are always
large and negative.
The energies of two molecules (or two groups of molecules) can be compared as
long as they contain exactly the same nuclei and exactly the same number of electrons,
a condition that is satisfied by isomers. It is also satisfied by the reactants and products
of a balanced chemical reaction. For example, the energy change, H9004E, for a chemical
reaction, A H11001 B ¡ú C H11001 D, is obtained by subtracting the energies of the reactant mol-
ecules from the energies of the product molecules: H9004E H11005 E
C
H11001 E
D
H11002 E
A
H11002 E
B
. H9004E is
roughly equivalent to the reaction enthalpy, H9004H°. The same type of computation is used
to calculate the activation energy, E
act
. This energy is obtained by subtracting the ener-
gies of the reactant molecules from that of the transition state.
The calculated energy of water
(H1100275.5860 au) is displayed at the bottom
of the screen.
The calculated magnitude of the dipole
moment of water (2.39 D) is displayed at
the bottom of the screen. The calculated
direction is indicated by a yellow arrow.
Making water the active model
1. Move the cursor to any part of the
water model, and click on it.
Measuring the calculated energy
2. Select Energy from the Properties
menu.
3. Click on Done when finished.
Measuring the dipole moment
4. Select Dipole Moment from the
Properties menu.
5. Click on Done when finished.
A-72 APPENDIX 3
DISPLAYING MOLECULAR VIBRATIONS AND MEASURING
VIBRATIONAL FREQUENCIES
Molecular vibrations are the basis of infrared (IR) spectroscopy. Certain groups of atoms
vibrate at characteristic frequencies and these frequencies can be used to detect the pres-
ence of these groups in a molecule.
SpartanView displays calculated vibrations and frequencies for selected models.
Calculated frequencies are listed in units of (cm
H110021
) and are consistently larger than
observed frequencies (observed frequency H11005 0.9 H11003 calculated frequency is a good rule
of thumb).
DISPLAYING ELECTROSTATIC POTENTIAL MAPS
One of the most important uses of models is to show how electrons are distributed inside
molecules. The ¡°laws¡± of quantum mechanics state that an electron¡¯s spatial location can-
not be precisely specified, but the likelihood of detecting an electron at a particular loca-
tion can be calculated (and measured). This likelihood is called the ¡°electron density¡±
(see Chapter 1), and SpartanView can display three-dimensional graphs that show regions
of high and low electron density inside a molecule.
The electron density at a given location is equivalent to the amount of negative
charge at that location. Thus, a hydrogen atom, which consists of a proton and an elec-
tron, can be thought of as a proton embedded in a ¡°cloud¡± of negative charge. The total
amount of charge in the cloud exactly equals the charge on a single electron, but the
charge at any given point in the cloud is considerably smaller and varies as shown in
the following graph.
Electron density
Distance from nucleus
0
r
Frequencies (in cm
H110021
) are listed in nu-
merical order from smallest (or imagi-
nary) at the top to largest at the bottom.
A checkmark indicates the active vibra-
tion (only one vibration can be displayed
at a time). Atom motions are exagger-
ated to make them easier to see.
Vibrations appear most clearly when a
molecule is displayed as a ball-and-spoke
model.
Double-clicking on an active vibration
deactivates it.
Displaying a list of vibrational frequen-
cies for water
1. Select Frequencies from the Prop-
erties menu.
Displaying a vibration
2. Double-click on a frequency to
make it active.
3. Click on OK to close the window.
4. Select Ball and Spoke from the
Model menu.
Stopping the display of a vibration
5. Repeat step 1, double-click on the
active vibration, and click on OK.
APPENDIX 3 A-73
The graph shows that negative charge (or electron density) falls off as one goes
farther away from the nucleus. It also shows that the charge cloud lacks a sharp bound-
ary, or ¡°edge.¡± The apparent lack of an edge is problematic because we know from exper-
imental observations that molecules do, in fact, possess a characteristic size and shape.
SpartanView models solve this problem by using an arbitrarily selected value of the elec-
tron density to define the edge of a molecule¡¯s electron cloud. The program searches for
all of the locations where the electron density takes on this edge value. Then it connects
these locations together to make a smooth surface called a ¡°size density surface,¡± or more
simply, a ¡°density surface.¡± Such density surfaces can be used as quantum mechanical
¡°space-filling¡± models. The size and shape of density surfaces are in good agreement
with the size and shape of empirical space-filling models, and the amount of electron
density that lies outside the density surface is usually inconsequential.
A density surface marks the edge of a charge cloud, but it does not tell us how
electron density is distributed inside the cloud. We can get a feel for the latter by cal-
culating the electrostatic potential at different points on the density surface. The elec-
trostatic potential at any point (x, y, z) on the density surface is defined as the change in
energy that occurs when a ¡°probe¡± particle with H110011 charge is brought to this point start-
ing from another point that is infinitely far removed from the molecule (see figure).
If the energy rises (positive potential), the probe is repelled by the molecule at point
(x, y, z). If the energy falls (negative potential), the probe is attracted by the molecule.
The electrostatic potential gives us information about the distribution of electron
density in the molecule because the potential at point (x, y, z) is usually influenced most
by the atom closest to this point. For example, if a molecule is neutral and the potential
at point (x, y, z) is positive, then it is likely that the atom closest to this point has a net
positive charge. If the potential at (x, y, z) is negative, then it is likely that the closest
atom has a net negative charge. The size of the potential is also useful. The larger the
potential at a given point, the larger the charge on the nearest atom.
These rules for assigning atomic charges work well for most neutral molecules,
but they do not work for ions. This is because an ion¡¯s overall charge dominates the
potential near the ion. For example, positive ions generate a positive potential every-
where around the ion. The rules also fail for atoms with highly distorted electron clouds.
In such cases, positive and negative potentials are both found near the atom, and the
charge is ambiguous.
Infinite distance
Density surface
Move probe
Probe
x, y, z?
H11001
H11001
A-74 APPENDIX 3
SpartanView uses color to display the value of the electrostatic potential on the
density surface. These colored diagrams are called ¡°electrostatic potential maps¡± or just
¡°potential maps.¡± Different potentials are assigned different colors as follows: red (most
negative potential on the map) H11021 orange H11021 yellow H11021 (green) H11021 blue (most positive
potential on the map). The following potential map of water shows how this works (refer
to the ball-and-spoke model for the molecule¡¯s orientation). The most negative potential
(red) is found near oxygen, and the most positive potentials (blue) are found near the
hydrogens. Thus, we can assign a partial negative charge to oxygen and partial positive
charges to the hydrogens.
The potential map of water tells us the relative charges on oxygen and hydrogen,
but it does not tell us if these charges are large or small. To discover this, we need to
know the magnitude of the potentials. As it turns out, the most positive potentials (the
blue regions) on this map are about 250 kJ/mol¡ªa large value for a neutral molecule¡ª
so the atomic charges must be fairly large.
Potential maps can be used to compare electron distributions in different molecules
providing all of the maps assign the same color to the same potential, that is, the maps all
use the same color¨Cpotential scale. A ¡°normal¡± potential map for methane (CH
4
) is shown
on the left (by ¡°normal¡± we mean that the map displays the most negative potential as red
and the most positive potential as blue). This map tells us that carbon carries a partial neg-
ative charge and the hydrogens carry partial positive charges. But, just like before, the map
does not tell us the magnitude of these charges. One way to get at this information is to
reassign the colors using the color¨Cpotential scale that was previously used to make water¡¯s
potential map (see preceding discussion). This gives a new map that looks more or less
green everywhere. This fact, along with the total absence of red and blue, tells us that the
potentials, and the atomic charges, in methane are much smaller than those in water. (The
most positive potential on methane¡¯s map is only 50 kJ/mol.)
normal color assignments color assignments based on water
molecule¡¯s potential map (see above)
APPENDIX 3 A-75
CHEMICAL APPLICATIONS OF ELECTROSTATIC POTENTIAL MAPS
Potential maps are a very powerful tool for thinking about a variety of chemical and
physical phenomena. For example, water¡¯s potential map suggests that two water mole-
cules will be attracted to each other in a way that brings a positive hydrogen in one mol-
ecule close to the negative oxygen in the other molecule (see figure). This type of inter-
molecular bonding is called a ¡°hydrogen bond.¡± Significant hydrogen bonding does not
SpartanView uses the word ¡°density¡± to
identify size density surfaces. The size
density surface is similar in size and
shape to a space-filling model.
This removes the size density surface.
The red part of the map identifies oxy-
gen as a negatively charged atom, and
the blue part identifies the most posi-
tively charged hydrogen atom.
Making methanol the active model
1. Move the cursor to any part of the
methanol model, and click on it.
Displaying a size density surface
2. Select Density from the Surfaces
menu, then select Transparent
from the sub-menu.
Stopping the display of a surface
3. Select Density from the Surfaces
menu, then select None from the
sub-menu.
Displaying an electrostatic potential
map
4. Select Potential Map from the Sur-
faces menu, then select Solid from
the sub-menu.
Closing all of the models.
5. Select Close All from the File menu.
Size density surface (top left), space-filling model (top right), potential map (bottom left), and
tube model (bottom right) for methanol.
A-76 APPENDIX 3
occur between methane molecules because methane molecules create much smaller
potentials.
Potential maps can also be useful predictors of chemical reactivity. For example,
the nitrogen atoms in ethylamine, CH
3
CH
2
NH
2
, and in formamide, O?CHNH
2
, appear
to be identical, and we might therefore predict similar chemical reactivity patterns, but
the potential maps of these compounds tell a different story. The potential map of eth-
ylamine (see following figure, left) shows a region of negative potential that coincides
with the location of the lone-pair electron density. This nitrogen is a good electron donor
and can act as a base or nucleophile. Formamide¡¯s map (see figure, right), on the other
hand, shows that the oxygen atom might act as an electron donor, but not the nitrogen
atom. The nitrogen atoms in these compounds are very different, and they will display
different chemical behavior as well.
The same kinds of comparisons can also be applied to the short-lived (and there-
fore hard-to-observe) molecules that form during a chemical reaction. The potential maps
of n-butyl cation, CH
3
CH
2
CH
2
CH
2
H11001
, and tert-butyl cation, (CH
3
)
3
C
H11001
, show us that these
highly reactive species differ in significant ways. The electrostatic potentials for n-butyl
cation vary over a wider range, and the positive charge is clearly associated with the end
carbon (see following figure, left). tert-Butyl cation¡¯s map, by comparison, shows a much
smaller range of potentials (see figure, right). The central carbon is positively charged,
but the potential never becomes as positive as those found in n-butyl cation. This tells
us that some of the electron density normally associated with the methyl groups has been
transferred to the central carbon.
APPENDIX 3 A-77
As a final example, we compare potential maps of the reactants, transition state,
and products for an S
N
2 reaction, Cl
H11002
H11001 CH
3
Br ¡ú ClCH
3
H11001 Br
H11002
. The reactant and
product maps show negatively charged chloride and bromide ions, respectively; there-
fore, this reaction causes electron density to shift from one atom to another. The transi-
tion state map is distinctive in that it shows partial negative charges on both Cl and Br,
that is, the negative charge is delocalized over Cl and Br in the transition state.
DISPLAYING MOLECULAR ORBITAL SURFACES
SpartanView displays molecular orbitals as colored surfaces. An orbital surface connects
points in space where the selected orbital has a particular numerical magnitude, and dif-
ferent colors are used to indicate surfaces corresponding to negative and positive values
of the orbital.
The most important molecular orbitals are the so-called frontier molecular orbitals.
These are the highest (energy) occupied molecular orbital (HOMO), and lowest (energy)
unoccupied molecular orbital (LUMO). The following picture shows the LUMO sur-
face for the hydrogen molecule, H
2
. The LUMO consists of two separate surfaces, a red
Cl
H11002
H11001 CH
3
±Br
[Cl---CH
3
---Br]
H11002
Cl±CH
3
H11001 Br
H11002
CH
3
CH
2
CH
2
CH
2
H11001
(CH
3
)
3
C
H11001
A-78 APPENDIX 3
surface surrounding one hydrogen and a blue surface surrounding the other. The colors
tell us that the orbital¡¯s value is negative near one hydrogen, and positive near the other.
We can also tell from this that the orbital¡¯s value must pass through zero somewhere in
the empty space between the two surfaces (the ¡°zero¡± region is called a ¡°node¡±). Any
node that crosses the bonding region makes an orbital ¡°antibonding¡± and raises the
orbital¡¯s energy. As a rule, electrons are only found in low-energy bonding orbitals, but
this can change during a chemical reaction.
Molecular orbitals are useful tools for identifying reactive sites in a molecule. For exam-
ple, the positive charge in allyl cation is delocalized over the two terminal carbon atoms,
and both atoms can act as electron acceptors. This is normally shown using two reso-
nance structures, but a more ¡°compact¡± way to see this is to look at the shape of the
ion¡¯s LUMO (the LUMO is a molecule¡¯s electron-acceptor orbital). Allyl cation¡¯s LUMO
appears as four surfaces. Two surfaces are positioned near each of the terminal carbon
atoms, and they identify allyl cation¡¯s electron-acceptor sites.
Appendix B contains two models: ethyl-
ene and butane.
The HOMO (left) and LUMO (right) of ethyl-
ene.
Moving into ¡°Appendix B¡± and making
ethylene the active model
1. Select Open from the File menu
and double click on ¡°Appendix B.¡±
Move the cursor to any part of the
ethylene model, and click on it.
C
HC
H
H
C
H
H
H11001
C
HC
H
H
C
H
H
H11001
APPENDIX 3 A-79
DISPLAYING SpartanView SEQUENCES (ANIMATIONS)
SpartanView can display atom motions that occur during a conformational change or
chemical reaction.
The scroll bar slides back and forth, and
the ¡°step¡± label is updated during the
animation. You can rotate, translate, and
scale the model at any point during the
animation.
The animation and the scroll bar stop at
the current step in the sequence.
The scroll bar jumps to a new position,
and the step label is updated, to show
the current location in the sequence.
All properties (energy, dipole moment,
atomic charges) and geometry parame-
ters (distance, angle, dihedral angle) can
be animated or stepped through.
Making butane the active model
1. Move the cursor to any part of the
butane model, and click on it.
Animating a sequence
2. Click on the ¡°arrow¡± button in the
lower left-hand corner of the win-
dow.
Stopping the animation
3. Click on the ¡°double bar¡± button in
the lower left-hand corner of the
window.
Stepping through a sequence
4. Click on the ¡°bar-arrows¡± at the
right end of the scroll bar.
Measuring a property for a sequence
5. Select Energy from the Properties
menu.
6. Repeat step 4 to see other ener-
gies.
Quitting SpartanView
7. Select Quit from the File menu.
This displays the LUMO of ethylene. This
is an unoccupied antibonding molecular
orbital.
The orbital is no longer displayed.
This displays the HOMO of ethylene. This
is an occupied bonding molecular or-
bital.
Displaying an orbital surface
2. Select LUMO from the Surfaces
menu, then select Transparent
from the sub-menu.
Stopping the display of an orbital sur-
face
3. Select LUMO again from the Sur-
faces menu, then select None from
the sub-menu.
4. Select HOMO from the Surfaces
menu, then select Transparent
from the sub-menu.
C-1
CREDITS
INTRODUCTION
Pages 3, 4, 5 Stamps are courtesy of James O. Schreck, Professor of Chemistry, University of Northern Colorado.
CHAPTER 11
Page 410 (Figure 11.5) was generated using crystallographic coordinates obtained from the Center for Computational Materi-
als Science at the United States Naval Research Laboratory via http://cst-www.nrl.navy.mil/lattice/struk/a9.html.
Page 411 (Figure 11.7) was obtained from the Center for Nanoscale Science and Technology at Rice University via
http://cnst.rice.edu/images/Tube1010a.tif.
CHAPTER 13
Page 488 (Figure 13.1) is from M. Silberberg, Chemistry, 2nd ed., p. 260. McGraw-Hill, New York, 2000.
Page 517 (Figure 13.24) is courtesy of Simon Fraser/Science Photo Library/Photo Researchers, Inc. Newcastle upon Tyne.
Page 524 (Figure 13.32) is adapted from R. Isaksson, J. Roschester, J. Sandstrom, and L. G. Wistrand, Journal of the Ameri-
can Chemical Society, 1985, 107, 4074¨C4075 with permission of the American Chemical Society.
Page 527 (Figure 13.34) is from M. Silberberg, Chemistry, 2nd ed., p. 56. McGraw-Hill, New York, 2000.
Page 530 (Figure 13.38) is adapted from H. D. Durst and G. W. Gokel, Experimental Organic Chemistry, 2nd ed., McGraw-
Hill, New York, 1987.
Mass spectra are reproduced with permission from ¡°EPA/NIH Mass Spectral Data Base,¡± Supplement I, S. R. Heller and
G. W. A. Milne, National Bureau of Standards, 1980.
CHAPTER 25
Page 994 (Figure 25.8) is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID: 4TF4.
Sakon, J., Irwin, D., Wilson, D. B., Karplus, P. A., Structure and Mechanism of Endo/Exocellulase E4 from Thermomono-
spora Fusca. To be published.
CHAPTER 26
Page 1035 (Figure 26.9c) is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID:
1CLE. Ghosh, D., Wawrzak, Z., Pletnev, V. Z., Li, N., Kaiser, R., Pangborn, W., Jornvall, H., Erman, M., Duax, W. L.,
Structure of Uncomplexed and Linoleate-Bound Candida Cholesterol Esterase. To be published.
CHAPTER 27
Page 1084 is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID: 1PID. Brange, J.,
Dodson, G. G., Edwards, D. J., Holden, P. H., Whittingham, J. L., A Model of Insulin Fibrils Derived from the X-Ray
Crystal Structure of a Monomeric Insulin (Despentapeptide Insulin). To be published.
Page 1085 (Figure 27.16) is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID:
2SLK. Fossey S. A., Nemethy, G., Gibson, K. D., Scheraga, H. A., Conformational Energy Studies of Beta-Sheets of
Model Silk Fibroin Peptides. I. Sheets of Poly(Ala-Gly) Chains. Biopolymers 31, pp. 1529 (1991).
Page 1087 (Figure 27.18) is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID:
2CTB. Teplyakov, A., Wilson, K. S., Orioli, P., Mangani S., The High Resolution Structure of the Complex between Car-
boxypeptidase A and L-Phenyl Lactate. To be published.
Page 1089 (Figure 27.21) is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID:
1VXH. Yang, F., Phillips Jr., G. N., Structures of Co-, Deoxy- and met-Myoglobins at Various Ph Values. To be published.
Page 1090 and page 1097 (Figure 27.25) is adapted from crystallographic coordinates deposited with the Protein Data Bank.
PDB ID: 1DDN. White, A., Ding, X., Vanderspek, J. C., Murphy J. R., Ringe, D., Structure of the Metal-Ion-Activated
Diphtheria Toxin Repressor/Tox Operator Complex. Nature 394, pp. 502, (1998).
Page 1100 (Figure 27.28) is adapted from crystallographic coordinates deposited with the Protein Data Bank. PDB ID:
6TNA. Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M., Kim, S. H., Crystal Structure of Yeast Phenylala-
nine T-RNA. I. Crystallographic Refinement. J.Mol.Biol. 123, pp. 607, (1978).
I-1
Abscicic acid, 1027
Absolute configuration, 267¨C271, 292
Absorption of electromagnetic radiation, 489
in infrared spectroscopy, 518
in nuclear magnetic resonance
spectroscopy, 490¨C493
in ultraviolet-visible spectroscopy, 524¨C525
Absorptivity. See Molar absorptivity
Acetaldehyde, 655
bond angles, 657
enolization of, 706
formation of, in biological oxidation of
ethanol, 600¨C602
preparation of
from ethylene, 248, 598
by hydration of acetylene, 356
reactions of
aldol addition, 716
with hexylmagnesium bromide,
555
hydration, 663
in Strecker synthesis of D,L-alanine,
1061¨C1062
Acetaldol, 716
Acetals, 668¨C672, 689
glycosides as, 989
hydrolysis of, 670, 672
preparation of, 669¨C671, 672, 689
as protecting group, 671¨C672
Acetamide
electrostatic potential map, 777
Acetanilide, 879
preparation and nitration of, 887
reduction of, 879
resonance in, 886
Acetic acid
acidity of, 740¨C742, 746, 747
conversion to mevalonic acid, 1028,
1032¨C1033
electrostatic potential maps
acetate ion, 741, 742
acid, 739, 742
esterification of, 594, 610
industrial preparation and use of, 750, 783
natural occurrence of, 4, 736, 750
natural products derived from,
1015¨C1050
Acetic anhydride, 775
electrostatic potential map, 777
in Friedel-Crafts acylation, 455, 471, 473,
478, 784
preparation of, 783
reactions of
with alcohols, 610, 785, 789
with arylamines, 785, 886
with H9251-D-glucopyranose, 1004
with glycine, 1063
with phenols, 949, 951¨C952, 963
with salicylic acid, 952
with sucrose, 1010
UV absorption, 818
Acetoacetic ester synthesis, 839¨C841, 850. See
also Ethyl acetoacetate
Acetoacetyl acyl carrier protein, 1021
Acetoacetyl coenzyme A, 1021, 1032
Acetone
bond angles, 657
enolization of, 704, 706
electrostatic potential map, 701
reactions of
aldol condensation, 720
bromination, 704¨C705
cyanohydrin formation, 667
hydration, 663
reductive amination of, 903
Wittig reaction, 690
as solvent, 305
Acetonitrile
electrostatic potential map, 777
UV absorption, 818
Acetophenone, 407, 455, 656
acidity of, 710
acylation of enolate, 837
phenylhydrazone, 674
reactions of
aldol condensation, 720
bromination, 473
with butyllithium, 582
chlorination, 474
with ethylmagnesium bromide, 559
nitration, 473
Acetyl chloride, 775
electrostatic potential map, 774, 777
reactions of
with arylamines, 886
with tert-butyl alcohol, 610
with phenol, 951
UV absorption, 818
Acetyl coenzyme A
in fatty acid biosynthesis, 1019¨C1022
formation from pyruvic acid, 1016
reactions of, 1016
structure, 1016
in terpene biosynthesis, 1032
Acetylene
acidity of, 336, 344¨C346, 552
alkylation of, 336, 346¨C348, 359
bonding in, 14, 40¨C42, 47, 54, 341¨C343
conversion to cyclooctatetraene, 422
electrostatic potential map, 339, 342
Grignard reagent of, 553
hydration of, 356
preparation of, 339¨C340
structure of, 341¨C342
N-Acetyl-D-galactosamine, 995, 996
N-Acetyl-D-glucosamine, 988
Acetylide ion, 336, 345¨C346, 348. See also
Sodium acetylide
O-Acetylsalicylic acid. See Aspirin
Achiral molecules, 260, 290
meso forms, 279¨C282
symmetry elements in, 264¨C265
Acid anhydrides. See Carboxylic acid
anhydrides
Acid-base properties of amino acids,
1057¨C1061
Acid-base reactions, 133¨C137, 344¨C346,
551¨C553, 604, 708¨C711, 864¨C865
Acid catalysis
of acetal formation, 669¨C671, 672
of acetal hydrolysis, 672
of amide hydrolysis, 805¨C807, 821
of dehydration of alcohols, 182, 185¨C190,
200, 419, 591
of epoxide ring opening, 632¨C633,
635¨C637, 646
of ester hydrolysis, 791¨C794, 820
of esterification, 593¨C594, 610,
754¨C757, 767
of ether formation, 592¨C593, 610, 625¨C626,
644
of glycoside formation, 990
of hydration of alkenes, 225¨C227, 249
of hydration of alkynes, 355¨C356, 361
of nitrile hydrolysis, 815¨C816, 822
of nucleophilic acyl substitution,
786¨C787, 949
of nucleophilic addition to aldehydes and
ketones, 665¨C667, 690¨C691
Acid dissociation constants, K
a
and pK
a
, 134,
336, 343, 345¨C346, 552, 710,
745¨C749, 864¨C865, 944. See
also Acidity
Acidity
of acetylene and alkynes, 336, 343,
344¨C346, 358, 552
of alcohols, 135
of aldehydes, 710
of alkanes, 344¨C345, 552
of ammonia, 135, 345¨C346, 848
of ammonium ions, 135, 864¨C865
of benzene, 552
of carbonic acid, 749
of carboxylic acids, 740¨C749, 765¨C766
substituent effects on, 745¨C748
of 1,3,5-cycloheptatriene, 429
of 1,3-cyclopentadiene, 428
definition of
Arrhenius, 134
Br?nsted-Lowry, 134¨C136
Lewis, 143
INDEX
INDEX I-2
of dicarboxylic acids, 748
of diethyl malonate, 842
of diisopropylamine, 848
of H9252-diketones, 710
of esters, 848
of ethane, 343, 552
of ethanol, 135, 552, 740¨C741
of ethyl acetoacetate, 839
of ethylene, 343, 552
of hydrocarbons, 343¨C346, 552 table
of hydrogen fluoride, 135, 345
of H9252-keto esters, 832¨C834, 839, 850
of ketones, 710
of methane, 344¨C345, 552
of phenols, 942¨C945, 962
quantitative relationships, 743
of representative compounds, 135 table,
552 table
of substituted benzoic acids, 747¨C748
of thiols, 604, 723
of water, 135, 345, 552
Aconitic acid, 299, 772
Acrolein, 384, 721, 723, 729
Acrylic acid, 737, 747
Acrylonitrile, 14, 247, 815
Activated complex, 93. See also
Transition state
Activation energy, 93. See also Energy
of activation
Active ester, 1080
Acylation. See Friedel-Crafts acylation;
Nucleophilic acyl substitution
Acyl carrier protein, 1019¨C1022
Acyl cations, 454, 784
Acyl chlorides
carbon-chlorine bond distance, 778
enolization, 760
Friedel-Crafts acylation with, 453¨C457,
478, 780, 951
infrared absorption frequency, 519, 817
nomenclature of, 775
preparation of, 454, 754, 780
reactions of, 780¨C783, 819¨C820
with alcohols, 594, 595, 610, 781, 789
with ammonia and amines, 781, 802,
820, 882, 886
with carboxylic acids, 781
with phenols, 949, 951¨C952
with water, 781, 782
resonance in, 778
Acyl group, 654, 775
Acyl halides, 775. See also Acyl chlorides
Acyl transfer reactions. See Nucleophilic acyl
substitution
Addition-elimination mechanism of
nucleophilic aromatic substitution,
923¨C927, 932¨C933
Addition polymers, 247
Addition reactions. See also Aldehydes;
Alkenes; Alkynes; Dienes; Ketones
1,2 addition versus 1,4 addition, 379¨C382,
392, 722¨C723
anti addition, 212, 233¨C234, 236, 237, 250,
284, 351¨C352, 356¨C357
Diels-Alder cycloaddition, 382, 392¨C393
of benzyne, 931¨C932
electrophilic
to alkenes, 213¨C220, 223¨C243, 244¨C245,
249¨C251, 284¨C286
to alkenylbenzenes, 419¨C421, 435
to alkynes, 352¨C357, 361 table
to conjugated dienes, 379¨C382, 392
free-radical, to alkenes, 220¨C223,
245¨C246, 251
hydrogenation
of alkenes, 208¨C213, 249, 285
of alkenylbenzenes, 419¨C420
of alkynes, 350¨C351, 360
of dienes, 374¨C375
and Markovnikov¡¯s rule
alkenes, 214¨C219, 251
alkynes, 352¨C354, 356, 361
nucleophilic
to aldehydes and ketones, 663¨C700
to H9251,H9252-unsaturated aldehydes and
ketones, 722¨C724, 728
syn addition, 212, 230, 239¨C240, 250,
285, 351
Ad
E
3 mechanism, 353
Adenine, 431, 1091
Adenosine, 989, 1091
Adenosine 3H11032-5H11032-cyclic monophosphate
(cyclic AMP), 1093
Adenosine diphosphate, 1093
Adenosine 5H11032-monophosphate, 1092
Adenosine triphosphate, 1093
reaction with methionine, 641
S-Adenosylmethionine, 314, 641
Adipic acid
polyamides from, 840
ADP. See Adenosine diphosphate
Adrenaline, 272¨C273, 640. See also
Epinephrine
Agent Orange, 955
AIDS (acquired immune deficiency
syndrome), 1098
H9252-Alanine, 1052
Alanine, 1054, 1059
biosynthesis of, 1063¨C1065
electrophoresis of, 1060¨C1061
electrostatic potential map, 1053
ethyl ester, 1063
synthesis, 1061
Alanyglycine, 1067¨C1068
electrostatic potential map, 1067
Alcohols
acidity of, 135, 740¨C741, 943
biological oxidation of, 600¨C602
bonding, 129
as Br?nsted bases, 135¨C136
classification of, 128, 160
in Friedel-Crafts reactions, 950
hydrogen bonding in, 130¨C131, 134,
160, 322
hydrogen-deuterium exchange in,
166, 510
infrared spectra, 519 table
inorganic esters of, 595¨C596, 610
mass spectra, 607
naturally occurring, 580
nomenclature of, 127¨C128,
159, 169
nuclear magnetic resonance spectra
carbon, 606
proton, 509¨C510, 605¨C607
physical properties, 130¨C133, 160
preparation of
from epoxides, 587¨C588, 608, 632, 635
from Grignard reagents, 553¨C555, 557,
560¨C561, 572, 573, 582, 583,
608, 790
by hydration of alkenes, 225¨C227,
249, 581
by hydroboration-oxidation, 227¨C233,
250, 581
by hydrolysis of alkyl halides, 582
from organolithium reagents, 554¨C556,
572, 573, 582, 608
by reduction of carbonyl compounds,
583, 608, 790
via alkyl hydrogen sulfates, 224¨C225
reactions of, 591 table, 610 table
with acyl chlorides, 594¨C595, 610, 781
with aldehydes and ketones,
668¨C672, 689
with carboxylic acid anhydrides, 595,
610, 785¨C787
conversion to ethers, 590¨C593, 610,
625¨C626, 644
dehydration, 182, 185¨C190, 200, 379,
419, 591
esterification, 593¨C595, 610, 754¨C757,
767, 789
with hydrogen halides, 137¨C146,
160¨C162, 329¨C330, 332, 591
with inorganic acids, 595¨C596, 610
oxidation, 596¨C602, 611 table
with phosphorus tribromide, 147,
161, 591
with thioesters, 800
with thionyl chloride, 147, 161, 591
with p-toluenesulfonyl chloride, 326,
332, 591
solubility in water, 132¨C133
Aldaric acids, 1000
Aldehydes
acidity of, 710
aldol condensation, 715¨C720, 728
classification of carbons in, 702
enolization of, 705¨C707, 727
infrared spectra, 519, 684¨C685
mass spectra, 687
naturally occurring, 659
nomenclature of, 654¨C656, 688
nuclear magnetic resonance spectra, 496,
513, 684¨C686
nucleophilic addition to, 663¨C682
physical properties, 658
preparation of
hydroformylation of alkenes, 661, 732
oxidation of primary alcohols, 596, 597,
611, 659
ozonolysis of alkenes, 241¨C242, 660
reactions of
acetal formation, 668¨C672, 689
with amines, 672¨C677, 689, 690, 882
cyanohydrin formation, 667¨C668, 689
with derivatives of ammonia, 674
I-3 INDEX
Aldehydes¡ªCont.
with Grignard reagents, 555, 572, 573,
662, 722
halogenation, 703¨C705, 727
hydration, 663¨C667, 689
hydrogenation, 583¨C584, 662
with organolithium reagents, 554¨C556,
572, 573, 662
oxidation, 682, 691
reduction, 662
with Wittig reagents, 677¨C681, 690
in reductive amination, 879¨C881, 903
in Strecker synthesis of amino acids,
1061¨C1062
structure and bonding, 657¨C658, 688
Alder, Kurt, 382
Alditols, 998
Aldohexose, 976¨C978
Aldolase, 1003
Aldol condensation, 715¨C720, 728
intramolecular, 718, 724, 728
mixed, 719¨C720, 728
retro-, 1003
Aldonic acids, 999¨C1000
Aldopentose, 976¨C978
Aldoses, 973, 1007
Fischer projection formulas of, 977
Aldotetrose, 974¨C976
Alicyclic hydrocarbons, 68. See also
Cycloalkanes
Aliphatic hydrocarbon, definition of, 53, 399
Alizarin, 958
Alkadienes, 372¨C390. See also Dienes
preparation of, 378¨C379
relative stabilities, 374¨C375
ultraviolet-visible spectra, 524¨C526
Alkaloids, 869
Alkanes, 53¨C88
acidity of, 344¨C345, 552
chiral, 262
conformations of, 89¨C98, 117¨C118
infrared spectra, 519¨C521
IUPAC names of unbranched, 62 table
mass spectra, 529¨C530
nomenclature of, 61¨C68
physical properties, 71¨C74
preparation of
hydrogenation of alkenes, 208¨C209, 243
hydrogenation of alkynes, 350
using organocopper reagents, 561¨C563,
573
reactions of
combustion, 74¨C77
dehydrogenation, 168, 181
halogenation, 54, 126, 148, 153¨C159,
161, 162¨C163
relative stability of isomers, 75¨C76
Alkatetraene, 374
Alkatriene, 374
Alkenes, 167¨C258
acidity of, 345
bonding in, 38¨C40, 42, 170¨C172, 198
cycloalkenes, 170, 180¨C181, 199
as dienophiles, 382, 384
electrophilic addition to, 213¨C220,
223¨C243, 244¨C245, 249, 274,
284¨C285
E-Z notation, 173¨C175, 199
free-radical addition to, 220¨C223,
245¨C246, 251
in Friedel-Crafts reactions, 452, 453
heats of combustion, 176¨C178
heats of hydrogenation, 209¨C212
infrared spectra, 519 table, 520¨C521
isomers, 172¨C181, 199
relative stabilities of, 176¨C181, 199
naturally occurring, 167, 168
nomenclature of, 167¨C170, 198
physical properties of, 174¨C176
preparation of, 168, 181¨C198, 200 table
from alkynes, 350¨C352, 360
dehydration of alcohols, 182¨C190, 200,
419, 591
dehydrogenation of alkanes, 168, 181, 419
dehydrohalogenation of alkyl halides,
190¨C198, 200, 419
Hofmann elimination, 883¨C885, 904
Wittig reaction, 677¨C681, 690
reactions of, 208¨C258
allylic halogenation, 370¨C372, 391
with dibromocarbene, 566
Diels-Alder reaction, 382 392¨C393
epoxidation, 238¨C240, 250, 274, 630,
645
halogen addition, 233¨C236, 250, 420
halohydrin formation, 236¨C238, 250,
630¨C631
hydration, 225¨C227, 249
hydroboration-oxidation, 227¨C233, 250
hydroformylation, 661
hydrogenation, 208¨C213, 249, 285, 419
with hydrogen halides, 213¨C223, 251,
249, 275, 420
hydroxylation, 590, 637
with iodomethylzinc iodide,
563¨C564, 571
ozonolysis, 240¨C242, 251, 660
polymerization, 244¨C247, 251¨C252, 289,
421, 567¨C570, 573
with sulfuric acid, 223¨C225, 249
stereoisomerism in, 172¨C175, 199, 284
Alkenylbenzenes, 419¨C421, 435
Alkenyl cations, 353
Alkenyl groups, 169¨C170
Alkenyl halides, 303
Alkenyl radical, 352
Alkoxide ions
as bases in elimination, 190¨C191, 565
as nucleophiles, 303, 304, 312¨C313,
626¨C627, 644
substitution versus elimination in reactions
with alkyl halides, 323¨C325, 332,
626¨C627
Alkylamines. See Amines
Alkylation
of acetoacetic ester, 839¨C841, 850
of acetylene and alkynes, 336, 346¨C348,
359
of ammonia, 872¨C875, 901
of H9252-diketones, 726, 729
of ester enolates, 848¨C849
Friedel-Crafts, 445, 450¨C453, 478, 479
of malonic ester, 842¨C845, 852
Alkyl azides
preparation of, 304, 324, 723, 873
reduction of, 877, 902
Alkylbenzenes. See also Arenes
free-radical halogenation of, 414¨C416, 435
infrared spectra, 520¨C521
mass spectra, 531¨C532
oxidation of, 416¨C417, 435
preparation of, 445, 450¨C453, 455¨C456,
478, 563
Alkyl cyanides. See Nitriles
Alkyl fluorides, 625
Alkyl groups
classification of, 65¨C66
nomenclature of, 65¨C66, 83, 127
splitting patterns in proton magnetic
resonance spectra, 503¨C505
stabilizing effect of
in aldehydes and ketones, 658, 664
in alkenes, 176¨C178, 199
in alkynes, 350
in carbocations,140¨C143, 162, 317
in free radicals, 149¨C153
steric hindrance to nucleophilic substitution
by, 310¨C312
Alkyl halides
bonding in, 129
classification of, 128
in Friedel-Crafts alkylation reactions, 445,
450¨C453, 478, 479
in Gabriel synthesis of amines, 875¨C876,
902
naturally occurring, 713
nucleophilic substitution in, 302¨C325, 331
table, 346¨C348, 359, 626¨C627, 644,
725¨C726, 729, 839¨C845
crown-ether catalysis of, 625
phase-transfer catalysis of, 871¨C872
nomenclature of, 127, 159
physical properties, 130¨C133
preparation of
from alcohols, 137¨C147, 160¨C162,
329¨C330
from alkanes, 148, 153¨C159, 161¨C163
from alkenes, 213¨C216, 220¨C226
reactions of
with alkynide ions, 346¨C348, 359
with amines, 883, 904
with ammonia, 872¨C875, 901
dehydrohalogenation, 190¨C198, 200, 419
with H9252-diketones, 725¨C726, 729
with lithium, 549¨C550, 571
with lithium dialkylcuprates, 561¨C563,
573
with magnesium, 550¨C551, 571
with sodium azide, 303, 304, 322, 324,
873
with thiourea, 604, 609
with triphenylphosphine, 680
INDEX I-4
with typical nucleophiles, 304 table
in Williamson ether synthesis, 626¨C627,
644, 954, 1004
solubility in water, 132
Alkyl hydrogen sulfates, 223¨C224, 249
Alkyl hydroperoxides, 397, 627¨C628
Alkyl iodides
nucleophilic substitution in, 305¨C306, 331
preparation of, 305
Alkyloxonium ions. See Oxonium ions
Alkynes, 339¨C364
acidity of, 343, 344¨C346, 358, 552, 556
bonding in, 341¨C343, 358
cyclic, 341, 344
as dienophiles, 385
infrared spectra, 519 table
naturally occurring, 340
nomenclature of, 340
physical properties, 341
preparation of, 346¨C349, 359 table
alkylation of acetylene and terminal
alkynes, 346¨C348, 359
from geminal and vicinal dihalides,
348¨C349, 359
reactions of, 349¨C357, 360 table, 361 table
alkylation of, 346¨C348, 359, 672
as Br?nsted acid, 343, 344¨C346,
358, 556
halogen addition to, 356¨C357, 361
hydration of, 355¨C356, 361, 660
hydrogenation of, 350¨C351, 360
hydrogen halide addition to,
352¨C354, 361
metal-ammonia reduction of,
351¨C352, 360
ozonolysis of, 357
structure, 341¨C343
Allene(s), 373, 377¨C378
chiral, 378
heat of hydrogenation, 374¨C375
structure and bonding, 377¨C378
Allinger, N. L., 97
D-Alloisoleucine, 1057
Allonolactone, 1009
D-Allose, 977
Allyl, 365, 390
alcohol, 366
bromide, 366, 841, 954
cation, 366
chloride, 366, 371
group, 169¨C170, 365
Allylic, 366
carbocations, 365, 366¨C369, 379¨C382, 390
free radicals, 365, 370¨C372, 390¨C391
halogenation, 370¨C372, 391
rearrangement, 369, 390
Allyl phenyl ether
Claisen rearrangement of, 957¨C958
preparation of, 954
Altronolactone, 1009
D-Altrose, 977
Aluminum chloride
catalyst for Friedel-Crafts reaction, 445,
450¨C456, 478, 660
catalyst for Fries rearrangement, 952
Amide ion. See also Sodium amide
as base, 346¨C349, 359, 556, 848
in nucleophilic aromatic substitution
reactions, 927¨C931
Amides. See also Imides; Lactams; Peptides
infrared spectra, 519 table, 817
as intermediates in hydrolysis of nitriles,
815¨C816
mass spectrometry of, 818
nomenclature of, 776, 879
preparation of, 781, 785, 791, 799¨C803,
820, 821, 874, 886
reactions of
dehydration, 814
Hofmann rearrangement, 807¨C813,
822, 874
hydrolysis, 804¨C807, 808, 887
protonation, 805
reduction, 879, 903
resonance in, 779, 886
rotational energy barrier, 779
structure, 779¨C780
Amines, 858¨C916. See also Aniline;
Diazonium salts
basicity, 864¨C870, 901
classification, 859
infrared spectra, 519 table, 897¨C898
mass spectra, 900
naturally occurring, 869¨C870
nomenclature of, 859¨C861, 900
nuclear magnetic resonance spectra
carbon, 899
proton, 898¨C899
physical properties, 863¨C864
preparation of, 872¨C881, 901¨C903
alkylation of ammonia,
872¨C875, 901
Gabriel synthesis, 875¨C876, 902
Hofmann rearrangement, 807¨C813, 822
reduction of nitrogen-containing
compounds, 877¨C881, 902¨C903
reductive amination, 879¨C881, 903
pyramidal inversion in, 290
reactions, 881¨C897, 904¨C907
with acyl chlorides, 781, 820, 882, 886
with aldehydes and ketones, 672¨C677,
689¨C690, 882
with alkyl halides, 883, 904
with carboxylic acid anhydrides, 785,
820, 886, 887
electrophilic aromatic substitution in
arylamines, 886¨C888, 904
with esters, 799¨C800, 801
Hofmann elimination, 883¨C885, 904
nitrosation, 888¨C892, 904¨C905
structure and bonding, 861¨C863, 900¨C901
Amino acid analyzer, 1071
Amino acid racemization, 1057
Amino acids
acid base properties, 1057¨C1060
analysis, 1060¨C1061, 1070¨C1071
classification, 1052
constituents of proteins, 1054¨C1055 table
preparation of, 1061¨C1063
reactions of, 675, 1063¨C1066
stereochemistry, 1052, 1056¨C1057, 1103
zwitterionic structure, 1057, 1103
p-Aminobenzoic acid, 888, 897
4-Aminobutanoic acid. See
H9253-Aminobutyric acid
3-Amino-2-butanol, 279, 873
H9253-Aminobutyric acid, 1052
1-Aminocyclopropanecarboxylic acid
in ethylene biosynthesis, 168, 1052
3-Aminopropanoic acid. See H9252-Alanine
Amino sugars, 988
Ammonia
acidity of, 135, 345, 552, 848
basicity of, 135
boiling point, 131
bond angles, 29
nucleophilicity, 313
reaction of
with alkyl halides, 872¨C875, 901
with epoxides, 634, 873
with esters, 799¨C800
with H9251-halo carboxylic acids, 760, 874,
1061
with methyllithium, 553
with H9251,H9252-unsaturated carbonyl
compounds, 728
in reductive amination, 879¨C881, 903
as solvent, 346, 351¨C352
Ammonium salts
acetate, 742
carbamate, 802¨C803
cyanate, 2
formal charge of nitrogen in, 18
nomenclature of, 860
AMP. See Adenosine 5H11032-monophosphate
Amphoteric, 1057
Amylopectin, 993¨C994
Amylose, 994
Anabolic steroids, 1041
Analysis
amino acid, 1070¨C1071
amino acid racemization, 1057
GC/MS, 530¨C531
retrosynthetic, 557¨C560, 564, 570¨C571,
679, 680, 840, 843
structure determination by instrumental
methods, 487¨C545
Anandamide, 1019
Androgens, 1040, 1041
Androstenedione, 1041
Angle strain, 98, 117
in [10]-annulene, 425
in cycloalkanes, 98¨C99
in cycloalkynes, 341, 344
in cyclobutane, 98, 107¨C108
in cyclohexane, 99
in cyclopropane, 98, 107, 118
in cyclopropene, 180
in epoxides, 621
Angstrom unit, 22
Aniline, 407, 859. See also Arylamines;
Diazonium salts
basicity of, 866¨C868
electrostatic potential map, 862
isolation, 859
I-5 INDEX
Aniline¡ªCont.
physical properties, 864
reactions of
acylation, 886¨C887
bromination, 466
diazotization, 891
in reductive amination, 880
resonance in, 863
structure and bonding, 861¨C863
Anion radical intermediates
in Birch reduction, 413
in metal-ammonia reduction of alkynes,
351¨C352
in reaction of alkyl halides with metals,
549¨C550, 551
Anisole, 407
bromination of, 463
Friedel-Crafts acylation of, 478, 660
preparation of, 954
Annelation. See Annulation
Annulation, 724
Annulenes, 423¨C426, 436, 544
Anomeric carbon, 978
Anomeric effect, 985
Anthracene, 408¨C409
Anti addition. See Addition reactions
Antibiotics
carbohydrate components of, 988
enediyne, 344
H9252-lactam, 803
macrolide, 758¨C759
polyether, 624
sulfa drugs, 896¨C897
Antibody, 995
Anticodon, 1100
Anti conformation, 92
alkanes, 94, 97, 118
in elimination reactions, 194¨C196, 200
ethers, 621
meso-2,3-butanediol, 279¨C280
peptides and proteins, 1067¨C1068
Antigen, 995
Anti-Markovnikov addition, 220
D-Apiose, 988, 1011
Aprotic solvents, 322, 875
D-Arabinitol, 1009
D-Arabinose, 977, 1006, 1009
L-Arabinose, 976, 1001
Arachidic acid, 1018, 1025
Arachidonic acid, 1018, 1025
Aramid polymers, 809
Archaea, 58, 299
Arene oxides, 409, 948, 1064
Arenes, 54, 398¨C442
biological oxidation, 409, 417, 948, 1064
infrared spectra, 519 table
nuclear magnetic resonance spectra
carbon, 513 table
proton, 495¨C496
Arenium ion, 444
L-Arginine, 1055, 1059
electrostatic potential map, 1053
Aromatic compounds and aromaticity, 54,
398¨C442
annulenes, 423¨C426, 436
benzene, 399¨C406
heterocyclic, 430¨C433, 436¨C437
Hückel¡¯s rule, 423¨C430, 432¨C433, 436
ionic, 426¨C430, 436
nomenclature of, 406¨C408, 434
physical properties, 411, 434
polycyclic, 408¨C409, 434
reactions of
Birch reduction, 412¨C414, 434
electrophilic aromatic substitution,
443¨C486
side-chain reactivity, 414¨C421, 435 table.
(see also Arenes; Electrophilic
aromatic substitution; individual
compounds, for example: Aniline;
Benzene etc.)
Arrhenius, Svante, 134
Artificial sweeteners, 997¨C998
Arylamines
basicity of, 865, 866¨C868
nomenclature of, 859¨C861
preparation of, 878
reactions of
acylation, 886¨C888
electrophilic aromatic substitution, 466,
886¨C888, 904
nitrosation, 891¨C895
in reductive amination, 880
structure and bonding, 861¨C863 (see also
Aniline; Diazonium salts)
Aryl cyanides. See Nitriles
Aryl esters
Fries rearrangement of, 952
in peptide bond formation, 1080
preparation of, 949, 951¨C952, 963
Aryl ethers
cleavage by hydrogen halides, 956¨C957,
964
preparation of, 954¨C956, 964
Aryl halides, 303, 917¨C938
bond dissociation energies, 918
naturally occurring, 920
physical properties of, 918
preparation of
from aryl diazonium salts, 892¨C893,
905¨C906, 919
halogenation of arenes, 445, 448¨C450,
478, 919
reactions of
electrophilic aromatic substitution,
469¨C470, 921
formation of Grignard reagent, 550, 921
with lithium, 549
nucleophilic aromatic substitution,
922¨C931, 932¨C933, 946, 956,
1071¨C1072
structure and bonding, 917¨C918
Ascaridole, 1046
Ascorbic acid (vitamin C), 164, 771, 980, 1001
L-Asparagine, 1054, 1059
electrostatic potential map, 1053
Aspartame, 997¨C998
L-Aspartic acid, 1055, 1059
electrophoresis of, 1060¨C1061
electrostatic potential map, 1053
Aspirin, 51, 164
inhibition of prostaglandin biosynthesis
by, 1025
preparation of, 952¨C954
Asymmetric center. See Stereogenic center
Atactic polymers, 289, 567
Atomic number, 7
and the sequence rule, 173
ATP. See Adenosine triphosphate
Axial bonds in cyclohexane, 100¨C105, 119
Azeotropic mixture, 593, 670
Azide ion, 28, 303, 304, 313, 322, 324,
723, 873
Azo coupling, 895¨C897, 951
Azo dyes, 896¨C897
AZT. See Zidovudine
Baeyer strain theory, 98
Baeyer-Villiger oxidation, 683¨C684, 691, 789
Barbiturates, 845¨C846
Barton, Sir Derek, 99
Base pairs, 1094¨C1096
Base peak, 527
Bases, used in elimination reactions, 190¨C191,
348¨C349, 359, 565
Basicity
of amines, 864¨C870, 901
constant K
b
and pK
b
, 864¨C865, 901
definition
Arrhenius, 134
Br?nsted-Lowry, 134¨C136
Lewis, 143
of Grignard reagents, 551¨C553, 556
of heterocyclic amines, 868
of leaving groups, 306, 327 table, 890
and nucleophilicity, 323¨C325
of organolithium compounds, 551¨C553
Beeswax, 61, 70, 1024
Bender, Myron, 794, 797
Bending vibrations in infrared spectroscopy,
518
Benedict¡¯s reagent, 998¨C999, 1009
Benzal chloride, 415
Benzaldehyde, 407
diethyl acetal of, 669
preparation of, 659
reactions of
Claisen-Schmidt condensation, 720, 728
with methylamine, 673, 873
nitration, 467, 873
reductive amination, 881
with vinyllithium, 556
Benzenamine, 859. See also Aniline
Benzene, 54, 399¨C406, 433¨C434
acidity of, 552, 577
Birch reduction of, 413¨C414
derivatives, nomenclature of, 406¨C408
electrophilic aromatic substitution in,
445 table
bromination, 445, 448¨C450, 473
chlorination, 445, 450
Friedel-Crafts acylation, 445, 453¨C457,
473, 474
Friedel-Crafts alkylation, 445,
450¨C453, 478
INDEX I-6
nitration, 445, 447¨C448, 473
sulfonation and disulfonation, 445,
448¨C449, 468
electrostatic potential map, 398
heat of hydrogenation, 403¨C404
as industrial chemical, 399
isolation and discovery, 399
mass spectrum, 527¨C528
molecular orbitals, 405, 424
nuclear shielding in, 495
stability of, 403¨C404, 433
structure and bonding, 399¨C403
Kekulé formulation, 399¨C402, 433
orbital hybridization model, 405
resonance description, 402¨C403 (see also
Arenes; Aromatic compounds and
aromaticity)
Benzenecarbaldehyde. See Benzaldehyde
Benzenecarboxylic acid. See Benzoic acid
Benzenediazonium chloride, 891, 951
1,2-Benzenedicarboxylic acid, 737
1,4-Benzenedicarboxylic acid, 750
condensation polymers of, 809
Benzenediols, 940. See also Hydroquinone;
Pyrocatechol; Resorcinol
Benzenesulfonic acid
preparation of, 445, 448¨C449
reactions of, 468, 947
(Benzene)tricarbonylchromium, 567
Benzimidazole, 431
Benzo[a]pyrene, 409
Benzofuran, 430
Benzoic acid, 399, 407, 737
acidity of, 747
esterification of, 593, 754¨C757
by oxidation of toluene, 417
Benzonitrile, 776
Benzophenone, 656
Benzothiophene, 430
Benzotrichloride, 415
Benzoyl chloride, 468, 781, 782
Benzoyl peroxide, 415
Benzyl alcohol, 659
infrared spectrum, 523
1
H NMR spectrum, 509
Benzylamine, preparation of, 875¨C876
Benzyl bromide, 408
Benzyl cation, 412, 418, 527
Benzyl chloride
nucleophilic substitution in, 626, 729,
752, 783
preparation of, 415
reaction of
with lithium dimethylcuprate, 573
with magnesium, 571
with N-potassiophthalimide, 875
Benzyl group, 408
Benzylic halides, nucleophilic substitution in,
417¨C419
Benzylic halogenation, 414¨C416, 435
Benzyloxycarbonyl protecting group in
peptide synthesis, 1077¨C1079, 1104
Benzyl radical, 412, 414¨C415
Benzyne
bonding in, 928, 930
Diels-Alder reactions of, 931¨C932
electrostatic potential map, 930
generation of, 929, 931¨C932, 933
as intermediate in nucleophilic aromatic
substitution, 927¨C931
Berg, Paul, 1102
Bergstrom, Sune, 1025
Berthelot, Pierre-Eugéne Marcellin, 339
Berzelius, J?ns Jacob, 1¨C2, 22
Bicarbonate, 749
Bicyclic ring systems, 114¨C115, 120
as products in Diels-Alder reactions, 386,
932
Big-bang theory, 6
Bile acids and bile salts, 1039, 1044
Bimolecular
elementary step, 136, 143
elimination, 192¨C196, 201 (see also E2
mechanism)
nucleophilic substitution (see S
N
2
mechanism)
Biological isoprene unit. See Isopentenyl
pyrophosphate
Biosynthesis
of amino acids, by transamination,
1063¨C1065
of cholesterol, 1036¨C1037
of ethylene, 168
of fatty acids, 1019¨C1022
of organohalogen compounds, 713
of phenols, 948
of prostaglandins, 1025
of terpenes, 1028¨C1034
Biot, Jean-Baptiste, 265
Biphenyl, 408, 466, 485
Birch, Arthur J., 412
Birch reduction, 412¨C414, 434
Bisabolene, 1046
Bloch, Felix, 490
Bloch, Konrad, 1035
Blood-group glycoproteins, 995, 996
Boat conformation of cyclohexane, 99¨C100,
119
Boc. See tert-Butoxycarbonyl
Boiling points
of alcohols, 130¨C131, 160, 790
of alkanes, 57, 71¨C74, 790
of alkyl halides, 130¨C132, 160, 306
of amines, 863¨C864
of carboxylic acids, 739
of esters, 790
and intermolecular attractive forces, 71¨C74,
130¨C132, 658
and intramolecular hydrogen bonds, 942
of thiols, 604
Bond angles
acetaldehyde, 657
acetone, 657
acetylene, 341¨C342, 343
ammonia, 29
aniline, 862
[10]-annulene, 425
benzene, 402
boron trifluoride, 29
carbon dioxide, 30
cyclohexane, 99
cyclopropane, 98, 106¨C107
dialkyl ethers, 621
and electron-pair repulsions, 26, 28¨C29
enol of 2,4-pentanedione, 708
ethane, 57, 343
ethylene, 38¨C40, 171, 343
ethylene oxide, 621
formaldehyde, 657
formic acid, 738
methane, 28, 37, 57
methanol, 129, 621, 940
methylamine, 861, 862
phenol, 940
water, 29, 621
Bond dissociation energy, 13, 151¨C153, 155
acetylene, 343
aryl halides, 918
benzene, 918
ethane, 151, 343, 918
ethylene, 171, 343, 918
ethyl halides, 918
and halogenation of methane, 155
2-methylpropane, 151, 152, 414
peroxides, 220
propane, 151
propene, 370, 414
table, 151
vinyl halides, 918
Bond distances
acetic acid, 742
acetylene, 341¨C342, 343
alkyl halides, 129
allene, 377
ammonium acetate, 742
benzene, 402
1,3-butadiene, 375
carbon-chlorine,778
carbon-sulfur, 800
cyclobutadiene derivative, 423
cyclooctatetraene, 423
dimethyl ether, 621
enol of 2,4-pentanedione, 708
ethane, 37, 57, 343
ethyl chloride, 918
ethylene, 38, 171, 343
ethylene oxide, 621
formic acid, 738
methane, 57
methanol, 129
methylamine, 861, 862
phenol, 940
propene, 171, 343
propyne, 343
vinyl halides, 918
Bonding
in acetylene, 14, 40¨C42, 47, 341¨C343, 358
in alcohols, 129
in aldehydes and ketones, 657¨C658, 688
in alkenes, 38¨C40 170¨C172, 198
in alkyl halides, 129
in alkynes, 341¨C343, 358
in allene, 377¨C378
in amines, 861¨C863
in aryl halides, 917¨C918
in benzene, 402¨C403, 405, 424
in benzyne, 928, 930
in carbocations, 140¨C143
I-7 INDEX
Bonding¡ªCont.
in carboxylic acid derivatives, 777¨C779
in carboxylic acids, 738¨C739
in conjugated dienes, 375
in ethers and epoxides, 621
in ethane, 37
in ethylene, 14, 38¨C40, 47, 170¨C171
in formaldehyde, 14, 657
in free radicals, 149¨C150
in hydrogen, 12, 32¨C35
in methane, 13, 35¨C37
models, comparison of, 42¨C43
in phenols, 940¨C941
in H9251,H9252-unsaturated aldehydes and ketones,
720¨C721
Bond lengths. See Bond distances
Bond-line formulas, 21, 59, 171. See also
Carbon skeleton diagrams
Bonds
axial and equatorial, 100¨C105, 119
bent, in cyclopropane, 106
carbon-metal, 546¨C548
covalent, 12¨C14
double, 14, 171, 198
hydrogen bonds, 130¨C133, 622
ionic, 11¨C12
partial, 136
H9266
in acetylene, 42, 47, 341¨C342
in ethylene, 40, 47, 170¨C171, 198
in formaldehyde, 657
polar covalent, 15¨C16
dipole moments of, 16 table
H9268
in acetylene, 40¨C42, 341¨C342
in ethane, 37
in ethylene, 38¨C40, 170¨C171, 198
in methane, 35¨C37
three-center two-electron, 230
triple, 14, 341¨C342
Borane, 228
Borneol, 1032
Borodin, Aleksandr, 715
Borohydride ion, 18. See also Sodium
borohydride
Boron trifluoride, 29, 31
Bradykinin, 1076
Branched-chain carbohydrates, 988
Brevicomin, 694
Broadband decoupling, 515
Bromination
of aldehydes, 703¨C705
of alkanes, 158¨C159, 161
of alkenes
electrophilic, 233¨C236, 250, 284¨C285,
420
free-radical, 371¨C372, 391
of alkynes, 356¨C357
of benzene, 445, 448¨C450
benzylic, of alkylbenzenes, 415¨C416, 435
of carboxylic acids, 759¨C760, 767
of conjugated dienes, 382
electrophilic aromatic substitution
acetophenone, 473
p-aminobenzoic acid, 888
aniline, 466, 895
anisole, 463
benzene, 445, 448¨C450, 473
3-benzyl-2,6-dimethylphenol, 949
4-chloro-N-methylaniline, 471
m-fluorophenol, 948
nitrobenzene, 469, 919
p-nitrotoluene, 471
phenol, 478, 950
of ketones, 703¨C705, 727
Bromine. See also Bromination
oxidation of carbohydrates by,
999¨C1000, 1009
reaction with amides, 807¨C813, 822
Bromobenzene
Friedel-Crafts acylation of, 921
preparation of, 445, 448
reactions of
with lithium, 549
with magnesium, 550, 921
1-Bromobutane, 138, 220. See also
Butyl bromide
alkylation of
acetylene, 346¨C348
ethyl acetoacetate, 840
o-nitrophenol, 963
nucleophilic substitution in, 322
2-Bromobutane, 128, 215
alkylation of diethyl malonate,
843¨C844
preparation of, 138, 330
Bromochlorofluoromethane
as a chiral molecule, 260
electrostatic potential map, 159
Fischer projections, 271
Bromoform, 494, 711¨C712, 727. See also
Tribromomethane
Bromohydrin. See Halohydrins
2-Bromo-2-methylbutane
elimination reactions, 191, 197
substitution versus elimination in, 325
2-Bromo-3-methylbutane, rearrangement in
hydrolysis of, 319¨C320
1-Bromo-2-methylpropane. See
Isobutyl bromide
Bromonium ion. See Halonium ion
(R)- and (S)-2-Bromooctane, stereochemistry
of hydrolysis of, 307¨C308, 319
N-Bromosuccinimide, reagent for
allylic bromination, 371, 391
benzylic bromination, 415¨C416, 435
Br?nsted, Johannes, 134
Br?nsted acid. See Acidity
Br?nsted base. See Basicity
Brown, Herbert C., 228
Buckminsterfullerene, 410¨C411
1,3-Butadiene
addition of halogens to, 382, 392
addition of hydrogen halides to,
379¨C382, 392
conformations, 376¨C377
Diels-Alder reactions of, 382, 387¨C388
electrostatic potential map, 365
industrial preparation of, 378
H9266-molecular orbitals, 397¨C398
polymers of, 382¨C383
structure and bonding, 375¨C377
Butanal
aldol condensation, 716¨C717, 718
dipole moment, 721
heat of combustion, 658
infrared spectrum, 685
reductive amination of, 880
Butanamine. See Butylamine
Butane, 61. See also n-Butane
chlorination of, 156¨C158
conformations of, 94¨C97, 118
n-Butane, 57. See also Butane
2,3-Butanediol, stereoisomers, 279¨C280
Butanoic acid
biosynthesis of, 1020¨C1022
bromination of, 760
1-Butanol
acid-catalyzed ether formation from,
592, 625
conversion to 1-bromobutane, 138
dehydration, 189¨C190
Fischer esterification of, 789
2-Butanol. See also sec-Butyl alcohol
enantiomers, 267¨C269
reaction with hydrogen bromide,
139, 330
stereogenic center in, 262, 268
2-Butanone
enolization of, 706
heat of combustion, 658
proton magnetic resonance spectrum, 686
1-Butene, 169, 172
addition of hydrogen bromide to,
215, 220
addition of sulfuric acid to, 249
boiling point, 658
dipole moment of, 176
heat of combustion, 177
heat of hydrogenation, 209¨C211
cis- and trans-2-Butene, 172¨C173
dipole moments of, 176
heats of combustion, 177
heats of hydrogenation, 209¨C211
Butlerov, Alexander, 3
tert-Butoxycarbonyl, protecting group in
peptide synthesis, 1078¨C1079,
1083, 1104
sec-Butyl acetate, 594
n-Butyl alcohol. See 1-Butanol
sec-Butyl alcohol, 594. See also 2-Butanol
tert-Butyl alcohol. See also 2-Methyl-2-
propanol
acidity of, 135
dehydration of, 182, 186
esterification of, 610, 781
reaction with hydrogen chloride, 138,
139¨C146
Butylamine
acylation of, 882
infrared spectrum, 898
Butyl bromide. See also 1-Bromobutane
preparation from 1-butanol, 138
reaction of
with lithium, 549
with sodium cyanide, 871
tert-Butyl bromide, nucleophilic substitution
in, 315¨C317
INDEX I-8
tert-Butyl cation, 140, 141, 143¨C146
electrostatic potential map, 126
intermediate in
acid-catalyzed hydration of
2-methylpropene, 226
dehydration of tert-butyl alcohol, 186
Friedel-Crafts alkylation of benzene, 451
nucleophilic substitution, 315¨C317
reaction of tert-butyl alcohol with
hydrogen chloride, 140,143¨C146
stability of, 141
n-Butyl chloride. See 1-Chlorobutane
sec-Butyl chloride. See 2-Chlorobutane
tert-Butyl chloride. See also 2-Chloro-
2-methylpropane
by chlorination of 2-methylpropane, 158
in Friedel-Crafts reaction, 445, 450¨C451
preparation from tert-butyl alcohol,
138¨C139, 143¨C144
reaction with lithium, 549
solvolysis of, 321, 366
tert-Butylcyclohexane, conformations, 105
4-tert-Butylcyclohexyl bromide, rate of
elimination of cis and trans isomers,
194¨C196
Butyl group, 66. See also n-Butyl group
n-Butyl group, 66. See also Butyl group
sec-Butyl group, 66. See also
1-Methylpropyl group
tert-Butyl group, 66. See also
1,1-Dimethylethyl group
large size of, 105, 107, 113¨C114, 179,
310¨C311
tert-Butyl hydroperoxide, 589¨C590, 608
Butyllithium
preparation of, 549
reactions of, 551, 582
tert-Butyllithium, 549
n-Butyl mercaptan, in skunk fluid, 85, 604
sec-Butyl methyl ether, 628
tert-Butyl methyl ether, 626
tert-Butyloxonium ion
intermediate in
dehydration of tert-butyl alcohol, 186
hydration of 2-methylpropene, 226
hydrolysis of tert-butyl bromide, 305¨C306
reaction of tert-butyl alcohol with
hydrogen chloride, 140, 142¨C145
sec-Butyl phenyl ketone, enolization of,
714¨C715
Butyl radical, 157
sec-Butyl radical, 157
tert-Butyl radical, 152
1-Butyne, 340, 347
2-Butyne, 340, 347
Butyraldehyde. See Butanal
Butyric acid, 750. See also Butanoic acid
c, speed of light, 488
Caffeine, 1091
Cahn, R. S., 174
Cahn-Ingold-Prelog (CIP) system of
stereochemical notation
chiral molecules, 268¨C271, 292
priority rules, 173¨C174, 175 table
Calcium carbide, 340
Calicene, 441
Camphene, 115
Cantharadin, 783
H9280-Caprolactam, 803
Carbamic acid, 812
esters, 813, 857
Carbanion, 345, 548
basicity of, 345, 552¨C553
bonding in, 345
enolate ion, 709
as intermediate in nucleophilic aromatic
substitution, 923¨C927
Carbenes and carbenoids, 565¨C566, 571¨C572
Carbenium ions, 140. See also Carbocations
Carbinolamine intermediates, 672¨C673, 674
Carbobenzoxy. See Benzyloxycarbonyl
Carbocations
acyl cations, 453¨C455
alkenyl cations, 353
allylic, 365, 366¨C369, 379¨C382, 390
arenium ions, 444 (see also
Cyclohexadienyl cation)
benzylic, 418, 421
tert-butyl cation, 140, 141, 143¨C146, 186,
226, 315¨C317, 451
capture by nucleophiles, 142, 143¨C144,
226, 316
as intermediates in acetal formation,
669¨C670, 989
as intermediates in biosynthesis
of cholesterol, 1036
of terpenes, 1028¨C1032
as intermediates in glycoside formation, 990
as intermediates in reactions of alcohols
dehydration, 185¨C189, 200¨C201
with hydrogen halides, 140¨C146,
160¨C162, 329¨C330, 332
as intermediates in reactions of alkenes
acid-catalyzed hydration, 225¨C226
addition of hydrogen halides, 213¨C214,
216¨C220, 251
addition of hydrogen halides to
conjugated dienes, 379¨C382, 392
addition of sulfuric acid, 224
polymerization, 244¨C245
as intermediates in reactions of alkyl
diazonium salts, 890
as intermediates in reactions of
alkyl halides
E1 elimination, 196¨C198, 201
Friedel-Crafts alkylation, 451¨C453, 479
S
N
1 nucleophilic substitution, 143¨C146,
315¨C320, 331
isopropyl cation, 141, 224
methyl cation, 141
tert-pentyl cation, 929
rearrangements, 187¨C189, 201, 219¨C220,
319¨C320, 331, 452, 479
structure, bonding, and stability, 140¨C143,
162
triphenylmethyl, 418¨C419
Carbohydrates, 972¨C1014
aldoses, 973
amino sugars, 988
branched-chain carbohydrates, 988
chain extension, 1001, 1009
classification, 972¨C973
configurations of D-aldoses, 974¨C978
mnemonic for, 978
cyclic hemiacetal formation in, 978¨C984
deoxy sugars, 987
determination of ring size, 1004¨C1006
disaccharides, 972¨C973, 991¨C993, 1008
Fischer determination of glucose structure,
996, 1014
Fischer projection formulas, 973¨C974, 1007
furanose forms, 978¨C981, 1007
glycolysis, 1002¨C1004, 1015
glycoproteins, 995¨C996
glycosides, 988¨C991, 1008
Haworth formulas, 980
ketoses, 973, 986¨C987
mutarotation in, 985¨C986, 1008
photosynthesis, 976, 1015
polysaccharides, 993¨C995, 1008
pyranose forms, 981¨C984, 1007
reactions of
acylation, 1004, 1010
cyanohydrin formation, 1001, 1009
epimerization, 1002
ether formation, 1004, 1010
isomerization, 1002
oxidation, 998¨C1001, 1009
periodic acid cleavage, 1005¨C1006, 1010
reduction, 996¨C998, 1009
retro-aldol cleavage, 1003¨C1004
Carbolic acid, 943. See also Phenol
Carbon
13
C isotope
nuclear magnetic resonance, 510¨C517
14
C as isotopic label
in Claisen rearrangement, 957
nucleophilic aromatic substitution via
benzyne, 928, 931
terpene biosynthesis, 1033¨C1034
clusters, 410¨C411
formation in stars, 6
Carbon dioxide, 14
bond angles in, 30
and carbonic acid, 749
in fatty acid and terpene biosynthesis,
1020¨C1021, 1033
in industrial preparation of urea, 802¨C803
in Kolbe-Schmitt reaction, 952¨C954,
963
reaction with Grignard reagents, 750¨C752,
766
Carbonic acid, acidity of, 749
Carbonic anhydrase, 749
Carbonium ions, 140. See also Carbocations
Carbon monoxide
binding to hemoglobin and myoglobin,
1089
reactions of, 566, 580, 661
Carbon skeleton diagrams, 21. See also Bond-
line formulas
Carbon tetrachloride, 30, 132. See also
Tetrachloromethane
Carbon tetrafluoride, 13
I-9 INDEX
Carbonyl group. See also Acyl chlorides;
Aldehydes; Amides; Carboxylic
acid anhydrides; Carboxylic acids;
Esters; Ketones
and functional groups, 56
infrared absorption frequencies, 519,
817
stabilization by substituents, 658, 738¨C739,
777¨C779
structure and bonding, 657¨C658, 688
Carboxamides. See Amides
Carboxylate salts
electron delocalization in, 740¨C741,
742
micelle formation, 744¨C745
nomenclature of, 742
as nucleophiles, 303, 304, 313
Carboxylation
of Grignard reagents, 750¨C752, 766
of phenol, 952¨C954, 963
Carboxylic acid anhydrides
Friedel-Crafts acylation with, 455, 471,
473¨C474, 478, 660, 784, 921
infrared absorption, 817
nomenclature of, 775
preparation of, 781, 783¨C784
reactions of
with alcohols, 594¨C595, 610, 785¨C787,
789, 820
with amino acids, 1063
with ammonia and amines, 785, 820,
886¨C888
with carbohydrates, 1004, 1010
hydrolysis, 785
with phenols, 949¨C952, 963
resonance in, 778
Carboxylic acid chlorides. See Acyl chlorides
Carboxylic acid derivatives, 774¨C830. See
also Acyl chlorides; Amides;
Carboxylic acid anhydrides; Esters;
Nitriles
nomenclature of, 775¨C776
relative reactivity of, 780 table
spectroscopic analysis, 817¨C818
structure and bonding, 777¨C779
Carboxylic acids, 736¨C773. See also Carbonic
acid; Dicarboxylic acids
acidity of, 740¨C742, 745¨C748, 765¨C766
derivatives of, 774¨C830
dicarboxylic acids, 748, 760¨C761
dipole moments, 739
hydrogen bonding in, 739
infrared spectra, 519 table, 763¨C764
nomenclature of, 737¨C738
nuclear magnetic resonance spectra,
763¨C764
physical properties, 739
preparation of
carboxylation of Grignard reagents,
750¨C752, 766
hydrolysis of nitriles, 752¨C753, 766,
815¨C816
by malonic ester synthesis,
842¨C845, 852
oxidation of aldehydes, 682, 751
oxidation of alkylbenzenes,
416¨C417, 751
oxidation of primary alcohols, 596,
611, 751
protecting group for, 1079
reactions of, 753¨C763
with acyl chlorides, 781, 820
decarboxylation, 760¨C763, 767¨C768
esterification, 593¨C594, 610, 754¨C757,
767, 789
H9251-halogenation, 759¨C760, 767
reduction, 587, 608, 659, 754
with thionyl chloride, 454, 754, 780
salts of, 742¨C745, 766
site of protonation in, 756¨C757
structure and bonding, 738¨C739, 765
Carboxypeptidase A, 1086¨C1088
Carboxypeptidases, 1071
Carcinogen, 409
benzene, 417
polycyclic aromatic hydrocarbons, 409
H9252-Carotene, 676, 1027, 1042
Carotenoids, 1042, 1044
Carothers, Wallace H., 4, 809
Carvone, odors of (R) and (S) enantiomers, 272
Catalyst, 5. See also Acid catalysis; Enzymes;
Hydrogenation
Cation radicals in mass spectrometry, 526
Cellobiose, 991¨C992
Cellulose, 994
Cembrene, 1027
Center of symmetry, 264¨C265
in meso-2,3-butanediol, 280
Cephalexin, 803
Cephalosporins, 803
Cerebrosides, 1047
Chair conformation
of cyclohexane and derivatives, 99¨C107,
110¨C114, 119, 510
of piperidine, 116
of pyranose forms of carbohydrates,
982¨C984
of tetrahydropyran, 621
Chargaff, Erwin, 1094
Chemical Abstracts, 63, 859
Chemical shift
of carbon, 512¨C513, 535
equivalence and replacement test for,
498¨C500
of protons, 493¨C500, 509, 510, 534, 535
scale (H9254), 493¨C494
tables, 496 (
1
H), 513 (
13
C)
Chiral, definition of, 260
Chiral axis. See Stereogenic axis
Chiral center. See Stereogenic center
Chiral drugs, 273
Chiral molecules, 259¨C263, 290
absolute configuration, 267, 292
Fischer projection formulas, 271¨C272, 278,
280, 292¨C293
formation of in chemical reactions,
274¨C276, 284¨C285, 293
with multiple stereogenic centers,
276¨C286, 293
with one stereogenic center, 260¨C263, 291
optical activity in, 265¨C267, 293
and R, S notation, 268¨C271, 292
Chiral recognition, 272¨C273
Chitin, 988
Chloral, 664
Chlorination
electrophilic
of acetophenone, 474
of aldehydes and ketones, 703¨C705, 711,
713, 727
of benzene, 445
of benzoyl chloride, 468
of 2-methylacetanilide, 888
free-radical
of alkanes, 148, 153¨C159, 161,
162, 166
of ethane, 54, 156
of methane, 148¨C149, 153¨C155
of propene, 371
of toluene, 415 (see also Chlorine)
Chlorine. See also Chlorination
addition of
to alkenes, 233¨C234
to conjugated dienes, 382
to propyne, 356
oxidation of alcohols by, 599
Chlorobenzene
carbon-chlorine bond energy, 918
conversion to phenol, 920, 931, 947
dipole moment of, 918
mass spectrum, 529
nitration of, 469¨C470
nucleophilic aromatic substitution in,
920¨C921, 931
1-Chlorobutane, 156¨C157
2-Chlorobutane, 156¨C157
Chlorocyclobutane, 156
Chlorocyclohexane. See also Cyclohexyl
chloride
dipole moment, 918
1-Chloro-2,4-dinitrobenzene, nucleophilic
substitution in, 922
Chloroethane, 54, 156, 918. See also Ethyl
chloride
Chlorofluorocarbons (CFCs), 148
Chloroform, 132. See also Trichloromethane
biosynthesis of, 713
1
H nuclear magnetic resonance spectrum
of, 494
Chloroform-d, solvent for NMR spectroscopy,
494
Chlorohydrin. See Halohydrins
Chloromethane, 148. See also Methyl chloride
biosynthesis of, 713
boiling point of, 132
dipole moment of, 129
electrostatic potential map, 129
1-Chloro-2-methylpropane, 158. See also
Isobutyl chloride
2-Chloro-2-methylpropane, 158. See also tert-
Butyl chloride
p-Chloronitrobenzene, nucleophilic
substitution in, 922¨C925
electrostatic potential map, 917
Chloronium ion. See Halonium ion
INDEX I-10
1-Chloropentane,
1
H and
13
C NMR
spectra, 511
Chlortetracycline, 920
2-Chloro-1,3,5-trinitrobenzene, 922
Cholesterol, 580, 1034¨C1038, 1044
biosynthesis of, 1036¨C1037
7-dehydro, 1038
Cholic acid, 116, 283, 1039
Choline, 1022
Chromatography, 530¨C531, 1070¨C1071
Chromic acid oxidation
of alcohols, 596¨C600, 611, 660, 751
of alkylbenzenes, 415, 435, 751
of phenols, 958
Chromophore, 526
Chrysanthemic acid, 71
Chymotrypsin, 1071
Cicutoxin, 340
Cimetidine, 431
Cinnamaldehyde, 173
CIP. See Cahn-Ingold-Prelog
Cis and trans descriptors of stereochemistry,
108¨C109, 172¨C173, 199
s-Cis conformation, 376¨C377
Citral, 659, 1027
Citric acid, 299, 772
Citronellal, 1033¨C1034
Citronellol, 580
Claisen, Ludwig, 832
Claisen condensation, 832¨C835, 851
intramolecular (see Dieckmann reaction)
mixed, 836¨C837, 851
Claisen rearrangement, 957¨C958, 964
Claisen-Schmidt condensation, 720, 728
Clathrate, 58
Clemmensen reduction, 456¨C457, 474, 662
Cocaine, 869
Codon, 1096¨C1100
Coenzymes, 1088¨C1090. See also Vitamin
acetyl coenzyme A, 1016¨C1017, 1032
coenzyme B
6
, 675
coenzyme B
12
, 568
coenzyme Q (see Ubiquinone)
heme, 1088
NAD, NAD
H11001
, NADH, NADPH (see
Nicotinamide adenine dinucleotide)
Cofactors. See Coenzymes
Coke, 339
Columbus, Christopher, 383
Combinatorial synthesis, 1084
Combustion of alkanes, 74¨C77, 83. See also
Heat of combustion
Common names. See Nomenclature
Concerted reaction, 136
bimolecular elimination, 192¨C196,
200¨C201
bimolecular nucleophilic substitution, 146,
306¨C315, 331
Diels-Alder reaction, 382
and orbital symmetry, 388¨C390
Condensation polymers, 809¨C810
Condensation reaction, 592
aldol, 715¨C720, 728
Claisen, 832¨C835, 851
Claisen-Schmidt, 720, 728
ether formation, 592¨C593, 610, 625¨C626,
644
Fischer esterification, 593¨C594, 595, 610,
754¨C757, 767, 789
Condensed structural formulas, 19, 59
Configuration
absolute and relative, 267¨C268, 291¨C292
of aldoses, 977
of alkenes
cis and trans, 172¨C173, 180¨C181, 199
E and Z, 173¨C175, 180¨C181, 199
of disubstituted cycloalkanes, cis and trans,
108¨C114
and Fischer projections, 271¨C272, 292¨C293
notational systems
H9251 and H9252, 980
cis and trans, 108¨C109
D-L, 973¨C978, 1007
erythro and threo, 278
R-S, 268¨C271
Conformation(s), 89
of alkanes
butane, 94¨C97, 118
ethane, 90¨C93, 117
higher alkanes, 97¨C97, 118
of 1,3-butadiene, 376¨C377, 391¨C392
chiral, 281
s-cis and s-trans, 376¨C377, 391¨C392
of cycloalkanes, 98¨C116, 118¨C120
cyclobutane, 107¨C108
cyclohexane and derivatives, 99¨C107,
110¨C114, 118¨C119, 281, 510
cyclopentane, 108
medium and large rings, 108
eclipsed, 90, 92, 117
of ethers, 621
of heterocyclic compounds, 116¨C117, 621
of hydrogen peroxide, 89
and nuclear magnetic resonance
spectroscopy, 510
peptides and proteins, 1067¨C1068,
1084¨C1086
pyranose forms of carbohydrates,
982¨C984
staggered, 90¨C92, 117¨C118
Conformational analysis. See Conformation
Conformer, 90. See also Conformation
Coniine, 869
Conjugate acids and bases, 134¨C136,
344¨C346, 552, 709, 742, 864¨C865
Conjugate addition. See also Michael reaction
of bromine to 1,3-butadiene, 382
of hydrogen bromide to 1,3-butadiene,
to H9251,H9252-unsaturated aldehydes and ketones,
722¨C725, 728¨C729, 846¨C847, 852
Conjugation
in alkenylbenzenes, 419¨C420
in allylic systems, 366¨C372, 379¨C382, 390
in benzylic carbocations, 418
in benzylic free radicals, 414
in dienes, 372¨C377, 524¨C525 (see also
Dienes, conjugated)
energy, 374¨C375
in H9251,H9252-unsaturated aldehydes and ketones,
720¨C721
Connectivity. See Constitution
Constitution, 19
Constitutional isomers, 22, 45, 172, 291
of alkanes, number of, 60 table
Coordination polymerization, 246, 383,
567¨C570, 573
Copolymer, 383
Copper (I) salts
in preparation of lithium dialkylcuprates,
561¨C562, 571
reactions with aryl diazonium ions, 892,
893¨C894, 907, 919
Corey, Elias J., 557, 840
Corey, Robert B., 1084
Corticosteroids (cortisol and cortisone),
1040, 1044
Couper, Archibald S., 3
Coupling constant (J), 503, 506, 507¨C508
dihedral angle dependence, 544
Covalent bond, 12¨C14, 44
Cracking, in petroleum refining, 70
Crafts, James M., 451
m-Cresol, 939
acidity of, 944
13
C NMR spectrum, 513¨C514, 960¨C961
o-Cresol, 950
p-Cresol
acidity of, 944
carboxylation, 954
infrared spectrum, 960
nitration of, 950
1
H NMR spectrum, 960¨C961
preparation of, 946
Crick, Francis H. C., 1094, 1100
Critical micelle concentration, 744
Crown ethers, 622¨C624, 644
electrostatic potential map, 619, 623
Cumene, 248, 969. See also
Isopropylbenzene
Cumulated diene. See Allenes; Dienes
Cuprates. See Lithium diorganocuprates
Curl, Robert F., 410
Curved arrows
fishhook, 150
and resonance structures, 367, 371
to show electron movement, 133
Cyanide ion
basicity of, 324, 722
in formation of cyanohydrins, 667¨C668
as nucleophile, 303, 304, 313, 323, 324,
327, 722¨C723
Cyanohydrins
and carbohydrate chain extension,
1001, 1009
hydrolysis of, 753
naturally occurring, 668, 695
preparation of, 667¨C668, 689, 814
Cyclic AMP, 1093
Cycloaddition, 382
molecular orbital treatment of, 388¨C390
Cycloalkanes, 68¨C69, 98¨C116, 118¨C120
angle strain in, 98, 107¨C108
bicyclic, polycyclic, and spirocyclic,
114¨C116, 120
conformations of, 98¨C116, 118¨C120
I-11 INDEX
Cycloalkanes¡ªCont.
heats of combustion, 98 table
nomenclature of, 66¨C69
sources of, 69¨C71
Cycloalkenes, 170, 180¨C181
nomenclature of, 170
stereoisomeric, 180¨C181, 192
Cycloalkynes, 341, 344
Cyclobutadiene, 422, 423, 424, 436
Cyclobutane
angle strain in, 98, 108
chlorination of, 156
conformations of, 107¨C108
heat of combustion of, 98
Cyclobutyl chloride, 156
Cyclodecane, 98, 161
(E)- and (Z)-Cyclodecene, 192
Cyclodecyl bromide, 192
Cyclodecyl chloride, 161
Cycloheptatriene, 427
Cycloheptatrienide anion, 429
Cycloheptatrienyl cation, 427¨C428, 436
trans-Cycloheptene, 180
Cyclohexadienone-phenol rearrangement, 968
Cyclohexadienyl anion
intermediate in nucleophilic aromatic
substitution, 923¨C927, 933
Cyclohexadienyl cation
intermediate in electrophilic aromatic
substitution, 444¨C447, 449, 450,
451, 454, 458¨C462, 465¨C466, 470,
475, 477, 926
Cyclohexane, 68, 70, 118¨C119
bond angles in, 99
conformational analysis of, 99¨C103, 118¨C119
disubstituted derivatives, 110¨C114, 281
monosubstituted derivatives, 104¨C107
heat of combustion, 98
1
H NMR spectrum of, 510
Cyclohexanol
infrared spectrum, 605, 606
preparation of, 224
reactions of
dehydration, 182
with hydrogen bromide, 138
oxidation, 597
Cyclohexanone
H9251 chlorination of, 703
and ethylene glycol, cyclic acetal from, 671
preparation of, 597
reaction of
with ethylmagnesium bromide, 662
with isobutylamine, 673
with methylenetriphenylphosphorane,
677
with morpholine, 690
with pyrrolidine, 882
with sodium acetylide, 556
reductive amination of, 880
Cyclohexene
derivatives of, preparation by Diels-Alder
reaction, 382, 392¨C393
preparation of
dehydration of cyclohexanol, 182
dehydrohalogenation, 190
reactions of
alkylation of benzene with, 452
with N-bromosuccinimide, 371
with dibromocarbene, 566
epoxidation, 637
hydroxylation, 590, 637
with sulfuric acid, 224
trans stereoisomer, 180
Cyclohexylamine, 859
basicity of, 865
preparation of, 880
reductive amination by, 903
Cyclohexyl chloride. See also
Chlorocyclohexane
H9252-elimination of, 190
Grignard reagent from, 550, 555
Cyclononyne, 341
1,3-Cyclooctadiene, UV-VIS spectrum, 524
Cyclooctane, 98
Cyclooctatetraene, 422¨C424, 436
dianion, 429
Cyclooctene
addition of chlorine to, 234
epoxidation of, 239
trans stereoisomer, 180
Cyclooctyne, 341
Cyclopentadiene
acidity of, 428
Diels-Alder reactions of, 386
reaction with hydrogen chloride, 379¨C380
Cyclopentadienide anion, 428, 436
Cyclopentane, 70
conformations of, 108, 120
heat of combustion, 98
Cyclopentanol
nitrate ester, 610
preparation of, 584
reaction with phosphorus tribromide, 147
Cyclopentanone
Baeyer-Villiger oxidation of, 695
enamine of, 674
enol content of, 727
hydrogenation of, 584
hydrogen-deuterium exchange in,
713¨C714
reaction with methylmagnesium
chloride, 555
Cyclopentene
bromine addition to, 234
halohydrins of, 236¨C238
Cyclopentyl bromide, 147, 478
Cyclopentyl cyanide, 304
Cyclopentylmethanol 582, 591
Cyclopropane(s), 68
angle strain and bonding in, 106¨C107
cis- and trans-1,2-dimethyl-, 109¨C110
1,1-dihalo, 566
heat of combustion of, 98
preparation of, 563¨C565, 571
structure of, 107
torsional strain in, 107
Cyclopropanecarboxylic acid, 587
Cyclopropene, 180
Cyclopropenyl cation, 429
Cyclopropyllithium, 572
L-Cysteine, 1055, 1059
electrostatic potential map, 1053
disulfide formation in, 1069¨C1070,
1073¨C1074, 1087
Cytidine, 1092
Cytosine, 1089, 1095
Dacron, 809
L-Daunosamine, 988
DCCI. See N,NH11032-Dicyclohexylcarbodiimide
DDT (dichlorodiphenyltrichloroethane), 938
Deamination reactions, 890, 894, 895, 907
De Broglie, Louis, 7
Debye, Peter J. W., 16
Debye unit, 16
cis- and trans-Decalin, 115
Decane, 62
mass spectrum of, 529¨C530
1-Decanol, 227¨C228, 660
Decarboxylation
H9251-amino acids, 1065¨C1066
H9252-keto acids, 762¨C763, 767¨C768, 838,
840¨C841, 850
malonic acid derivatives, 760¨C762,
767¨C768, 842, 843¨C845, 852
1-Decene
hydroboration-oxidation of, 227¨C228, 582
hydroxylation of, 590
Decoupling
of alcohol protons in
1
H NMR,
509¨C510, 535
in
13
C NMR, 515
Dehydration
in aldol condensation, 717¨C719, 720
in preparation
of alkenes from alcohols, 182¨C190, 200,
379, 419, 591
of cyclic anhydrides, 784
of dienes, 379, 392
of nitriles from amides, 813¨C815
Dehydrogenation
of alcohols, 661
biological
of butane, 378
of ethane, 168, 181
of ethylbenzene, 419, 453
of ethylene, 340
of propane, 168, 181
of succinic acid, 182
Dehydrohalogenation. See also Elimination
reactions
of alkyl halides, 190¨C198, 200, 419
of bromocyclodecane, 192
of 2-bromo-2-methylbutane, 191, 197
of 5-bromononane, 192
of cis- and trans-4-tert-butylcyclohexyl
bromide, 194¨C196
of 1-chloro-1-methylcyclohexane, 200
of 1-chlorooctadecane, 191
of cyclohexyl chloride, 190
of dihalides, 348¨C349, 359
of menthyl and neomenthyl chloride, 206
in preparation
of alkenes, 190¨C198, 200
of alkenylbenzenes, 419
INDEX I-12
of alkynes, 348¨C349, 359
of dienes, 379
Delocalization energy, 374. See also
Resonance energy
Denaturation
of ethanol, 581
of proteins, 1087
Dendrolasin, 1046
Deoxyribonucleic acid (DNA)
and protein biosynthesis, 1096¨C1100
purine and pyrimidine bases in, 1090¨C1093
replication of, 1095
sequencing of, 1100¨C1103
structure of, 1094¨C1097
2-Deoxy-D-ribose, 987, 1010, 1092
Deoxy sugars, 987, 1008
DEPT, 515¨C517, 537
Detergents, 745
Deuterium oxide, 166, 510, 713¨C714, 763
Dextrorotatory, 266
Diacetylene, 340
Dianabol, 1041
Diastereomers, 277¨C288, 291
formation of, 284¨C285
Diastereotopic protons, 495, 507
1,3-Diaxial repulsion, 104
Diazonium salts, 890¨C897, 904¨C905
azo coupling of, 895¨C897, 936
conversion to
arenes, 894¨C895, 907
aryl cyanides, 894, 907
aryl halides, 892¨C894, 905¨C906, 919
phenols, 892, 905, 946, 947, 962
preparation of, 891
Diborane, 228. See also Hydroboration-
oxidation
Dibromocarbene, 565¨C566
1,2-Dibromocyclopropane, stereoisomers of,
282
1,2-Dibromoethane, 234
Dibromoindigo, 920
Dibutyl ether, 592, 625
Dicarboxylic acids
acidity of, 748
cyclic anhydrides from, 784
decarboxylation, 760¨C762, 767¨C768, 842,
843¨C845, 852
nomenclature of, 738
in preparation of polyamides and
polyesters, 809¨C810
Dichlorocarbene, 565
Dichlorocyclohexane isomers, 281
Dichlorodiphenyltrichloroethane. See DDT
(E)-1,2-Dichloroethene, plane of symmetry in,
264
Dichloromethane, 29¨C30, 132, 148
N,NH11032-Dicyclohexylcarbodiimide
in preparation of
esters, 1080
peptides, 1079¨C1081, 1083, 1104
Dieckmann reaction, 835¨C836, 851
Dielectric constant
and rate of nucleophilic substitution,
320¨C322, 331
of various solvents, 321, 322 table
Diels, Otto, 382
Diels-Alder reaction, 382, 392¨C393
of benzyne, 931¨C932
orbital symmetry analysis of, 388¨C390
Dienes. See also Alkadienes
conjugated, 365, 372¨C377, 390¨C393,
524¨C525
1,2 and 1,4 addition to, 379¨C382, 392
conformations of, 376¨C377, 391¨C392
Diels-Alder reactions of, 382, 388¨C390,
392¨C393
electron delocalization in, 374¨C377
electrophilic addition reactions of,
379¨C382, 392
polymers, 383
preparation of, 378¨C379, 391
resonance energy, 374
cumulated, 373, 377¨C378
heats of hydrogenation, 374¨C375,
403¨C404
isolated, 372, 379
stability of various classes, 374¨C377, 391
Dienophiles, 382¨C385, 932
Diethyl acetamidomalonate, 1062
Diethyl adipate. See Diethyl hexanedioate
Diethylamine
basicity, 866
infrared spectrum, 898
Diethyl carbonate, acylation of ketones with,
836¨C837
Diethylene glycol dimethyl ether.
See Diglyme
Diethyl ether, 619
cleavage by hydrogen bromide, 629
conformation of, 621
dipole moment of, 622
hydrogen bonding to water
electrostatic potential map, 622
peroxide formation in, 627¨C628
physical properties of, 622
preparation of, 592
as solvent for Grignard reagents, 550
Diethyl hexanedioate
Dieckmann cyclization of, 835
Diethyl malonate
acidity of, 842
barbiturates from, 845¨C846
enolate
electrostatic potential map, 831
enol content, 854
in malonic ester synthesis, 842¨C845, 852
Michael addition to methyl vinyl ketone,
846¨C847
preparation of, 857
Diethylstilbestrol (DES), 1050
Diglyme, 228, 620
Dihaloalkanes
alkynes from, 348¨C349, 359
geminal, 348¨C349, 359
reaction with diethyl malonate,
844¨C845
vicinal, 233, 348¨C349, 359
Dihedral angle. See Torsion angle
1,3-Dihydroxyacetone, 1010
phosphate, 1003
2,3-Dihydroxybutanoic acid, stereoisomers of,
276¨C278
L-3,4-Dihydroxyphenylalanine, 1066
Diiodomethane, 564
Diisopropyl ether, 625
Diketones, intromolecular aldol condensation
of, 718, 724, 728
1,3-Diketones
acidity of, 710¨C711
alkylation of, 724¨C726, 729
enolization of, 707¨C708
preparation of, 837
Dimer, 244
1,2-Dimethoxyethane, 620
Dimethylallyl pyrophosphate, 1029
Dimethylamine, nitrosation of, 889
3,3-Dimethyl-2-butanol
dehydration and rearrangement of, 187¨C189
2,3-Dimethyl-1-butene, 186, 187¨C188
2,3-Dimethyl-2-butene, 186, 187¨C188
1
H NMR chemical shifts, 496
heat of hydrogenation, 211
3,3-Dimethyl-1-butene, 188
cis- and trans-1,2-Dimethylcyclohexane,
110, 111¨C112
cis- and trans-1,3-Dimethylcyclohexane,
110, 112
cis- and trans-1,4-Dimethylcyclohexane,
110¨C111
cis- and trans-1,2-Dimethylcyclopropane,
109¨C110
Dimethyl ether
bond distances and bond angles, 621
N,N-Dimethylformamide, 322, 875
1,1-Dimethylethyl group, 66
2,2-Dimethylpropane, 73
2,2-Dimethylpropyl group, 66
Dimethyl sulfate, 596
Dimethyl sulfide, 241
Dimethyl sulfoxide as solvent
in elimination reactions, 191, 349
in nucleophilic substitution reactions,
303, 322, 327, 752
in Wittig reaction, 677, 680
2,4-Dinitrophenylhydrazine, 674
Diols
cyclic acetals from, 670¨C672
cyclic ethers from, 593
geminal, 663¨C667
nomenclature of, 589
oxidative cleavage of, 602¨C603, 609
polyesters from, 809
preparation of, 589¨C590
vicinal (see Vicinal diols)
Dioxane, 620
Dioxin, 955
Diphenylamine, basicity of, 867
Diphenylmethane, acidity of, 577
Diphepanol, 575
Dipole-dipole attractions, 72, 130
in esters, 788
in ethyl fluoride, 130
and hydrogen bonding, 130¨C133, 622
Dipole-induced dipole attractions, 72, 130
Dipole moment, 15¨C16, 46
I-13 INDEX
of alcohols, 129
of aldehydes and ketones, 657, 721
of alkanes, 72
of alkyl halides, 129
of carbon tetrachloride, 30
of carboxylic acids, 739
of chlorobenzene, 918
of chlorocyclohexane, 918
of chloroethene, 176
of chloromethane, 129
of trans-1-chloropropene, 176
of 1,2-dichloroethane, 125
of dichloromethane, 30
of diethyl ether, 622
of esters, 788
of ethanol, 130
of ethylene, 176
of ethylene oxide, 622
of fluoroethane, 130
of four-carbon alkenes, 176
of methanol, 129
and molecular geometry, 30¨C31
of propanal, 657
of propane, 130
of propene, 176
of tetrahydrofuran, 622
of water, 129
Dipropyl ether
1
H NMR spectrum, 642
infrared spectrum, 642
preparation of, 644
Directing effects of substituents. See Elec-
trophilic aromatic substitution
Disaccharide, 973, 991¨C993, 1008. See also
Cellobiose; Lactose; Maltose;
Sucrose
Disparlure, 239
Distortionless enhancement of polarization
transfer. See DEPT
Disulfides
carboxypeptidase A, 1087
H9251-keratin, 1085
lipoic acid, 117, 605
oxytocin, 1069¨C1070
preparation of, 605
Diterpenes, 1026
DMF. See N,N-Dimethylformamide
DNA. See Deoxyribonucleic acid
DNA sequenator, 1102
Dodecane, 62
photochemical chlorination of, 166
1-Dodecene, epoxidation of, 239
L-Dopa. See L-3,4-Dihydroxylphenylalanine
Dopamine, 1066
Double bond, 14, 38¨C40, 170¨C172
Double helix, 1094¨C1096. See also
Deoxyribonucleic acid
Drugs. See also AIDS; Antibiotics
chiral, 273
generic names of, 63
Dyes, 896¨C897
E (stereochemical prefix), 173¨C175, 199
E1 mechanism, 196¨C198
E2 mechanism, 190¨C196, 201, 323¨C325
Eclipsed conformations, 90¨C93, 97, 117
and Fischer projections, 278, 280
Ectocarpene, 297¨C298
Edman, Pehr, 1074
Edman degradation, 1074¨C1076
Edman sequenator, 1076
Eicosanoic acid. See Icosanoic acid
Eigen, Manfred, 137
Elaidic acid, 351
Elastomer, 383
Electromagnetic radiation, 488¨C489
Electron affinity, 11
Electron configuration
and orbital hybridization, 35, 38, 41
of selected atoms, 10
Electron delocalization
in allylic carbocations, 366¨C369, 379¨C382
in allylic radicals, 370
in benzylic carbocations, 418
in benzylic radicals, 414
in carbocations, 142
in carboxylate ions, 740¨C741, 779
in carboxylic acid derivatives, 777¨C780
in conjugated dienes, 374¨C377
in enolates, 708¨C711, 832, 839, 842, 850
and resonance, 23¨C26, 45
in H9251,H9252-unsaturated aldehydes and ketones,
720¨C721
Electron-dot structures. See Lewis structural
formulas.
Electronegativity, 15
and chemical shift, 494¨C495
and polar covalent bonds, 15¨C16
relation to s character at carbon, 343
of selected elements, 15 table, 547 table
Electronic effects, 178
18-Electron rule, 566
Electrons
excitation of, 524¨C526
n ¡ú H9266*, 526
H9266 ¡ú H9266*, 524¨C525
nuclear shielding by, 493, 495
quantum numbers, 8
valence, 10
wave properties of, 7
Electrophile, 142¨C143. See also Addition
reactions; Electrophilic aromatic
substitution
Electrophilic addition. See Addition reactions
Electrophilic aromatic substitution, 443¨C486
of arylamines, 886¨C888
azo coupling, 895¨C897, 951
of benzene, 444¨C457
mechanism, 444¨C447
of Friedel-Crafts acylation, 453¨C454
of Friedel-Crafts alkylation, 451
of halogenation, 448¨C451
of nitration, 447¨C448
of sulfonation, 448¨C449
in phenols, 463, 948¨C950
substituent effects in, 457¨C474, 477, 479¨C480
table, 464
summary tables, 446, 478, 950
Electrophoresis
of amino acids, 1060¨C1061
and nucleic acid sequencing, 1101
Electropositive, 15
Electrostatic potential, 27
Electrostatic potential map
acetamide, 777
acetate ion, 741, 742
acetic acid, 739, 742
acetic anhydride, 777
acetone enol, 701
acetonitrile, 777
acetyl chloride, 774, 777
acetylene, 339, 342
amino acids, 1053
aniline, 862
benzene, 398
benzyne, 930
bromochlorofluoromethane, 159
1,3-butadiene, 365
tert-butyl cation, 126
calicene, 441
chloromethane, 129
1-chloro-4-nitrobenzene, 917
18-crown-6, 619
and K
H11001
complex, 623
diethyl ether-water hydrogen bonding, 622
diethyl malonate enolate, 831
dodecanoic acid, 1015
ethane, 53
ethoxide ion, 741
ethyl acetate, 777
ethylene, 167, 214, 342, 658
ethylenebromonium ion, 208
ethylene glycol, 579
ethyl thioacetate, 777
ferrocene, 546
formaldehyde, 654
formic acid, 736
glucose, 972
hydrogen bonding
in ethanol, 131
in phenol, 942
between phenol and water, 942
hydrogen chloride, 214
methane, 27
methanol, 129
methylamine, 858
methyl cation, 143
methylenetriphenylphosphorane, 678
methyl fluoride, 548
methyllithium, 548
nitronium ion, 443
phenol, 939, 942
propanoyl cation, 454
S
N
2 transition state, 302
tetramethylsilane, 487
urea, 1
water, 942
Elements of unsaturation, 533. See Index of
hydrogen deficiency
Elimination-addition mechanism, 927¨C931,
933
Elimination reactions, 167¨C206
H9251, 566
H9252, 181¨C198
anti, 194¨C196, 200
competition with substitution, 323¨C325,
332
dehydration of alcohols, 181¨C193, 200,
INDEX I-14
419
dehydrohalogenation of alkyl halides,
190¨C198, 200, 419
dehydrohalogenation of geminal and vicinal
dihalides, 348¨C349, 359
dehydrogenation of alkanes, 168, 181,
419
E1 mechanism, 196¨C198
E2 mechanism, 192¨C196, 201, 323¨C325
Hofmann elimination, 883¨C885, 904
in preparation
of alkenes, 168, 181¨C198, 200
of alkenylbenzenes, 419
of alkynes, 348¨C349, 359
of dienes, 378¨C379, 391
Zaitsev rule, 184, 191, 199, 200
Emulsin, 992¨C993
Enamines, preparation of, 674¨C675, 677, 690
Enantiomeric excess, 266
Enantiomers, 259¨C260, 291
of bromochlorofluoromethane, 260, 271
of 2-butanol, 267¨C269
configurational notation
D-L, 973¨C974
R-S, 267¨C271
conformational, 281
and Fischer projections, 271¨C272,
292, 974
formation of, 274¨C276
optical rotations, 266¨C267
physical properties of, 272¨C274
Enantioselective synthesis, 276, 1063
Enantiotopic protons, 500
End group analysis, 1071¨C1076
Endorphins, 1068¨C1069
Endothermic reaction, 11
and relation to bond energies, 155
Enediols, as intermediates in reactions of
carbohydrates, 999, 1002, 1010
Enediyne antibiotics, 344
Energy, units of, 11
Energy of activation, 93
and carbocation stability, 143¨C146, 317
and free-radical stability, 157¨C158
for pyramidal inversion, 290
in reaction of alcohols with hydrogen
halides, 143
for rotation about double bond, 172¨C173
and single-bond rotation, 93, 376¨C377
and temperature, 93¨C94
Enkephalins, 1068¨C1069
Enol
of acetyl coenzyme A, 1016
content
of aldehydes and ketones, 705¨C708, 727
of 1,3-diketones, 707¨C708
as intermediate
in conjugate addition to H9251,H9252-unsaturated
aldehydes and ketones, 722
H9251 halogenation of aldehydes and ketones,
703¨C707, 727
in hydration of alkynes, 355¨C356, 361
in racemization of (R)-sec-butyl phenyl
ketone, 715
Enolate ions, 708¨C711, 727
acylation of, 832¨C838, 851
alkylation of, 724, 725¨C726, 729, 839¨C845,
850, 852
of esters, 831¨C857
in Claisen condensation, 832¨C835, 851
in Dieckmann reaction, 835, 851
and hydrogen-deuterium exchange, 713¨C715
intermediate
in aldol condensation, 715¨C720, 728
in conjugate addition to H9251,H9252-unsaturated
carbonyl compounds, 722, 728¨C729
in haloform reaction, 711¨C712, 727
Enolization, 705¨C708, 727. See also Enol
mechanism of
acid catalyzed, 706
base catalyzed, 708
Entgegen (E), 173¨C175, 199
Enthalpy, 74, 106¨C107, 155
Entropy, 106
and ionization of carboxylic acids, 747
Envelope conformation, 108, 120
Environmentally benign synthesis, 598¨C599
Enzymes
aconitase, 772
alcohol dehydrogenase, 600
aldolase, 1003
carbonic anhydrase, 749
carboxypeptidases, 1071, 1086¨C1088
chymotrypsin, 1071
emulsin, 992¨C993
fatty acid synthetase, 1019
fumarase, 276
haloalkane dehalogenase, 314
lactase, 993
lactic acid dehydrogenase, 602, 681
maltase, 992¨C993
monooxygenases, 638, 684
pepsin, 1071
phosphoglucose isomerase, 1002
restriction enzymes, 1101
reverse transcriptase, 1098
RNA polymerase, 1096
succinate dehydrogenase, 182
triose phosphate isomerase, 1004
trypsin, 1071
Epichlorohydrin, 85
Epimers, 1002
Epinephrine, 640, 869, 1066. See also
Adrenaline
Epoxidation
of alkenes, 238¨C240, 250, 630, 645
biological
of arenes, 948, 1064
of squalene, 638, 1036
of (E)- and (Z)-2-butene, 285
propene, 274
Epoxides
biosynthesis of, 637¨C638, 1064
nomenclature of, 238¨C239, 620
preparation of, 238¨C240, 250, 274,
630¨C632, 645
reactions of, 632¨C637
with ammonia, 634
in biological processes, 637¨C638
with Grignard reagents, 587¨C588, 608,
632, 635
with lithium aluminum hydride, 635
with nucleophilic reagents, 632¨C637,
645¨C646
1,2-Epoxycyclohexane
hydrolysis of, 637
preparation of, 631
reactions of
with hydrogen bromide, 637
with sodium azide, 877
1,2-Epoxycyclopentane reaction with sodium
ethoxide, 633
1,2-Epoxypropane
preparation of, 632
reaction with phenylmagnesium bromide,
635
stereogenic center in, 263, 274
Equatorial bonds in cyclohexane, 100¨C103,
119
Equilibrium constants
for enolization, 706, 727
for hydration of aldehydes and ketones, 663
table
relation to H9004G°, 106
Ergosterol, 1039
Ernst, Richard R., 492
Erythro, stereochemical prefix, 278
Erythromycin, 758
D-Erythrose, 975
furanose forms, 978¨C981
L-Erythrose, 975
Essential
amino acids, 1054¨C1055
fatty acids, 1024
oils, 1025
Esterification. See also Esters
of amino acids, 1063, 1079
Fischer, 593¨C594, 610, 754¨C757, 767, 789
of glycerol, 1022¨C1023
of phenols, 949¨C952, 963
Esters
enolates of, 831¨C857
infrared spectra, 519 table, 817
of inorganic acids, 595¨C596, 610
lactones, 758¨C759, 788
naturally occurring, 787¨C788
nomenclature of, 775¨C776
nuclear magnetic resonance spectra, 817
physical properties, 788, 790
preparation by Baeyer-Villiger oxidation,
683¨C684, 691, 789
preparation from alcohols
with acyl chlorides, 594, 595, 610, 781,
789, 820
with carboxylic acid anhydrides, 595,
610, 785¨C787, 789, 820
by Fischer esterification, 593¨C594, 595,
610, 754¨C757, 767, 789
reactions, 790¨C800
with ammonia and amines, 791, 799¨C800
Claisen condensation, 832¨C835,
836¨C837, 851
Dieckmann reaction, 835¨C836, 851
Esters¡ªCont.
with Grignard reagents, 560¨C561, 572,
I-15 INDEX
583, 790
hydrolysis of, acid catalyzed, 791¨C794,
820
hydrolysis of, base promoted, 791,
794¨C799, 820
reduction of, 587, 790
resonance in, 778
thioesters, 800
waxes, 1024
Estradiol, 1040
Estrogens, 1040
Ethane, 56¨C57
acidity of, 343, 345, 552
bond angles and bond distances in, 57, 343
bond dissociation energies in, 343
bonding in, 37, 46
chlorination of, 54, 156
conformations of, 90¨C93, 117¨C118
dehydrogenation of, 168
electrostatic potential map, 53
1
H chemical shift, 495
in natural gas, 56
1,2-Ethanediol. See Ethylene glycol
Ethanoic acid. See Acetic acid
Ethanol, 128, 130, 580¨C581
acidity of, 135, 740¨C741
and benzaldehyde, acetal from, 669
biological oxidation of, 600¨C602
13
C chemical shifts, 606
conversion to diethyl ether, 592
dehydration of, 182
dipole moment of, 130, 863
by fermentation, 580¨C581
hydrogen bonding in, 130¨C131
industrial preparation of, 223, 581
physical properties of, 130, 132¨C133, 580
reduction of aryl diazonium salts by, 894,
907
Ethene, 38, 167. See also Ethylene
Ethers, 619¨C653, 954¨C958. See also Epoxides
as anesthetics, 647, 649
crown ethers, 622¨C624, 644
1
H chemical shifts, 641, 647
infrared spectra, 641
mass spectra, 643
nomenclature of, 619¨C620
physical properties of, 622
polyethers, 622¨C624
preparation of
from alcohols, 590¨C593, 610, 625¨C626,
644
from carbohydrates, 1004, 1010
Williamson ether synthesis, 626¨C627,
644, 954, 964
reactions of
Claisen rearrangement of allyl aryl
ethers, 957¨C958, 964
cleavage by hydrogen halides, 628¨C630,
645, 956¨C957, 964
oxidation of, 627
structure and bonding in, 621
Ethoxide ion
electrostatic potential map, 741
Ethyl acetate
Claisen condensation of, 832¨C835
electrostatic potential map, 777
enolate of, 833¨C834, 849
1
H NMR spectrum, 817
reaction with pentylmagnesium bromide,
583
saponification, 796
Ethyl acetoacetate
in acetoacetic ester synthesis, 839¨C841,
847, 850
enolate addition to H9251,H9252-unsaturated ketones,
847
preparation of, 832¨C835
Ethyl alcohol. See Ethanol
Ethylamine, basicity of, 866
Ethylbenzene
benzylic bromination of, 416
dehydrogenation of, 419, 453
Ethyl benzoate
acylation of ketone enolates by, 837¨C838
hydrolysis of, 794, 799
reaction with phenylmagnesium bromide,
572
reduction of, 587, 790
saponification of, 799
Ethyl bromide,
1
H NMR spectrum, 503¨C504
Ethyl butanoate, Claisen condensation of, 851
Ethyl chloride, 48, 156. See also Chloroethane
Ethyl cinnamate, 788
Ethyl cyanoacetate, 857
Ethylene, 168. See also Ethene
acidity of, 343, 345, 552
biosynthesis of, 168
bond dissociation energies in, 343
bonding in, 14, 38¨C40, 47, 54, 170¨C171,
198
discovery, 168
electrostatic potential map, 167, 214, 342,
658
1
H chemical shift, 495
heat of hydrogenation, 209, 211
as industrial chemical, 168, 248, 453, 598
H9266 molecular orbitals of, 386¨C387
natural occurrence, 168
preparation of
dehydration of ethyl alcohol, 182
dehydrogenation of ethane, 168, 181
reactions of
alkylation of benzene, 453
with bromine, 234
dehydrogenation, 340
hydration of, 226
hydrogenation of, 208
oxidation of, 598
polymerization of, 245¨C246, 247,
567¨C570, 573
with sulfuric acid, 224
structure of, 35, 171, 343
Ethylenebromonium ion, 235¨C236
electrostatic potential map of, 208
Ethylene dibromide. See 1,2-Dibromoethane
Ethylene glycol, 248, 589, 635¨C636
electrostatic potential map, 579
polyesters, 809
Ethylene oxide, 116, 238, 248, 620. See also
Oxirane
dipole moment, 622
industrial preparation of, 248, 598
reactions with nucleophiles, 587¨C588, 608,
632¨C633, 635¨C636
structure of, 620, 621
Ethyl fluoroacetate
reaction
with ammonia, 791
with cyclohexylamine, 799
Ethyl group, 65
spin-spin splitting in, 503¨C504
Ethyl hydrogen sulfate, 223
Ethylmagnesium bromide, reaction of
with acetophenone, 559
with alkynes, 556
with cyclohexanone, 662
Ethyl 3-oxobutanoate. See Ethyl acetoacetate
Ethyloxonium ion as intermediate
in dehydration of ethyl alcohol, 187
in formation of diethyl ether, 592
Ethyl pentanoate, Claisen condensation of, 838
Ethyl propanoate
Claisen condensation of, 835
saponification, 796
Ethyl thioacetate
electrostatic potential map, 777
Ethyl p-toluenesulfonate, 326
Ethyne. See Acetylene
Ethynyl group, 340
European bark beetle, 615
Exothermic reaction, 11, 74
and relation to bond energies, 155
Faraday, Michael, 383, 399
Farnesene, 167
Farnesol, 1026, 1027
pyrophosphate, 1029¨C1030
Fats, 788, 1017¨C1019
Fatty acids, 788, 795, 1017¨C1019
biosynthesis of, 1060¨C1063
essential, 1025
esters of, 788, 1022¨C1024
fats as sources of, 788, 795, 1017
Fehling¡¯s solution, 999
Fermentation, 580¨C581
Ferrocene, 567
electrostatic potential map, 546
Fibroin, 1085
Fibrous proteins, 1086
Field effect, 747
Fieser, Louis F., 978
Fieser, Mary, 978
Fingerprint region of infrared spectrum, 519
First point of difference rule, IUPAC
nomenclature, 68, 408, 859
Fischer, Emil, 271
determination of glucose structure by,
996, 1014
Fischer esterification. See Esterification; Esters
Fischer projection formulas, 271¨C272, 278,
280, 292, 595
H9251-amino acids, 1056, 1103
carbohydrates, 973¨C974, 1007
of meso stereoisomer, 280
tartaric acids, 286
INDEX I-16
Flagpole hydrogens, 99¨C100
Fluorinated hydrocarbons,
boiling points, 130, 132
Fluorine
electron-dot structure of F
2
, 13
electronegativity, 15
magnetic resonance spectroscopy of
19
F,
544
reaction with alkanes, 148, 155
Fluorobenzene
physical properties, 941
preparation of, 919
Fluorocyclohexane, 105, 107
1-Fluoro-2,4-dinitrobenzene, 923, 1071¨C1072
Fluoroethane, attractive forces in, 130
Fluoromethane. See Methyl fluoride
p-Fluoronitrobenzene, nucleophilic aromatic
substitution in, 923¨C925, 956
m-Fluorophenol, bromination, 948
p-Fluorophenol, O-acylation, 949
Formal charge, 15¨C19, 41
Formaldehyde, 241, 654
electrostatic potential map, 654, 658
hydration of, 663¨C667
industrial preparation of, 580, 661
in mixed aldol addition, 719
reaction with Grignard reagents, 555, 557,
572
structure and bonding, 14, 28¨C29, 657
Formic acid, 164, 737
natural occurrence, 750
structure and bonding, 738¨C739
Fourier-transform spectroscopy
infrared (FT-IR), 519
nuclear magnetic resonance (FT-NMR),
492, 515
Fragmentation in mass spectrometry, 529¨C530
Fragment condensation in peptide synthesis,
1080
Free energy, relation to equilibrium constant,
106¨C107, 740
Free radical, 149¨C159, 162¨C163
allylic, 365, 370¨C372, 390¨C391
benzylic, 414
bonding in, 149, 162
chain reactions of, 153¨C159, 162¨C163
as intermediates in
addition of hydrogen bromide to alkenes,
220¨C223, 251
allylic halogenation, 370¨C372, 391
benzylic halogenation, 415
halogenation of alkanes, 148¨C159,
162¨C163
polymerization of alkenes, 245¨C246
stabilization by alkyl groups, 149¨C150, 162
Freons, 48
Friedel, Charles, 451
Friedel-Crafts acylation
with acyl chlorides, 446, 453¨C454, 780, 951
of anisole, 478, 660
of benzene, 453¨C457, 473¨C474
of bromobenzene, 473, 921
with carboxylic acid anhydrides, 455, 784,
921
of 2-ethylacetanilide, 888
of furan, 476
mechanism of, 454
of naphthalene, 474¨C475
of phenol, 951
scope and limitations, 479 table
of p-xylene, 471
Friedel-Crafts alkylation
with alcohols, 950
with alkenes, 453
with alkyl halides, 446, 450¨C451, 478
of benzene, 450¨C453, 478
of o-cresol, 950
scope and limitations, 479 table
Fries rearrangement, 952
Frontier orbitals, 386
D-Fructose, 973, 986, 1002
6-phosphate, 1003
Fukui, Kenichi, 390
Fullerenes, 410¨C411
Fumarase, 276
Fumaric acid, 182, 276
Functional class nomenclature
of alcohols, 128
of alkyl halides, 127
Functional groups, 55¨C56, 80, 126
and infrared spectroscopy, 487, 518, 536
tables of, inside front cover, 55, 56
transformation of, by nucleophilic
substitution, 303¨C305
Furan, 430
bonding in, 432
electrophilic aromatic substitution in, 476
Furanose forms of carbohydrates, 978¨C981
Furfural, 430, 682, 751
G (symbol for free energy), 106
GABA. See H9253-Aminobutyric acid
Gabriel, Siegmund, 875
Gabriel synthesis, 875¨C876, 902
D-Galactal, 991
D-Galactitol, 998, 999
D-Galactose, 977
natural occurrence, 976
pyranose form, 983¨C984
reduction of, 998
Gas chromatography (GC), 530¨C531
Gasoline, 70
Gauche conformation, 92, 117
of butane, 94, 118
Gel electrophoresis. See Electrophoresis
Geminal coupling, 507
Geminal dihalides
by hydrogen halide addition to alkynes,
354, 361
in preparation of alkynes, 348¨C349, 359
Geminal diols. See Diols
Generic names of drugs, 63
Genetic code, 1100
Geneva rules, 63
Genome, 1100
Geometric isomers, 109, 202. See
also Stereoisomers
Geraniol, 205, 1030
pyrophosphate, 1029¨C1030
Geranylgeraniol, 1030
Gilbert, Walter, 1102
Globular proteins, 1086
H9251-D-Glucopyranose, 982, 985. See also
D-Glucose
pentaacetate, 1004
H9252-D-Glucopyranose, 982, 985, 1007. See also
D-Glucose
D-Glucose, 580, 973, 976. See also
H9251-D-Glucopyranose; H9252-D-
Glucopyranose
conversion to D-fructose, 1002
electrostatic potential map, 972
epimerization of, 1002
Fischer determination of structure, 996,
1014
hydrogenation of, 612
metabolism, 1015
methyl glycosides, 990¨C991
mutarotation of, 985¨C986
natural occurrence, 976
oxidation of, 1000
6-phosphate, 1003
pyranose form, 981¨C983
L-Glucose, 1001
D-Glucuronic acid, 1000
L-Glutamic acid, 1055, 1059, 1063¨C1065
electrostatic potential map, 1053
L-Glutamine, 1055, 1059
electrostatic potential map, 1053
Glycals, 991
D-Glyceraldehyde
Fischer projection formula, 974
3-phosphate, 1003
L-Glyceraldehyde, 974
Glycerol. See also Phosphoglycerides
esters, 788, 795, 1017¨C1018, 1022¨C1023,
1043
Glycine, 1054, 1056, 1059
acetylation, 1063
acid-base properties, 1057¨C1061
electrostatic potential map, 1053
ethyl ester, 1079, 1080
Glycogen, 995
Glycolysis, 1002¨C1004, 1093
Glycoproteins, 995
Glycosides, 988¨C991, 1008. See also
Disaccharide; Polysaccharide
Goodyear, Charles, 383
Gossypol, 947
Grain alcohol, 128. See also Ethanol
Graphite, 410
Grignard, Victor, 550
Grignard reagents
acetylenic, 553, 556¨C557
basicity of, 551¨C553, 570
preparation of, 550¨C551, 571
reactions of
with aldehydes, 555, 572, 661, 662
carboxylation, 750¨C752, 766
with epoxides, 587¨C588, 608, 632, 635
with esters, 560¨C561, 572, 583, 790
with formaldehyde, 555, 557, 572, 582
Grignard reagents¡ªCont.
with ketones, 555, 559, 572, 662
with nitriles, 816¨C817, 822
I-17 INDEX
with H9251,H9252-unsaturated aldehydes and
ketones, 722
Griseofulvin, 920
Guaiacol, 956
Guanine, 1091, 1094¨C1100
Guanosine, 1092
D-Gulose, 977
Gum benzoin, 399
Gutta percha, 383
Gutte, Bernd, 1083¨C1084
h (symbol for Planck¡¯s constant), 488
H (symbol for enthalpy), 74
H9004H°
and bond dissociation energy, 155
and heats of reaction, 74
relation to free energy, 106¨C107
Half-chair conformation, 103
Halides. See Acyl chlorides; Alkenyl halides;
Alkyl halides; Aryl halides
H9251-Halo aldehydes, preparation of, 703
H9251-Halo carboxylic acids
nucleophilic substitution in, 760
preparation of, 759¨C760, 767
reaction with ammonia, 760, 874
Halogen addition. See also Bromine; Chlorine
to alkenes, 233¨C236, 250, 284¨C285
to alkynes, 356¨C357, 361
to conjugated dienes, 382
Halogenation. See also Bromination;
Chlorination
aldehydes and ketones, 703¨C705,
713, 727
carboxylic acids, 759¨C760, 767
electrophilic aromatic substitution, 446,
448¨C450, 466, 468¨C469, 471¨C474,
478, 919
free radical
of alkanes, 54, 126, 148¨C159, 162¨C163
allylic, 370¨C372, 392
benzylic, 414¨C416
Halohydrins
conversion to epoxides, 630¨C632, 645
from epoxides, 637
preparation of, from alkenes, 236¨C238, 250
H9251-Halo ketones, preparation of, 703, 727
Halonium ion, 235¨C238, 250
Halothane, 48
Hammond, George S., 145
Hammond¡¯s postulate, 145
Hassel, Odd, 99
Haworth, Sir Norman, 980
Haworth formulas, 980
Heat of combustion, 74
aldehydes and ketones, 658
alkanes, 74¨C77
alkenes, 176¨C178
cycloalkanes, 98 table
dimethylcyclohexanes, 110 table
cis- and trans-1,2-dimethylcyclopropane,
109
Heat of formation, 77
Heat of hydrogenation, 209
alkadienes, 374¨C375
alkenes, 209¨C212
alkynes, 350¨C351
allene, 375
benzene, 404
butene isomers, 209¨C211
1,3-cyclohexadiene, 404
(Z )-1,3,5-hexatriene, 404
Heat of reaction, 77, 155
H9251-Helix, 1084¨C1086
Hell-Volhard-Zelinsky reaction, 759¨C760, 767
Heme, 1088
Hemiacetal, 669
cyclic, of carbohydrates, 978¨C984
Hemiketal. See Hemiacetal
Hemoglobin, 1089¨C1090
Henderson-Hasselbalch equation, 743, 865
Heptanal
cyclic acetal of, 670
oxime, 674
preparation of, 597
in reductive amination, 880
Heptane, 62
photochemical chlorination of, 166
1-Heptanol
oxidation of, 597
reaction with hydrogen bromide, 138
2-Heptanone, 363, 840
3-Heptanone,
13
C NMR spectrum, 687
Heroin, 869
Hertz, Heinrich R., 488
Heterocyclic compounds. See also Furan;
Purine; Pyridine; Pyrimidine;
Pyrrole
aliphatic, 116¨C117, 620
aromatic, 430¨C433, 436¨C437, 1090¨C1091
electrophilic aromatic substitution in,
475¨C476
nucleophilic aromatic substitution in,
927
basicity of heterocyclic amines, 868
Heterogeneous reaction, 209
Heterolytic bond cleavage, 150, 302¨C303
Hexachlorophene, 51
Hexafluoroacetone, 664
Hexafluorobenzene, 926, 966
Hexafluoroethane, 132
Hexane, 62
conformation of, 97
infrared spectrum, 519, 520
n-Hexane, 59, 62. See also Hexane
Z-1,3,5-Hexatriene
heat of hydrogenation of, 404
1-Hexene
addition of bromine, 250
heat of hydrogenation, 211
infrared spectrum, 519, 521
cis-3-Hexene, reaction of, with hydrogen
bromide, 214
Hexylmagnesium bromide, reaction of
with acetaldehyde, 555
with ethylene oxide, 588
1-Hexyne, 556
1-Hexynylmagnesium bromide, 556¨C557
High-density lipoprotein, 1038
Highest occupied molecular orbital. See
HOMO
Histamine, 1066
L-Histidine, 1055, 1059
decarboxylation of, 1066
electrostatic potential map, 1053
Hodgkin, Dorothy Crowfoot, 568
Hofmann, August W., 399, 807, 884
Hofmann elimination, 883¨C885, 904
Hofmann rearrangement, 807¨C813, 822
Hofmann rule, 884
HOMO (highest occupied molecular orbital),
386
Homologous series, 59, 75
HOMO-LUMO interactions in pericyclic
reactions
cycloaddition, 388¨C390
HOMO-LUMO transitions in ultraviolet-
visible spectroscopy, 524¨C525
Homolytic bond cleavage, 150
Hückel, Erich, 423
Hückel¡¯s rule, 423¨C429, 432¨C433, 436
Huffman, Donald, 410
Hughes, Edward D., 306, 315, 336
Hund¡¯s rule, 10
Hybrid orbitals. See Orbital hybridization
Hydration
of aldehydes and ketones, equilibria in,
663¨C667, 689
of alkenes
acid-catalyzed, 225¨C227, 249, 581
hydroboration-oxidation, 227¨C233, 250,
582
of alkynes, 355¨C356, 361, 660
enzyme-catalyzed, of fumaric acid, 276
Hydrazine
cleavage of peptides, 1107
reaction
with aldehydes and ketones, 674
with N-alkylphthalimides, 876
in Wolff-Kishner reduction, 456, 662
Hydrazones, 674
Hydride shift
alcohol dehydration, 189¨C190, 201
cholesterol biosynthesis, 1036
electrophilic addition to alkenes, 219¨C220
Friedel-Crafts alkylation, 452, 479
in reaction of alcohols with hydrogen
halides, 330
in S
N
1 reactions, 320
Hydroboration-oxidation, 227¨C233, 250, 582
Hydroformylation, 661, 732
Hydrogen. See also Hydrogenation; Nuclear
magnetic resonance spectroscopy
covalent bonding in, 12
formation of, 6
molecular orbitals, 34¨C35
nuclear spin states, 490¨C491
Hydrogenation. See also Heat of
hydrogenation; Hydrogenolysis of
benzyl
of aldehydes and ketones, 583¨C584, 608
of alkadienes, 374¨C375
of alkenes, 208¨C213, 249
of alkenylbenzenes, 419¨C420, 435
of alkyl azides, 877
INDEX I-18
of alkynes, 350¨C351, 360
of benzene, 403¨C404
of carbohydrates, 996, 1009
of carbon monoxide, 580
catalysts for, 208¨C209, 350¨C351
of esters, 587
of imines, 879¨C880
of ketones, 584, 608
mechanism, 210
of nitriles, 877
of nitroarenes, 878
stereochemistry of, 212¨C213, 285
Hydrogen bonding, 130
in alcohols, 130¨C133, 160
in amines, 863¨C864
in carboxylic acids, 739
between ethers and water, 622
intramolecular
in enol of 2,4-pentanedione, 708
in o-nitrophenol, 942
in peroxyacetic acid, 240
in salicylate ion, 953
in nucleic acid bases, 1094¨C1096
in peptides and proteins, 1084¨C1086
in phenols, 941¨C942
and solvent effects on rate of nucleophilic
substitution, 322
Hydrogen bromide
acidity of, 135¨C137
electrophilic addition
to alkenes, 213¨C216
to alkynes, 353, 361
to conjugated dienes, 379¨C382, 392
to styrene, 435
free-radical addition
to alkenes, 220¨C223, 251, 421
to alkynes, 354
reaction of
with alcohols, 137¨C138, 146, 161,
329¨C330, 591
with epoxides, 635, 637
with ethers, 628¨C630, 645, 956
Hydrogen carbonate ion. See Bicarbonate
Hydrogen chloride
acidity of, 135
addition of
to alkenes, 213, 216, 219¨C220, 249
to alkynes, 354
to conjugated dienes, 379¨C380, 392
electrostatic potential map of, 214
reaction with alcohols, 137¨C140, 143¨C146,
161, 330
Hydrogen cyanide
acid-dissociation constant, 134, 135, 324,
722
addition to
aldehydes and ketones, 667¨C668, 689,
814
H9251,H9252-unsaturated aldehydes and ketones,
722
geometry of, 28
in Kiliani-Fischer synthesis, 1001, 1009
Lewis structure, 14
Hydrogen-deuterium exchange
in alcohols, 166, 510
in carboxylic acids, 763
in cyclopentanone, 714
Hydrogen fluoride, 14, 15
acidity of, 135
addition to alkynes, 354
Hydrogen halides. See also Hydrogen
bromide; Hydrogen chloride;
Hydrogen fluoride; Hydrogen iodide
acidity of, 135
addition of
to alkenes, 213¨C223, 249
to alkenylbenzenes, 420¨C421, 435
to alkynes, 352¨C354, 361
to conjugated dienes, 379¨C382, 392
reactions of
with alcohols, 137¨C140, 143¨C146,
160¨C162, 329¨C330, 332, 591
with epoxides, 635, 637
with ethers, 628¨C630, 645, 956¨C957, 964
Hydrogen iodide
acidity of, 135
cleavage of ethers, 628, 964
reaction with alcohols, 137
Hydrogenolysis, of benzyl esters, 1078¨C1079
Hydrogen peroxide
conformations of, 89
oxidation of dialkyl sulfides by, 639
oxidation of organoboranes by, 228,
230¨C232
Hydrogen sulfide
acidity of, 324
anion of
basicity of, 324
as a nucleophile, 303, 304, 313, 324
boiling point, 604
Hydrolysis
of acetals, 671, 672
of acyl chlorides, 781, 782
of alkyl halides, 312, 315, 582
of alkyl hydrogen sulfates, 224
of amides, 804¨C807, 808, 887
of H9251-bromo carboxylic acids, 760
of 2-bromooctane, stereochemistry of,
307¨C308, 319
of tert-butyl bromide, 315¨C316
of carboxylic acid anhydrides, 785
of carboxylic acid derivatives, relative rate,
780 table
of cyanohydrins, 753
of epoxides, 635¨C637
of esters, 791¨C799, 820
of nitriles, 752¨C753, 766, 815¨C816
of peptides and proteins, 1070¨C1071
Hydronium ion, 134, 135. See also
Oxonium ion
Hydrophilic, 744
Hydrophobic effect, 74
Hydroquinone, 940, 958
Hydroxide ion
as base, 135, 191, 345, 604, 709, 742
as nucleophile, 306¨C315, 665, 712,
794¨C799, 808
o-Hydroxybenzoic acid, 737. See also
Salicylic acid
Hydroxylamine, 674
Hydroxylation of alkenes
anti, 637
syn, 590
Hyperconjugation, 142
Hypophosphorous acid, 894, 907
Hz (symbol for Hertz), unit of frequency, 488
Ibuprofen, 85, 273, 768
Icosane, 62
Icosanoic acid, 1018
D-Idose, 977
Iijima, Sumio, 411
Imidazole, 431, 868
Imides, 804
Imines
in addition of Grignard reagents to
nitriles, 816
in biological chemistry, 675¨C676, 1065
as intermediates in reductive amination,
879¨C880
preparation of, 672¨C673, 689
stereoisomers, 695
Iminium ion, 880
Imino acid, 815¨C816
Indene, 420
Index of hydrogen deficiency, 532¨C533
Indigo, 4, 98, 859
Indole, 430¨C431
Induced dipole-induced dipole forces,
72¨C74, 76, 130. See also van der
Waals forces
Inductive effect, 141
and acidity of carboxylic acids, 740, 745¨C748
in acyl chlorides, 778
of alkyl groups
in aldehydes and ketones, 658, 664
in alkenes, 176¨C178, 199
in alkynes, 350
in carbocations, 141¨C143, 162, 317
of trifluoromethyl group, 461, 664
Industrial preparation of
of acetaldehyde, 598
of acetic acid, 750
of acetic anhydride, 783
of acetone, 661, 947, 969
of acetylene, 340
of aldehydes, 661
of benzene, 399
of 1,3-butadiene, 378
of chloromethanes, 148
of 1,2-epoxypropane, 632
of ethanol, 223
of ethylene, 168, 181
of ethylene oxide, 248, 598
of formaldehyde, 580, 661
of isopropyl alcohol, 224
of methanol, 579¨C580
of phenol, 920, 947, 969
of propene, 168, 181
of styrene, 419, 453
of terephthalic acid, 750
of urea, 802¨C803
Infrared spectra. See also Infrared
spectroscopy
benzyl alcohol, 522, 523
I-19 INDEX
butanal, 685
butylamine, 898
tert-butylbenzene, 520¨C521
p-cresol, 960
cyclohexanol, 605¨C606
diethylamine, 898
dipropyl ether, 642
hexane, 520
2-hexanol, 520, 522
2-hexanone, 522¨C523
1-hexene, 520¨C521
4-phenylbutanoic acid, 764
Infrared spectroscopy, 518¨C523, 536. See also
Infrared spectra
absorption frequencies table, 519
alcohols, 519, 520, 605
aldehydes and ketones, 519, 520, 522,
684¨C685
amines, 897¨C898
carboxylic acids and derivatives, 519,
763¨C764, 817
ethers and epoxides, 641
nitriles, 519, 817
phenols, 960
Ingold, Sir Christopher, 4
and stereochemical notation, 174, 268¨C271
and studies of reaction mechanisms
electrophilic aromatic substitution, 447
elimination, 192¨C194
nucleophilic substitution, 144, 146, 306,
315
Initiation step, 149, 153¨C154, 221, 246
Initiators of free-radical reactions, 220¨C221,
245¨C246, 415¨C416
Insulin, 1070, 1073¨C1074, 1080
Integration and NMR peak area measurement,
497
International Union of Pure and Applied
Chemistry. See IUPAC
Inversion of configuration
complete, in S
N
2 reactions, 307¨C309, 331
partial, S
N
1 reactions, 318¨C319, 331
Iodination
of alkanes, 148
of alkenes, 233
of arenes, 450
Iodobenzene, 563, 919
Iodomethane. See Methyl iodide
Iodomethylzinc iodide
preparation of, 564, 571
reactions with alkenes, 563¨C565, 572
Ion-exchange chromatography, 1070¨C1071
Ionic bonds, 11¨C12, 44
Ionization constant. See Acid dissociation
constants
Ionization energy, 11
Ionization potential. See Ionization energy
H9251- and H9252-Ionone, 1049
Ionophore, 624, 1023
Iron, reduction of nitroarenes by, 878
Iron(III) salts as catalysts in halogenation of
arenes, 446, 448¨C450
Isoamyl acetate, in bananas, 85, 788
Isobutane, 57. See also 2-Methylpropane
Isobutene. See 2-Methylpropene
Isobutyl chloride, 158, 452
Isobutylene, 167. See also 2-Methylpropene
Isobutyl group, 66. See also 2-Methylpropyl
group
Isobutyl radical, 158
Isocitric acid, 772
Isocyanates, as intermediates in Hofmann
rearrangement, 812¨C813
Isoelectric point, 1058¨C1059
Isoelectronic, 47¨C48
Isolated diene, 372, 391
L-Isoleucine, 1054, 1059
electrostatic potential map, 1053
Isomers, 2
alkanes, 57¨C61
alkenes, 172¨C174, 198¨C199
classification, 291 table
constitutional, 22, 45, 57
keto-enol, 355, 705¨C707
number of, 60
stereoisomers (see Stereoisomers)
Isopentane, 59¨C61. See also
2-Methylbutane
Isopentenyl pyrophophate, 1028¨C1030,
1033¨C1034, 1044
Isoprene, 383, 1026
Isoprene rule, 1028
Isoprenoid compounds. See Terpenes
Isopropenyl group, 169¨C170
Isopropyl alcohol, 19, 128
industrial preparation of, 224
properties of, 581
Isopropylbenzene. See also Cumene
conversion to phenol, 947, 969
nitration, 878
Isopropyl chloride,
1
H NMR spectrum, 505
Isopropylcyclohexane, 105
Isopropyl group, 65. See also
1-Methylethyl group
size of, 105, 107, 310¨C311
spin-spin splitting in, 505
Isopropyl hydrogen sulfate, 223, 224
Isopropyl radical, 151¨C152
Isoquinoline, 430
Isotactic polymers, 288¨C289, 570
Isotopes. See also Carbon; Hydrogen-
deuterium exchange
in biosynthetic studies, 1033¨C1034
H-D exchange in alcohols, 166, 510
H-D exchange in carboxylic acids, 763
H-D exchange in cyclopentanone, 714
in study of reaction mechanisms
bromine addition to alkenes, 234
Claisen rearrangement, 957
ester hydrolysis, 794, 796¨C797
esterification, 754
hydrolysis of chlorobenzene, 931
nucleophilic aliphatic substitution, 336
nucleophilic aromatic substitution, 928,
931
Isotopic clusters in mass spectrometry,
528¨C529
IUPAC (International Union of Pure and
Applied Chemistry), 63. See also
Nomenclature, IUPAC
J (symbol for coupling constant), 503
Joule (SI unit of energy), 11
K (symbol for equilibrium constant)
relation to H9004G°, 106¨C107
Karplus, Martin, 544
Kazan, University of, 3
Kekulé, August, 3, 399¨C402
Kendrew, John C., 1087
H9251-Keratin, 1085
Ketals. See Acetals
Ketene, 783
H9252-Keto acids, decarboxylation, 762¨C763, 768,
838, 840¨C841, 850
Keto-enol isomerism, 355, 705¨C707
Keto-enol tautomerism. See Keto-enol
isomerism
H9252-Keto esters
acidity of, 831
alkylation of, 839¨C841, 850
Michael addition of, 846¨C847
nomenclature of, 832
preparation of
by acylation of ketones, 837¨C838, 851
by Claisen condensation, 832¨C835, 851
by Dieckmann reaction, 835¨C836,
851
by mixed Claisen condensation,
836¨C837, 851
H9251-Ketoglutaric acid, 1063¨C1065
Ketones
acidity of, 710
chemical shifts,
1
H and
13
C, 684¨C687
classification of carbons in, 702
enolization of, 703¨C711, 727
infrared absorption frequencies, 519,
523, 684
naturally occurring, 659
nomenclature of, 656, 688
physical properties of, 658
preparation of, 659¨C661
by acetoacetic ester synthesis, 839¨C841,
850
by decarboxylation of H9252-keto acids, 838,
850
by hydration of alkynes, 355¨C356, 361,
660
from nitriles, 816¨C817, 822
by oxidation of secondary alcohols, 597,
611, 659¨C661
by ozonolysis of alkenes, 660
reactions of
acetal formation, 669¨C671, 672, 689
acylation via enolate, 837¨C838, 851
aldol condensation, 718, 720, 728
Baeyer-Villiger oxidation, 683¨C684, 691,
789
Clemmensen reduction, 456¨C457, 474,
662
cyanohydrin formation, 667¨C668, 689
with derivatives of ammonia, 674
enamine formation, 674¨C675, 677, 690
with ester enolates, 849
INDEX I-20
with Grignard reagents, 555, 559, 572,
662
halogenation, 703¨C705
hydration, 663¨C667, 689
imine formation, 672¨C673, 689
with organolithium reagents, 554¨C556,
572, 582, 662
reduction, 583¨C587, 608, 662
reductive amination, 879¨C881, 903
Wittig reaction, 677¨C681, 690
Wolff-Kishner reduction, 456, 662
spectroscopy, 684¨C687
structure and bonding, 657¨C658, 688
Ketoses, 973, 986¨C987, 1007
Kevlar, 809
Kharasch, Morris S., 220
Kiliani-Fischer synthesis, 1001, 1009
Kinetic control, 380¨C381
O-acylation of phenols, 952
addition
to conjugated dienes, 380¨C381, 392
to H9251,H9252-unsaturated aldehydes and
ketones, 723
Kinetic studies
of elimination reactions of alkyl halides,
192¨C193
of ester hydrolysis, 796
of H9251-halogenation of aldehydes and
ketones, 704
of nucleophilic aromatic substitution, 923
of nucleophilic substitution, 306, 315¨C318,
331
Kolbe, Hermann, 952
Kolbe-Schmitt reaction, 952¨C953, 963
Kossel, Walter, 12
Kr?tschmer, Wolfgang, 410
Krebs cycle, 1064
Kroto, Harold W., 410
Lactams, 803
Lactase, 993
Lactic acid, 737, 1015
biological oxidation of, 602
(S) enantiomer by enzymic reduction of
pyruvic acid, 681¨C682, 1015
Lactones, 758¨C759, 788
formation of
in Baeyer-Villiger oxidation of cyclic
ketones, 695
by oxidation of carbohydrates, 1000
Lactose, 993
Laetrile, 1012
Lanosterol, 1035¨C1037
Lapworth, Arthur, 703
Lauric acid, 1018
Lavoisier, Antoine-Laurent, 1
LDA. See Lithium diisopropylamide
Leaving groups
and their basicity, 306, 327 table
halides, 192¨C193, 302, 305¨C306, 331 table
nitrogen of diazonium ions, 890
in nucleophilic aromatic substitution, 923
p-toluenesulfonates, 326¨C329
Le Bel, Joseph Achille, 259
Le Chatelier¡¯s principle, 227
Lecithin. See Phosphatidylcholine
Lenthionine, 117
L-Leucine, 1054, 1059
electrostatic potential map, 1053
Leucine enkephalin, 1068¨C1069
Leukotrienes, 1025
Levorotatory, 266
Levulinic acid, 772
Lewis, Gilbert N., 3, 12
Lewis acid, 143
Lewis base, 143
as nucleophile, 143, 312¨C314
Lewis structural formulas, 12¨C14, 42¨C43, 44
formal charges in, 16¨C19
multiple bonding in, 14
and resonance, 23¨C26
writing of, 20 table
Lexan, 809
Liége rules, 63
Limonene, 71, 263, 1031
Linalool, 262
Linear H9251-olefins, 569, 577, 661
Linamarin, 989, 1012
Lindlar palladium, 350¨C351, 360
Linoleic acid, 1018, 1025
Linolenic acid, 1018
Lipids, 1015¨C1050. See also Fats; Oils;
Phospholipids; Steroids; Terpenes;
Waxes
Lipoic acid, 117, 605
Lipophilic, 744
Lister, Joseph, 943
Lithium
electronegativity, 15, 547
reaction with alkyl and aryl halides,
549¨C550, 571
reduction of alkynes, 351¨C352
Lithium aluminum hydride, reducing agent for
aldehydes and ketones, 584¨C587, 608, 662
alkyl azides, 877, 902
amides, 879, 903
carboxylic acids, 587, 608, 659, 754
epoxides, 635
esters, 587, 608, 790
nitriles, 877, 902
table, 608
Lithium dialkylcuprates. See Lithium
diorganocuprates
Lithium diisopropylamide (LDA), 848¨C849
Lithium dimethylcuprate. See Lithium
diorganocuprates
Lithium diorganocuprates
conjugate addition to H9251,H9252-unsaturated
ketones, 724¨C725, 729
preparation of, 561¨C562, 571
reactions with alkenyl, alkyl, and aryl
halides, 562¨C563, 573
Locant, numerical prefix in IUPAC
nomenclature of, 64, 169
London dispersion forces. See van der Waals
forces
Lovastatin, 1038
Low-density lipoprotein, 1038
Lowry, Thomas M., 133
Luciferin, 431
Lucite, 828
Lycopene, 525, 1042
Lynen, Feodor, 1035
L-Lysine, 1055, 1059
electrophoresis of, 1060¨C1061
electrostatic potential map, 1053
D-Lyxose, 977
McGwire, Mark, 1041
Macrolide antibiotics, 758
Magnesium, reaction of with alkyl and aryl
halides, 550¨C551, 571
Magnetic field
induced, and nuclear shielding,
494¨C495
strength of, 491, 493
Magnetic resonance imaging (MRI), 517
Maleic anhydride, 783, 784
dienophile in Diels-Alder reaction, 384,
393
(S)-Malic acid, 276
as resolving agent, 287¨C288
Malonic acid, 737
acidity of, 748
decarboxylation of, 760¨C762, 767¨C768
Malonic ester synthesis 842¨C845, 852
Malonyl coenzyme A, 1020¨C1021, 1033
Maltase, 992¨C993
Maltose, 991¨C992, 999
Mandelic acid, 737
D-Mannose, 977
conversion to D-fructose, 1002
epimerization of, 1002
L-Mannose, 1001
Markovnikov, Vladimir, 215
Markovnikov¡¯s rule, 215
in addition
to alkenes, 214¨C219
to alkynes, 352¨C354, 356, 361
Mass spectrometer, 526¨C527
Mass spectrometry, 526¨C532, 536
alcohols, 607
aldehydes and ketones, 687
amines, 900
carboxylic acid derivatives, 818
ethers, 643
and gas chromatography, 530¨C531
phenols, 961¨C962
Mass-to-charge ratio (mlz), 527
Mauveine, 4
Mayo, Frank R., 220
Maytansine, 920
Maxam, Allan, 1102
Mechanism, 3
acetal formation, 669¨C670, 989
Ad
E
3, 683
Baeyer-Villiger oxidation, 683
bimolecular nucleophilic substitution, 146,
160, 306¨C312, 331 table
biosynthesis
of amino acids by transamination, 1065
of cholesterol, 1036¨C1037
Mechanism¡ªCont.
of fatty acids, 1019¨C1022
terpenes, 1028¨C1034
Birch reduction, 413
I-21 INDEX
chromic acid oxidation, 599¨C600
Claisen condensation, 833¨C834
Claisen rearrangement, 957¨C958
cyanohydrin formation, 668
DCCI promoted peptide bond formation,
1081
decarboxylation of malonic acid, 761
dehydration of alcohols, 185¨C187, 199¨C201
dehydrohalogenation of alkyl halides,
192¨C198, 201
Dieckmann reaction, 835
Diels-Alder reaction, 384
dimerization of 2-methylpropene, 244
DNA replication, 1095
Edman degradation, 1074¨C1076
electrophilic addition to alkenes, 213¨C220,
224
electrophilic aromatic substitution,
444¨C447, 477
bromination, of benzene, 450
Friedel-Crafts acylation, of benzene, 454
Friedel-Crafts alkylation, of
benzene, 451
nitration, of benzene, 447
sulfonation, of benzene, 448
elimination
E1, 196¨C198
E2, 192¨C196, 201, 323¨C325
enamine formation, 674
enol conversion to ketone, 355
enolization, 706, 709
epoxidation, 240
epoxide ring opening, 634, 636
esterification, 756¨C757
ether cleavage, 629
ether formation, 592
free-radical addition of hydrogen bromide
to alkenes, 220¨C223, 251
glycosidation, 990
halogenation
addition to alkenes, 234¨C236, 284¨C285
allylic, of alkenes, 371
H9251, of aldehydes and ketones, 703¨C707
bromination, of benzene, 450
chlorination, of methane, 153¨C156
halohydrin formation, 236¨C238
Hofmann rearrangement, 811¨C812
hydration
of aldehydes and ketones, 665, 666
of alkenes, 226
of alkynes, 355
hydride reduction of aldehydes and ketones,
585¨C587
hydroboration-oxidation, 230¨C233
hydrogenation of alkenes, 210
hydrogen halide addition
to alkenes, 213¨C220, 275
to alkynes, 353
hydrolysis
of acyl chlorides, 782
of amides, 805¨C806, 808
of carboxylic acid anhydrides, 786
of esters, 792¨C794
of nitriles, 815¨C816
saponification, 798
imine formation, 672
nitration of benzene, 447
nucleophilic alkyl substitution
S
N
1, 143¨C144, 162, 315¨C321, 331 table
S
N
2, 146, 162, 306¨C312, 331 table
nucleophilic aromatic substitution
addition-elimination, 923¨C927, 932¨C933
elimination-addition, 927¨C931, 933
polymerization of ethylene
coordination polymerization, 569
free-radical polymerization, 245¨C246
proton transfer, 136¨C137
reaction of alcohols with hydrogen halides,
137¨C146, 160¨C162, 329¨C330, 332
reduction of alkynes by sodium in
ammonia, 352
unimolecular nucleophilic substitution,
143¨C144, 162, 315¨C321, 331
Wittig reaction, 679
Meisenheimer, Jacob, 937
Meisenheimer complex, 937
Menthol, 164, 298, 580, 1027
Menthyl chloride, 206
Meparfynol, 575
Meprobamate, 857
Mercaptans. See Thiols
Mercury (II) compounds, 356
Merrifield, R. Bruce, 1082¨C1084. See also
Solid-phase peptide synthesis
Mesityl oxide, 721
Meso stereoisomer, 279¨C282
Messenger RNA. See Ribonucleic acid,
messenger
Mestranol, 575
Meta (m)
directing groups, 461¨C463, 464 table,
466¨C469, 477, 480
disubstituted aromatic compounds, 406
Metal-ammonia reduction of
alkynes, 351¨C352, 360
arenes (see Birch reduction)
Metal-ion complexes of ethers, 622
Metallocenes, 567, 569
Methane, 56¨C57
acidity of, 344¨C345, 553
bonding in, 35¨C37, 46, 56
chlorination, 148¨C149, 153¨C155
clathrates, 58
conversion to acetylene, 340
electrostatic potential map, 23, 27
natural occurrence, 56
physical properties, 57
structure, 13, 27, 28, 57
Methanesulfonic acid, 326
Methanogens, 58
Methanoic acid. See Formic acid
Methanol, 128, 579¨C580
bond distances and bond angles, 129
13
C NMR, 899
dehydrogenation of, 661
dipole moment of, 129
electrostatic potential map, 129
esterification of, 754¨C757
industrial preparation of, 579¨C580
nitration of, 596
properties of, 580
Methide anion, 344
Methine group, 57
L-Methionine, 641, 1054, 1059
electrostatic potential map, 1053
Methionine enkephalin, 1068¨C1069
Methyl alcohol, 128. See also Methanol
Methyl acetate
UV absorption, 818
Methylamine
basicity of, 865, 866
13
C NMR, 899
electrostatic potential map, 858
reaction with benzaldehyde, 873
structure and bonding, 861¨C863
Methyl benzoate
in mixed Claisen condensation, 836
preparation of, 593, 754¨C757
Methyl bromide
nucleophilic substitution in, 306¨C307, 309
reaction with triphenylphosphine, 680
2-Methylbutane, 73. See also Isopentane
2-Methyl-2-butanol
dehydration of, 183
preparation of, 225
3-Methyl-2-butanol
preparation of, 229
reaction with hydrogen chloride, 330
2-Methyl-2-butene
acid catalyzed hydration, 225, 581
hydroboration-oxidation, 229
hydrogenation of, 209
preparation of
from 2-bromo-2-methylbutane, 191, 197
2-methyl-2-butanol, 183
reaction of
with hydrogen bromide, 223
with hydrogen chloride, 215¨C216
3-Methyl-2-butenyl pyrophosphate. See
Dimethylallyl pyrophosphate;
Isopentenyl pyrophosphate
Methyl cation, 141
electrostatic potential map, 143
Methyl chloride, 132. See also Chloromethane
Methylcyclohexane, conformations of,
104¨C105
2-Methylcyclohexanol, dehydration of, 183
1-Methylcyclopentene
addition of hydrogen chloride, 215
hydroboration-oxidation, 230¨C233
Methylenecyclohexane, 677
Methylene
group, 57
prefix, 170
Methylenetriphenylphosphorane, 677, 680
electrostatic potential map, 678
1-Methylethyl group, 65. See also Isopropyl
group
Methyl fluoride
electrostatic potential map, 548
1
H chemical shift, 495
Methyl H9251-D-glucopyranoside, 990, 999
tetra-O-methyl ether, 1004
Methyl H9252-D-glucopyranoside, 990
Methyl group, 34
Methyl iodide. See also Iodomethane
nucleophilic substitution, 312, 359, 726
reaction with amines, 883
INDEX I-22
Methyllithium, 553
electrostatic potential map, 548
Methylmagnesium halides
reaction of
with butanal, 572
with cyclopentanone, 555
with methyl 2-methylpropanoate, 561
with 1-phenyl-1-propanone, 559
Methyl methacrylate. See Methyl
2-methylpropenoate
Methyl 2-methylpropenoate
hydrolysis, 795
reaction with ammonia, 799
Methyl migration
in alcohol dehydration, 187¨C189
in cholesterol biosynthesis, 1036¨C1037
Methyl nitrate, 596
Methyl nitrite, 22, 24
2-Methylpentane, 64
bromation of, 158
3-Methylpentane, 64
2-Methylpropanal
acidity of, 710
1
H NMR, 685
reaction with tert-butylamine, 689
2-Methylpropane, 65. See also Isobutane
acidity of, 552
bond dissociation energies in, 151¨C152, 414
chlorination, 158
Methyl propanoate
1
H NMR spectrum, 817
in mixed Claisen condensation, 836
2-Methyl-2-propanol, 138. See also
tert-Butyl alcohol
acid-catalyzed dehydration, 182
2-Methylpropene. See also Isobutene;
Isobutylene
addition of hydrogen bromide to, 215
addition of methanol to, 626
bromohydrin formation, 237
dimerization, 244
dipole moment, 176
heat of combustion, 177
hydration mechanism, 226
preparation of, 182
1-Methylpropyl group, 66. See also
sec-Butyl group
2-Methylpropyl group, 66. See also
Isobutyl group
N- Methylpyrrolidone, 803
Methyl radical
dimerization, 154
intermediate in chlorination of methane,
153¨C154
structure and stability, 150
Methyl salicylate, 788, 942
Methyltrioctylammonium chloride, 871
Methyl vinyl ketone
reaction with diethyl malonate, 846¨C847
in Robinson annulation, 724, 728
Mevalonic acid, 758, 1028, 1033, 1044
Mevalonolactone, 759, 772
Micelle, 744¨C745, 795
Michael, Arthur, 724
Michael reaction, 724, 846¨C847, 852. See also
Conjugate addition; H9251,H9252-
Unsaturated carbonyl compounds
Microscopic reversibility, 227
Microwaves, 488, 545
Mitscherlich, Eilhardt, 399
MM3, 97
Models. See Molecular models and modeling
Molar absorptivity, 524
Molecular biology, 1094, 1100
Molecular dipole moments. See Dipole
moment
Molecular formula, 19, 51, 532¨C533
Molecular ion, 526
Molecular models and modeling, 27¨C28,
96¨C97
Molecular orbitals
allyl cation, 397
[10]-annulene, 425
benzene, 407, 424
bonding and antibonding, 34¨C35
1,3-butadiene, 397¨C398
cyclobutadiene, 424
cycloheptatrienyl cation, 427¨C428
cis, trans-1,3-cyclooctadiene, 524
cyclooctatetraene, 424
cyclopentadienide anion, 428
ethylene, 386¨C397
frontier, 386
highest occupied (HOMO), 386, 524
hydrogen, 34¨C35
lowest unoccupied (LUMO), 386, 524
H9266 and H9266*, 386¨C387, 524¨C525
H9268 and H9268*, 34¨C35, 386
Monensin, 624
Monosaccharide, 972. See also Carbohydrates
Monoterpene, 1026
Morphine, 869
Morpholine, 690
MRI. See Magnetic resonance imaging
Multifidene, 298
Multiplets. See also Spin-spin splitting
in
13
C NMR spectra, 515, 535
in
1
H NMR spectra, 500¨C509, 534¨C535
Muscarine, 297
Mutarotation, 985¨C986, 1007
Myoglobin, 1089
Myosin, 1085
Myrcene, 1026
Myristic acid, 1018
n (prefix), 57, 61
H9263 (symbol for frequency), 488
n H11001 1 splitting rule, 500, 508
NAD, NAD
H11001
, NADH, NADPH. See
Nicotinamide adenine dinucleotide
Nanotubes, 411
Naphthalene, 398, 408¨C409
electrophilic aromatic substitution in,
474¨C475
1-Naphthol, azo coupling of, 897
2-Naphthol, nitrosation of, 950
Natta, Giulio, 246, 567¨C570, 573
Natural gas, 57, 69
Nembutal, 845
Neomenthol, 164
Neomenthyl chloride, 206
Neopentane, 60. See also
2,2-Dimethylpropane
Neopentyl group, 66. See also
2,2-Dimethylpropyl group
Neopentyl halides, nucleophilic substitution
in, 312
Neoprene, 4, 383
Neryl pyrophosphate, 1030¨C1031
Neurotransmitters, 869, 1066
Newman, Melvin S., 90
Newman projections, 90¨C92, 94, 99
Nickel, hydrogenation catalyst, 208, 209, 403,
583¨C584
Nickel carbonyl, 566
Nicotinamide adenine dinucleotide
coenzyme in
epoxidation of alkenes, 638, 1036
fatty acid biosynthesis, 1020
formation of acetyl coenzyme A, 1016
oxidation of alcohols, 600¨C602
reduction of pyruvic acid, 681¨C682
structure of, 600
Nicotine, 51, 272, 274, 869
Ninhydrin, 1063
Nirenberg, Marshall, 1108
Nitration
of acetanilide, 887
of acetophenone, 473
of benzaldehyde, 467, 873
of benzene, 446, 447¨C448, 473
of p-tert-butyltoluene, 471
of chlorobenzene, 469¨C470
of p-cresol, 950
of fluorobenzene, 478
of p-isopropylacetanilide, 886
of p-methylbenzoic acid, 472
of phenol, 463, 950
of toluene, 457, 458¨C460, 474
of (trifluoromethyl)benzene, 458, 461¨C462
of m-xylene, 472
Nitric acid
nitration of arenes by, 447¨C448
oxidation
of carbohydrates, 1000
of p-xylene, 750
reaction with alcohols, 595¨C596, 610
Nitriles. See also Cyanohydrins
H9251-amino, as intermediates in Strecker
synthesis, 1061¨C1062
hydrolysis of, 752¨C753, 766, 815¨C816
infrared absorption, 817
nomenclature of, 776
preparation of
from alkyl halides, 304, 324, 752, 814
from aryl diazonium salts, 894, 905
by dehydration of amides, 814
reaction with Grignard reagents, 816¨C817
reduction, 877, 902
m-Nitroaniline, diazotization of, 893, 904, 905
o-Nitroaniline, diazotization of, 907
p-Nitroaniline
basicity of, 867
bromination of, 904
preparation of, 887
Nitrobenzene
electrophilic aromatic substitution in, 469,
I-23 INDEX
919
preparation of, 446, 447¨C448, 474
Nitro group
electron-withdrawing effect of, 464, 469,
926, 944¨C945
reduction, 878, 902
Nitromethane, 20, 22, 24¨C25
Nitronium cation, 447
m-Nitrophenol
acidity of, 944, 945
preparation of, 905, 946
o-Nitrophenol
acidity of, 944
intramolecular hydrogen bonding, 942
reaction with
acetic anhydride, 951, 963
butyl bromide, 964
p-Nitrophenol
acidity of, 944
esters of, in peptide bond formation, 1080
Nitrosamines, 889
Nitrosation
amines, 888¨C891, 904¨C905
phenols, 950
N-Nitrosodimethylamine, 889
N-Nitrosonornicotine, 889
N-Nitrosopyrrolidine, 889
Nitrous acid, 888¨C895. See also
Nitrosation
Nobel, Alfred, 596
Noble gas electron configuration, 11
Nodal properties
p orbitals, 9
of H9266 orbitals and pericyclic reactions,
386¨C390
surfaces, 8
Nomenclature
common names
of alcohols, 128
of alkanes, 61
of alkenes, 167¨C170
of alkenyl groups, 170
of alkyl groups, 65¨C66, 83, 127
of carboxylic acids, 767, 798
functional class, 127, 159
historical development of, 63
IUPAC
of acyl halides, 775
of alcohols, 127¨C128, 159
of aldehydes, 654¨C655, 688
of alkadienes, 374
of alkanes, 61¨C69, 81¨C82 table
of alkenes, 167¨C170, 198
of alkyl groups, 65¨C66, 83 table
of alkyl halides, 127, 159
of alkynes, 340
of amides, 776
of amines, 859¨C861, 900
of benzene derivatives, 406¨C408
of bicyclic ring systems, 115
of carboxylic acid anhydrides, 775
of carboxylic acids, 737¨C738
of cycloalkanes, 68¨C69, 82 table
of diols, 589
of epoxides, 238, 620
of esters, 775
of ethers, 619¨C620
of H9252-keto esters, 832
of ketones, 656, 688
of lactones, 758¨C759
of nitriles, 776
of organometallic compounds, 547, 570
of sulfides, 620
of thiols, 604
stereochemical notation
cis and trans, 108¨C109
D-L, 973¨C978, 1007
erythro and threo, 278
E-Z, 173¨C175, 199
R-S, 268¨C271
substitutive, 127, 159
Nomex, 809
Norepinephrine, 640, 1066
Norethindrone, 1042
Nuclear magnetic resonance spectra
carbon
1-chloropentane, 511
m-cresol, 514
3-heptanone, 687
methanol, 899
methylamine, 899
1-phenyl-1-pentanone, 516
proton
benzyl alcohol, 509
2-butanone, 686
chloroform, 494
1-chloropentane, 511
p-cresol, 961
1,1-dichloroethane, 501
dipropyl ether, 642
ethyl acetate, 817
ethyl bromide, 503
isopropyl chloride, 505
methoxyacetonitrile, 497
4-methylbenzyl alcohol, 899
4-methylbenzylamine, 898¨C899
2-methylpropanal, 685
methyl propanoate, 817
m-nitrostyrene, 508
4-phenylbutanoic acid, 764
2-phenylethanol, 607
2,3,4-trichloroanisole, 507
Nuclear magnetic resonance spectroscopy
carbon, 510¨C517, 535
alcohols, 606
aldehydes and ketones, 686¨C687
amines, 899
in biosynthetic studies, 1034
carboxylic acid derivatives, 818
carboxylic acids, 763¨C764
ethers, 643
and magnetic field strength, 491¨C493
proton, 490¨C510, 535
alcohols, 509¨C510, 535
aldehydes and ketones, 684¨C687
amines, 898¨C899
carboxylic acid derivatives, 817¨C818
carboxylic acids, 763¨C764
chemical shift, 493¨C497, 534
and conformations, 510, 535
ethers and epoxides, 641¨C642
interpretation, 497¨C500, 534
nuclear shielding, 493¨C494
phenols, 960¨C961
spin-spin splitting, 500¨C509
Nuclear spin states, 490¨C491
Nucleic acids, 1093¨C1103. See also
Deoxyribonucleic acid;
Ribonucleic acid
Nucleophiles, 142¨C143, 162, 302¨C305
relative reactivity, 312¨C315
solvation and reactivity, 322¨C323
Nucleophilic acyl substitution, 774¨C830
of acyl chlorides, 780¨C783, 820
of amides, 804¨C807, 808, 821
of carboxylic acid anhydrides, 783¨C787, 820
of esters, 790¨C800, 820
of thioesters, 800
Nucleophilic addition
to aldehydes and ketones, 663¨C682, 688¨C691
to H9251,H9252-unsaturated aldehydes and ketones,
722¨C724, 725, 728, 846¨C847, 852
Nucleophilic alkyl substitution
alcohols, 139¨C146
alkyl halides, 302¨C325, 680, 752, 814,
839¨C845
alkyl p-toluenesulfonates, 326¨C328, 332
allylic halides, 366¨C369, 390, 840
benzylic halides, 417¨C419
crown ether catalysis of, 625
epoxides, 632¨C637
enzyme-catalyzed, 314
H9251-halo carboxylic acids, 760
phase-transfer catalysis of, 871¨C872
Nucleophilic aryl substitution, 922¨C931,
932¨C933, 946, 956
Nucleosides, 1091¨C1092
Nucleotides, 1092¨C1093
Nylon, 4, 809
Octadecanoic acid, 737
Octane isomers, heats of combustion and
relative stability, 75¨C76
Octane number of gasoline, 71
2-Octanol, 555
reaction with hydrogen bromide, 330
Octet rule, 13, 44
Off-resonance decoupling, 515
Oil of wintergreen. See Methyl
salicylate
Oils. See Fats
Olah, George A., 74
Olefin, 168. See also Alkenes
H9251-Olefins. See Linear H9251-olefins
Oleic acid, 173, 737, 1018
Oligosaccharide, 973
Opsin, 676
Optical activity, 265¨C267, 291
and chemical reactions, 274¨C276, 284¨C285,
292, 307¨C308, 318¨C319, 328, 330,
714¨C715
Optical purity, 266
Optical resolution. See Resolution
Orbital hybridization
model for bonding, 35¨C42, 46¨C47
sp
in acetylene and alkynes, 40¨C42, 47,
INDEX I-24
341¨C343, 358
in alkenyl cations, 353
in allenes, 377¨C378
sp
2
in alkadienes, 375¨C377
in aniline, 862¨C863
in benzene, 405
in carbocations, 141, 161¨C162
in ethylene and alkenes, 38¨C40, 47,
170¨C172, 198
in formaldehyde, 657
in free radicals, 150, 162
sp
3
in alkyl halides, 129
in ethane, 37, 46, 57
in methane, 35¨C37, 46, 57
in methanol, 129
in methylamine, 861, 862
Orbital symmetry, 397
and Diels-Alder reaction,
388¨C390
Orbitals
atomic, 7¨C11
hybrid orbitals, 35¨C42, 46
molecular (see Molecular orbitals)
Organic chemistry, historical background of,
1¨C6
Organoboranes, 228, 230¨C233
Organocopper compounds. See Lithium
diorganocuprates
Organolithium reagents
basicity of, 551¨C553, 570
preparation of, 549¨C550, 571
reaction of
with aldehydes and ketones, 554¨C556,
572, 573, 582
with epoxides, 587¨C588
with nitriles, 817
Organomagnesium compounds. See Grignard
reagents
Organometallic compounds, 546¨C578. See
also Grignard reagents; Lithium
diorganocuprates; Organolithium
reagents; Organozinc compounds
Organozinc compounds, 563¨C565, 571, 572
Ortho (o), disubstituted organic compounds,
406
Ortho-para directing groups, 457¨C461,
463¨C466, 464 table, 469¨C470
Osmium tetraoxide, 589¨C590, 608
Oxalic acid, 164, 748
Oxane, 593
Oxaphosphetane, 679
Oxazole, 431
Oxidation. See also Epoxidation;
Hydroxylation of alkenes;
Ozonolysis
of alcohols, 596¨C600, 611, 659¨C661, 751
of aldehydes, 682, 691, 751
of alkylbenzenes, 416¨C417, 435, 750, 751
biological, 409, 417, 600¨C602
of carbohydrates, 998¨C1001, 1009
of ketones, 683¨C684, 691
of phenols, 958¨C959, 964
of vicinal diols, 602¨C603, 609
Oxidation-reduction in organic chemistry,
78¨C80, 83
Oximes, 674
Oxirane, 620. See also Ethylene oxide
Oxolane, 620. See also Tetrahydrofuran
Oxonium ions, 134, 135¨C136, 226
in dehydration of alcohols, 185¨C187, 190,
198
in epoxide ring opening, 635¨C636
in ether cleavage, 629
in reaction of alcohols with hydrogen
halides, 140, 143¨C146, 160¨C161,
329
in solvolysis reactions, 312, 315¨C318
Oxo process. See Hydroformylation
Oxyacetylene torch, 350
Oxygen
biological storage and transport of,
1089¨C1090
isotopic labels, 754, 794, 796¨C797
Oxytocin, 1069¨C1070
Ozone, bonding in, 23, 240
Ozonide, 240
Ozonolysis
of alkenes, 240¨C242, 251, 660
of alkynes, 357
Palladium
hydrogenation catalyst, 208, 209, 583¨C584
Lindlar, 350¨C351, 360
Palmitic acid, 1018
Papain, 1071
Para ( p), disubstituted organic compounds, 406
Paraffin hydrocarbon, 74. See also Alkanes
Partial rate factors, 460, 462, 470, 485
Pasteur, Louis, 286
Pauli exclusion principle, 9
Pauling, Linus, 3, 15
electronegativity scale, 15
and orbital hybridization model, 36
and peptide structure, 1084¨C1086
PCBs. See Polychlorinated biphenyls
PCC. See Pyridinium chlorochromate
PDC. See Pyridinium dichromate
Pedersen, Charles J., 622
Penicillin G, 803
1,3- and 1,4-Pentadiene, relative stabilities,
374¨C375
2,3-Pentadiene, enantiomers, 378
Pentane, 62, 73, 512
conformation of, 97
n-Pentane, 59. See also Pentane
2,4-Pentanedione
acidity of, 710¨C711
H9251-alkylation of, 726
enol content of, 707¨C708
Pentanenitrile
hydrogenation of, 877
preparation of, 871
1-Pentanol
esterification, 610
reaction with thionyl chloride, 161
3-Pentanol, dehydration, 185
3-Pentanone
cyanohydrin, 689
mass spectrum, 687
Pentobarbital, 845
Pentothal sodium, 846
Pentyl azide, 873
Pepsin, 1071
Peptide bond, 1051, 1067
geometry of, 1068¨C1069
preparation of, 1079¨C1083
Peptides, 1067¨C1088
amino acid analysis, 1070¨C1071
classification of, 1051
end-group analysis of, 1071¨C1076
hydrolysis of, 1070¨C1071
structure of, 1051, 1067¨C1070 (see
also Proteins)
synthesis of, 1076¨C1084
Pericyclic reactions, 382¨C383, 958
Periodic acid cleavage
of carbohydrates, 1005¨C1006, 1010
of vicinal diols, 602¨C603, 609
anti Periplanar, 195
syn Periplanar, 195
Perkin, William Henry, 4
Peroxide effect, 220
Peroxides
initiators of free-radical reactions, 220¨C221,
415¨C416
by oxidation of ethers, 627¨C628
Peroxyacetic acid, 741
epoxidation of alkenes, 239¨C240, 250,
630, 645
Peroxybenzoic acid, 683¨C684
Perutz, Max F., 1087
Petrochemicals, 5, 168
Petroleum, 69
refining, 69¨C70
PGE
1
, PGE
2
, and PGF
1H9251
.
See Prostaglandins
Pharmacology, 897
Phase-transfer catalysis, 871¨C872, 901
H9251-Phellandrene, 1027
Phenacetin, 967
Phenanthrene, 408¨C409
Phenobarbital, 846
Phenol(s), 939¨C971
acidity of, 942¨C945, 962
electrostatic potential maps, 939, 942
formation of, in Claisen rearrangement,
957, 964
hydrogen bonding, 941¨C942
naturally occurring, 946¨C948
nomenclature of, 407, 939¨C940
physical properties, 941¨C942
preparation from
aryl diazonium salts, 892, 905, 946,
947, 962
benzenesulfonic acid, 947
chlorobenzene, 920, 947
cumene, 947
Phenol(s)¡ªCont.
reactions of
O-alkylation, 954, 964
azo coupling, 951
bromination, 948¨C950
carboxylation, 952¨C954, 963
I-25 INDEX
electrophilic aromatic substitution, 463,
948¨C951
esterification, 949¨C952, 963
Friedel-Crafts acylation, 951
Friedel-Crafts alkylation, 950
Kolbe-Schmitt reaction, 952¨C954, 963
nitration, 463, 950
nitrosation, 950
oxidation, 958¨C959, 964
sulfonation, 950
resonance in, 941
spectroscopic analysis, 960¨C961
structure and bonding, 940¨C941
Phenylacetic acid
H9251-halogenation, 760
preparation of, 752
L-Phenylalanine, 1054, 1059
N-benzyloxycarbonyl derivative,
1077¨C1079
electrostatic potential map, 1053
in PKU disease, 1065
Phenylalanylglycine, synthesis of, 1077¨C1081
Phenyl benzoate, Fries rearrangement of, 952
2-Phenyl-2-butanol
p-nitrobenzoate, 595
preparation of, 559
Phenylbutazone, 856
2-Phenylethanol
1
H NMR spectrum, 607
trifluoroacetate, 595
1-Phenylethylamine, resolution, 287¨C288
Phenyl group, 408
Phenylhydrazine, reaction of, with aldehydes
and ketones, 674
Phenylisothiocyanate, 1074¨C1075
Phenylketonuria (PKU disease), 1065
Phenyllithium, 549
Phenylmagnesium bromide
carboxylation of, 752
preparation of, 550, 921
reaction of
with 2-butanone, 559
with 1,2-epoxypropane, 635
with ethyl benzoate, 572
with methanol, 551
2-Phenylpropene
hydroxylation of, 608
Phenylpyruvic acid, 1065
Phenylthiohydantoin, 1074¨C1075
Pheromone
aggregating
of cockroach, 59, 62
of European elm bark beetle, 615
alarm pheromone
of ant, 659
of bees, 659
sex attractant
of boll worm moth, 827
of codling moth, 202
of female gypsy moth, 239
of female house fly, 173, 363
of female Japanese beetle, 788
of female tiger moth, 86
of female winter moth, 696
of greater wax moth, 659
of honeybee, 203
of male Oriental fruit moth, 788
of Mediterranean fruit fly, 202
of Western pine beetle, 694
Phosphatidic acid, 1022
Phosphatidylcholine, 1022¨C1023
Phosphines
as nucleophiles, 680
optically active, 290
Phosphoglucose isomerase, 1002
Phosphoglycerides, 1022
Phospholipid bilayer, 1023
Phospholipids, 1022¨C1023
Phosphoric acid
catalyst for alcohol dehydration, 182, 183,
187
esters of, 596
Phosphorous acid, esters, 596
Phosphorus pentoxide, 814
Phosphorus tribromide, reaction with alcohols,
147, 161
Phosphorus ylides. See Ylides
Photochemical initiation
of addition of hydrogen bromide to alkenes,
222, 251
of free-radical reactions, 156, 222, 251
Photon, 488
Photosynthesis, 976, 1015
Phthalhydrazide, 876
Phthalic acid. See 1,2-Benzenedicarboxylic
acid
Phthalic anhydride, 783, 785, 804
Phthalimide, 804
potassium salt of, in Gabriel synthesis,
875¨C876, 902
Physical properties. See entry under specific
compound class
Physostigmine, 908
Phytane, 64
H9251-Pinene, 167, 1032
hydroboration-oxidation of, 230
hydrogenation of, 213
H9252-Pinene, 1032
Piperidine, 116, 781, 973
basicity, 868
in reductive amination, 880
pK
a
, 134. See also Acidity
pK
b
, 864. See also Basicity
PKU disease. See Phenylketonuria
Planck, Max, 488
Planck¡¯s constant, 488
Plane of symmetry, 264¨C265
in meso-2,3-butanediol, 279
cis-1,2-dibromocyclopropane, 282
Plane-polarized light, 265¨C267
Platinum, hydrogenation catalyst, 208, 209,
249, 403, 583¨C584
Pleated H9252-sheet, 1084, 1085
Poison ivy, allergens in, 968
Polar covalent bonds. See Bonds, polar
covalent
Polarimeter, 265¨C267
Polarizability, 132
and nucleophilicity, 313¨C315
Polar solvents, 303, 320¨C323
Polyamides, 809¨C810
Polyamines, 870
Polychlorinated biphenyls, 938
Polycyclic hydrocarbons
aliphatic, 114¨C116
aromatic, 408¨C409, 474¨C475
and cancer, 409
Polyesters, 809
Polyethers, 622¨C625
Polyethylene, 245¨C246, 247, 248, 567¨C570,
573
Polyisoprene, 247, 383
Polymer(s), 244¨C247
of dienes, 383
polyamides, 809¨C810
polyesters, 809
stereoregular, 288¨C289, 293, 567¨C570, 573
vinyl, 247
Polymerization
cationic, 244
condensation polymers, 809¨C810
coordination, 246, 289, 383, 567¨C570, 573
free-radical, 245¨C246
Polynucleotides. See Nucleic acids
Polypeptide, 1051. See also Peptides; Proteins
Polypropylene, 246, 247, 248, 288¨C289, 570
Polysaccharide, 973, 993¨C995, 1008
Polystyrene, 247, 248, 421
Polyurethanes, 248
Poly(vinyl alcohol), 828
Poly(vinyl chloride), 170, 247, 248
Porphyrin, 1089
Potassiophthalimide. See Phthalimide
Potassium tert-butoxide
base in elimination reactions, 191, 349,
565¨C566
Potassium dichromate. See also Chromic acid
oxidation
oxidation of alcohols, 596¨C597, 599
oxidation of aldehydes, 682, 751
Potassium permanganate
oxidation of alcohols, 597, 751
oxidation of aldehydes, 751
oxidation of alkylbenzenes, 416, 435, 751
Potential energy, 75
diagrams, 136¨C137
addition of hydrogen bromide to
1,3-butadiene, 381
bimolecular elimination (E2), 194
bimolecular nucleophilic substitution
(S
N
2), 309
branched versus unbranched alkanes, 75
carbocation formation, 146
carbocation rearrangement, 189
conformations of 1,3-butadiene,
376¨C377
conformations of butane, 95
conformations of cyclohexane, 103
conformations of ethane, 93
electrophilic aromatic substitution, 446,
459, 462
hydration of aldehydes and ketones, 666
and Markovnikov¡¯s rule, 217
proton transfer, 137
reaction of tert-butyl alcohol with
INDEX I-26
hydrogen chloride, 143
unimolecular nucleophilic substitution
(S
N
1), 143, 316
and heat of combustion, 75¨C76, 109, 177
and heat of hydrogenation, 210
Pott, Sir Percivall, 409
Prelog, Vladimir, 174
Priestley, Joseph, 383
Principal quantum number, 8
Primary carbon, 65
Pristane, 85
Progesterone, 1042
L-Proline, 1052, 1054, 1059, 1085
electrostatic potential map, 1053
Prontosil, 896
1,3-Propadiene. See Allene
Propagation step, 153¨C154, 157, 163,
221¨C222, 415
Propanal, 657, 658
Propane
attractive forces in, 130
bond dissociation energies in, 151¨C152
conformational analysis of, 95
dehydrogenation of, 168, 181
dipole moment of, 130, 863
in natural gas, 56
2-Propanol, 128. See also Isopropyl alcohol
Propene, 167¨C168
addition of sulfuric acid to, 224
allylic chlorination of, 371
bond dissociation energy of, 370, 414
bond distances in, 171, 343, 375
dipole moment of, 176
epoxidation of, 274
heat of hydrogenation of, 211, 374¨C375
hydration rate of, 226
as industrial chemical, 248
polymerization of, 246, 288¨C289, 570
structure, 171
Propylene, 167. See also Propene
Propylene glycol, 589
Propylene oxide, 248. See also 1,2-
Epoxypropane
Propyl group, 65
Propyl radical, 151¨C152
Prostacyclins, 1045
Prostaglandins, 736, 1024¨C1025
Prosthetic groups. See Coenzymes
Protease inhibitors, 1099
Protecting groups
acetals as, 671¨C672
for amino acids, 1077¨C1079
for arylamines, 886¨C888
Protein Data Bank, 1087
Proteins
amino acid analysis of, 1070¨C1071
biosynthesis of, 1096¨C1100
glycoproteins, 995¨C996
hydrolysis of, 1070¨C1071
structure of
primary, 1067, 1070¨C1076, 1084
quaternary, 1089
secondary, 1084¨C1086
tertiary, 1086¨C1089
synthesis of, 1076¨C1084
Protic solvents, 322
Proton magnetic resonance spectra. See
Nuclear magnetic resonance spectra
Proton magnetic resonance spectroscopy. See
Nuclear magnetic resonance
spectroscopy
Proton-transfer reactions. See Acid-base
reactions
Pseudoionone, 1049
Purcell, Edward, 490
Purine(s), 431, 1090¨C1091
hydrogen bonding in, 1095¨C1096
nucleosides of, 1091¨C1092
nucleotides of, 1092¨C1093
polynucleotides of, 1093¨C1103
Putrescine, 870
Pyramidal inversion, 290
Pyranose forms of carbohydrates, 981¨C984,
1007
Pyrethrins, 1047
Pyridine, 430
acylation catalyst, 594, 781, 783
basicity of, 868
bonding in, 432
electrophilic aromatic substitution in,
475¨C476
Pyridinium chlorochromate (PCC), 597, 611,
660
Pyridinium dichromate (PDC), 597, 611, 660
Pyridoxal phosphate, 675
Pyrimidine(s), 1090¨C1091
hydrogen bonding in, 1095¨C1096
nucleosides of, 1091¨C1092
nucleotides of, 1092¨C1093
polynucleotides of, 1093¨C1103
Pyrocatechol, 940, 956
Pyrrole, 430
bonding in, 432
electrophilic aromatic substitution in,
476¨C477
Pyrrolidine, 116
acetylation of, 874
enamine of, 677, 882
Pyruvic acid
acetyl coenzyme A from, 1016
biological reduction of, 681¨C682
biosynthesis of, 602, 1015
conversion to L-alanine, 1063¨C1065
Quantized energy states, 489¨C490
Quantum, 488
Quantum numbers, 7, 8
Quaternary ammonium salts, 861
hydroxides, Hofmann elimination of,
883¨C885, 904
as phase-transfer catalysts, 871¨C872, 901
preparation of, 874, 883
Quaternary carbon, 65
Quaternary structure of proteins, 1089
Quinine, 869
Quinoline, 430
Quinones, 958¨C959, 964
Racemic mixture, 266, 274, 291
resolution of, 286¨C288, 293
Racemization
and chair-chair interconversion, 281
via enol, 714¨C715
in S
N
1 reactions, 318¨C319
Radio waves, 488
Random coils, 1085
Rare gas. See Noble gas
Rate constant, 145
Rate-determining step, 144, 162, 796
Rate of reaction. See also Substituent effects
and carbocation stability, 139¨C146,
315¨C318
effect of catalyst on, 209
effect of temperature on, 93¨C94, 145
Rearrangement
in alcohol dehydration, 187¨C190, 201
allylic, 369, 381¨C382, 390
in Baeyer-Villiger oxidation, 683¨C684, 789
Claisen rearrangement, 957¨C958, 964
in electrophilic addition to alkenes,
219¨C220
in Friedel-Crafts alkylation, 452, 479
Fries rearrangement, 952
Hofmann rearrangement, 807¨C813, 822
in reactions of alcohols with hydrogen
halides, 330, 332
in S
N
1 reactions, 319¨C321
Reducing sugar, 999
Reduction, 78¨C80. See also Hydrogenation;
Hydrogenolysis
of aldehydes and ketones, 583¨C587, 589,
608, 662
of amides, 879, 903
of aryl diazonium salts, 894, 907
of azides, 877, 902
Birch reduction, 412¨C414, 434
of carbohydrates, 996¨C998, 1009
of carbonyl groups, agents for, 608 table
of carboxylic acids, 587, 608, 659, 754
Clemmensen, 456¨C457, 474, 662
of esters, 587, 608
of imines, 879¨C880
metal-ammonia reduction of alkynes,
351¨C352
of nitriles, 877, 902
of nitro groups, 878, 902
Wolff-Kishner, 456, 662
Reductive amination, 879¨C881, 903
Refining of petroleum, 69¨C70
Reforming, in petroleum refining, 70
Regioselectivity
addition of bromine to 1,3-butadiene, 382
addition of hydrogen halides to
1,3-butadiene, 379¨C382
allylic halogenation, 370¨C372, 392
dehydration of alcohols, 183¨C185,
199¨C200, 379, 392, 419
dehydrohalogenation of alkyl halides,
191¨C192, 197, 199¨C200, 379, 419
Regioselectivity¡ªCont.
electrophilic addition to alkenes, 216¨C219,
224, 225¨C230, 236¨C238, 251
electrophilic aromatic substitution, 457¨C477
elimination-addition mechanism of
I-27 INDEX
nucleophilic aromatic substitution,
927¨C931
epoxide ring opening, 632¨C637, 646
Hofmann elimination, 883¨C885, 904
hydration of alkynes, 355¨C356, 361
hydroboration-oxidation, 228¨C233, 250
and Markovnikov¡¯s rule, 216¨C219, 251
and regiospecificity, 285
and Zaitsev¡¯s rule, 183¨C184, 199
Relative configuration, 267
Resolution, 286¨C288, 293
Resonance, 3, 23¨C26, 45
aldehydes and ketones, 467, 658
allylic carbocations, 366¨C369
allyl radical, 370
amides, 779, 886
aniline, 863
benzene, 402¨C403
benzylic carbocations, 418
benzylic radicals, 414
carboxylic acid derivatives, 777¨C780
carboxylic acids, 739
cyclohexadienyl anions, 925
cyclohexadienyl cations, 444, 458¨C462,
465, 466, 467, 470, 475
enolate ions, 709¨C711
formic acid, 739
H9252-keto ester anions, 832
p-nitroaniline, 867
ozone, 23, 240
phenol, 941
phenoxide anions, 943, 945, 953
protonated benzoic acid, 756
protonated ketone, 665
rules for, 24¨C25 table
H9251,H9252-unsaturated carbonyl compounds, 721
Resonance energy
[18]-annulene, 426
anthracene, 408¨C409
benzene, 403¨C404, 433
conjugated dienes, 374¨C375
cycloctatetraene, 422
1,3,5-hexatriene, 404
naphthalene, 408¨C409
phenanthrene, 408¨C409
Resorcinol, 940
acetylation, 949
Restriction enzymes, 1101
Retention of configuration, 233, 307¨C308
in acylation of alcohols, 595
in Baeyer-Villiger oxidation, 683¨C684
in ester hydrolysis, 797
in Hofmann rearrangement, 813
Retinal, 676
Retinol, 580, 676
Retro-aldol cleavage, 1003
Retrosynthetic analysis
acetoacetic ester synthesis, 840
Grignard synthesis of alcohols, 557¨C560,
570¨C571
malonic ester synthesis, 843
Simmons-Smith reaction, 565
Wittig reaction, 679¨C680
Reverse transcriptase, 1098
L-Rhamnonolactone, 1009
L-Rhamnose, 1009
Rhodium, hydrogenation catalyst, 208, 209
Rhodopsin, 676
9-H9252-D-Ribofuranosyladenine. See Adenosine
1-H9252-D-Ribofuranosyluracil. See Uridine
Ribonuclease, 1083¨C1084
Ribonucleic acid (RNA), 1090¨C1094
messenger (mRNA), 1096¨C1100
polymerase, 1096
purine and pyrimidine bases in, 1090¨C1091
ribosomal (rRNA), 1096
transfer (tRNA), 1096
D-Ribose, 976, 977
cyanohydrin, 1009
2-deoxy, 1010, 1027
furanose and pyranose forms, 980¨C982,
984, 1007
D-Ribulose, 986
Rickets, 1039
Ring flipping. See Ring inversion
Ring inversion
cyclohexane, 103, 119, 510
substituted cyclohexanes, 104¨C107,
110¨C114, 119
RNA, mRNA, rRNA, and tRNA. See
Ribonucleic acid
Roberts, John D., 928
Robinson, Sir Robert, 4, 402, 724
Robinson annulation, 724, 728
Rotamer, 90. See also Conformation
Rotational energy barrier
alkenes, 172¨C173
amides, 779
butane, 94¨C95
conjugated dienes, 376¨C377
ethane, 93¨C94
R-S-notational system, 268¨C271, 291
Rubber, 383
Rubbing alcohol, 18, 128. See also Isopropyl
alcohol
Ruzicka, Leopold, 1028
S (symbol for entropy), 106
Sabatier, Paul, 208, 209, 550
Sabinene, 1049
Saccharic acids. See Aldaric acids
Saccharin, 997
Salicylic acid, 737
acetylation of, 952
acidity of, 953
synthesis of, 952¨C954
Samuelsson, Bengt, 1025
Sandmeyer reactions, 892, 894, 906¨C907, 919
Sanger, Frederick, 1070¨C1074, 1101¨C1102
Sanger¡¯s reagent. See 1-Fluoro-2,4-
dinitrobenzene
H9251-Santonin, 1046
Saponification, 794¨C799
Sawhorse diagrams, 90¨C91
Saytzeff. See Zaitsev, Alexander M.
Schiemann reaction, 892, 893, 905
Schiff¡¯s base, 673, 689. See also Imines
Schr?dinger, Erwin, 7
Schr?dinger equation. See Wave equation
Scientific method, 217
Secobarbital, 845
Seconal, 845
Secondary carbon, 65
Secondary structure, 1084¨C1086
Selectivity. See Regioselectivity;
Stereoselective reactions
H9251-Selinene, 1026, 1027
Semicarbazide, 674
Semicarbazones, 674
Sequence rule
application to alkene stereochemistry,
173¨C175, 199
and R-S notation, 268¨C271, 291
L-Serine, 1055, 1059
electrostatic potential map, 1053
Serotonin, 869
Sesquiterpene, 1026
Sesterpene, 1026
Sex attractant. See Pheromone,
sex attractant
Sex hormones, 1040¨C1042, 1044
Shared-electron pair bond. See Covalent bond
Shielding of nuclei in NMR spectroscopy,
493¨C495. See also Chemical shift
Sickle-cell anemia, 1089¨C1090, 1100
Sigma bond, 32
Sigmatropic rearrangement, 958
Silk, 1085
Siloac, Edward, 272
Silver oxide, 883, 958, 964
Simmons, Howard E., 564
Simmons-Smith reaction (reagent), 564
Simvastatin, 1038
Sinigrin, 989
Sites of unsaturation. See Index of hydrogen
deficiency
SI units, 11, 23
Skew boat conformation of cyclohexane, 100
Smalley, Richard, 410
Smith, Ronald D., 564
S
N
1 mechanism, 143¨C146, 162, 315¨C321,
331 table
S
N
2 mechanism, 146, 162, 306¨C312, 331 table
Soap
manufacture, 795
mode of action, 744¨C745
Sodium, reaction with
alkynes, 351¨C352, 360
arenes, 412¨C414, 434
Sodium acetylide, 336, 547
preparation of, 346, 347
reaction with
alkyl halides, 335¨C336, 347¨C348
cyclohexanone, 556
Sodium alkoxides
as bases in elimination reactions, 190¨C191,
323¨C325
preparation of, 190
in Williamson ether synthesis, 626¨C627,
644
Sodium amide
as base, 346¨C349, 359, 556
reaction with aryl halides, 927¨C931
Sodium borohydride
reduction
INDEX I-28
of aldehydes and ketones, 583¨C587,
608, 662
of aryl diazonium ions, 894
of carbohydrates, 996¨C998, 1009
Sodium cyanoborohydride, 881
Sodium dichromate. See also Chromic acid;
Potassium dichromate
oxidation of alcohols, 597, 611
oxidation of alkylbenzenes, 416, 435, 474
Sodium 1-dodecyl sulfate (SDS), 745, 1061
Sodium ethoxide
as base
in acetoacetic ester synthesis, 839¨C841
in Claisen and Dieckmann
condensations, 832, 836
in elimination reactions, 190, 323¨C325
in malonic ester synthesis, 842¨C844
reaction with epoxides, 633
Sodium hydride, 837
Sodium hypochorite, 599
Sodium iodide, 305
Sodium lauryl sulfate, 745. See also Sodium
1-dodecyl sulfate
Sodium metaperiodate, 639
Sodium methoxide
reaction with aryl halides, 922¨C926
Sodium stearate, 744
Solid-phase peptide synthesis, 1082¨C1084
Solvation
and nucleophilicity, 313¨C315
Solvent effects, and rate of nucleophilic
substitution, 320¨C323, 331
Solvolysis
of alkyl halides, 312¨C313, 315¨C321
of allylic halides, 366¨C369, 390
of benzylic halides, 417¨C418
Somatostatin, 1107
Sondheimer, Franz, 426
Sorbitol, 612
Space-filling models, 27. See also Molecular
models and modeling
and steric hindrance, 311
Specific rotation, 266
Spectrometer, 489
mass, 526¨C527
nuclear magnetic resonance, 491¨C493
Spectroscopy, 487¨C545. See also Mass
spectrometry
general principles, 488¨C489, 533¨C534
13
C NMR, 510¨C517, 535
1
H NMR, 490¨C510, 534¨C535
infrared, 518¨C522, 536
ultraviolet-visible, 522¨C526, 536
Speed of light, 488
Spermaceti, 1024
Spermidine, 870
Spermine, 870
Spin-spin coupling, 502
Spin-spin splitting
in
13
C NMR, 535
in
19
F NMR, 544
in
1
H NMR, 500¨C509, 534¨C535
n H11001 1 rule, 500, 508
Spirocyclic hydrocarbons, 114, 120
Spiropentane, 114
Splitting diagrams
AX to AM to AB, 506
doublet of doublets, 508
quartet, 502
triplet, 504
Squalene, 638, 1027, 1028, 1036, 1044
Squalene 2,3-epoxide, 638
in cholesterol biosynthesis, 1036, 1037
Staggered conformation, 90¨C92, 117
Stanozolol, 1041
Starch, 994
Stearic acid, 737
Stearolic acid, 351
Sterculic acid, 180
Stereocenter. See Stereogenic center
Stereochemistry, 259¨C301
and chemical reactions
bimolecular nucleophilic substitution
(S
N
2), 307¨C310, 328, 331
ester hydrolysis, 797
hydrogenation of alkenes, 212¨C213, 285
that produce chiral molecules, 274¨C276
that produce diastereomers, 284¨C285
unimolecular nucleophilic substitution
(S
N
1), 318¨C319, 331 (see also
Stereoselective reactions;
Stereospecific reactions)
Fischer projection formulas
H9251-amino acids, 1056, 1103
carbohydrates, 973¨C974, 977, 1007
chiral molecules, 271¨C272, 292
two stereogenic centers, 276¨C278, 280,
293
notational systems
cis and trans, 108¨C109, 172¨C173, 199
D and L, 973¨C978, 1007, 1052,
1056¨C1057
E and Z, 173¨C175, 199
erythro and threo, 278
R and S, 268¨C271, 292 (see also
Stereoisomers)
Stereoelectronic effects
bimolecular elimination, 194¨C196, 201
nucleophilic substitution, 308
Stereogenic axis, 378
Stereogenic center, 260¨C263, 276¨C283, 290
absolute configuration, 268¨C271
in 2-butanol, 262, 267¨C269
in chiral molecules, 260¨C263, 268, 271, 276
and Fischer projections, 271¨C272, 278,
292¨C293, 973¨C974, 1007, 1052,
1056¨C1057
formation of in chemical reactions,
274¨C276, 284¨C285
phosphorus, 290
sulfur, 290
Stereoisomers, 22, 108¨C114, 120
alkenes, 172¨C175, 199
diastereomers, 276¨C288, 291
enantiomers, 259¨C276, 291
endo and exo, 681
epimers, 1002
maximum number of, 282¨C283, 293
Stereoregular polymers, 288¨C289, 293, 570
Stereoselective reactions, 212, 285
addition to carbonyl groups, 681¨C682
alcohol dehydration, 185
dehydrohalogenation of alkyl halides,
191¨C192
enzyme-catalyzed hydration of fumaric
acid, 276
hydrogenation of alkenes, 212, 285
metal-ammonia reduction of alkynes,
351¨C352, 360
Stereospecific reactions, 284¨C286
Baeyer-Villiger oxidation, 683¨C684
bimolecular (E2) elimination, 194¨C196
bimolecular nucleophilic substitution (S
N
2),
307¨C309, 328, 331 table
Diels-Alder reaction, 385, 392¨C393
epoxidation of alkenes, 238¨C240, 250, 285,
630
epoxide formation from bromohydrins, 631
epoxide ring opening, 634, 637
halogen addition to alkenes, 233¨C236, 250,
284¨C286
halogen addition to alkynes, 357
Hofmann elimination, 884
Hofmann rearrangement, 813
hydroboration of alkenes, 229¨C230, 250
hydrogenation of alkenes, 212, 285
hydrogenation of alkynes, 350¨C351, 360
hydroxylation of alkenes, 590, 637
Simmons-Smith reaction, 564¨C565
Steric effects, 95
in bimolecular nucleophilic substitution
(S
N
2), 310¨C312, 331
in cyclohexane derivatives, 104
in electrophilic aromatic substitution,
471¨C472
in Hofmann elimination, 885
in hydration of aldehydes and ketones,
663¨C667
in hydroboration of alkenes, 230
in hydrogenation of H9251-pinene, 212¨C213
in sodium borohydride reduction, 681
and stability of isomeric alkenes, 177¨C181,
199, 211
and stereoselectivity, 285, 681
Steric hindrance, 95, 213, 681
in bimolecular nucleophilic substitution
(S
N
2), 310¨C312, 331
Steric strain, 95, 96, 179
Steroids, 283, 1034¨C1042
Strain. See Angle strain; Torsional strain; van
der Waals strain
Strain energy minimization, 96
Strecker, Adolf, 1062
Strecker synthesis, 1062
Streptimidone, 298
Stretching vibrations and infrared
spectroscopy, 518
Structural formulas
Fischer projections, 271¨C272, 292¨C293,
973¨C974, 977, 1007, 1056, 1103
Lewis dot structures, 12
Newman projections, 90¨C92, 95
Structural formulas¡ªCont.
of organic molecules, 19¨C21
sawhorse, 90¨C91
wedge-and-dash, 26, 28, 91
Structural isomers. See Constitutional isomers
Structural theory, 3
I-29 INDEX
Styrene, 407
addition of bromine, 420
addition of hydrogen bromide, 421, 435
industrial preparation of, 248, 399, 419, 453
polymers, 247, 421, 1082
copolymer with 1,3-butadiene, 383
Substituent effects
on acidity
of carboxylic acids, 745¨C748
of phenols, 944¨C945
on basicity of amines, 865¨C868
on equilibrium, hydration of aldehydes and
ketones, 663¨C667
on rate
of acid-catalyzed hydration, 226
of bimolecular nucleophilic substitution
(S
N
2), 310¨C312, 331
of bromine addition to alkenes, 236
of epoxidation, 239¨C240
of nucleophilic aromatic substitution,
922¨C926
of unimolecular elimination, 196¨C197
of unimolecular nucleophilic substitution
(S
N
1), 145¨C146, 315¨C318, 331,
366¨C367, 417¨C419
on rate and regioselectivity in electrophilic
aromatic substitution, 457¨C477, 926
on stability
of aldehydes and ketones, 658
of alkenes, 176¨C180, 199
of carbocations, 140¨C142, 145¨C146, 162,
367, 417¨C419
of carbon-carbon triple bonds, 350
of free radicals, 149¨C153, 162, 414¨C415
(see also Field effect; Inductive
effect; Steric effects)
Substitution reactions, 126, 139¨C146, 302¨C338
allylic
free radical, 370¨C372, 390¨C391
nucleophilic, 368¨C369, 390
of aryl diazonium salts, 892¨C894, 905¨C907
benzylic
free radical, 414¨C416, 435
nucleophilic, 417¨C419, 435
electrophilic aromatic, 443¨C486
nucleophilic acyl, 774¨C830
nucleophilic aliphatic, 143¨C146, 302¨C338
nucleophilic aromatic, 922¨C933, 956
Substitutive nomenclature, 127¨C128, 159
Succinic acid, 182, 804
Succinic anhydride, 455, 804
Succinimide, 371, 416, 804
Sucralose, 997¨C998
Sucrose, 973, 993, 999
octaacetate, 1010
Sulfa drugs, 896¨C897
Sulfanilamide, 896
Sulfenic acids, 605
Sulfhydryl group, 603
Sulfides
alkylation of, 640¨C641, 647
oxidation of, 639¨C640, 646¨C647
preparation of, 638, 646
Sulfinic acids, 605
Sulfonate esters
nucleophilic substitution reactions of,
326¨C328, 332
preparation of, 326, 332, 591
Sulfonation
of benzene, 446, 448¨C449
of benzenesulfonic acid, 468
of 2,6-dimethylphenol, 950
of 1,2,4,5-tetramethylbenzene, 478
Sulfones, 639, 647
Sulfonic acids, 326, 446, 605
Sulfonium salts, 640¨C641, 647
Sulfoxides. See also Dimethyl sulfoxide as
solvent
optically active, 290
preparation of, 638, 647
Sulfuric acid. See also Sulfonation
addition to alkenes, 223¨C225, 249
as catalyst for
alcohol dehydration, 182
dimerization of alkenes, 244¨C245
Fischer esterification, 593
hydration of alkenes, 225¨C227, 249
nitration of arenes, 448
esters of, 596
Sulfur trioxide, 448
Syndiotactic polymer, 288¨C289, 293
Synthon, 840
Système International d¡¯Unités. See SI unit
2,4,5-T. See 2,4,5-Trichlorophenoxyacetic
acid
Talaromycin A, 694
D-Talose, 977
Tariric acid, 340
Tartaric acids, 286
Tautomerism. See Keto-enol tautomerism
Teflon, 13, 247
Terephthalic acid. See 1,4-
Benzenedicarboyxylic acid
Termination step, 154¨C156
Terpenes, 1025¨C1034, 1044
biosynthesis of, 1028¨C1034
classification, 1026
and isoprene rule, 1028
H9251-Terpineol, 1031
Tertiary carbon, 65
Tertiary structure, 1086¨C1089
Tesla, Nikola, 491
Tesla
unit of magnetic field strength, 491
Testosterone, 1040
Tetrachloromethane, 132, 148. See also
Carbon tetrachloride
Tetrafluoroethylene, 14
Tetrafluoromethane, 13
Tetrahedral geometry
and sp
3
hybridization, 35¨C37
and VSEPR, 26¨C29, 45
Tetrahedral intermediate, 755
Claisen condensation, 833
Dieckmann condensation, 835
Fischer esterification, 756¨C757, 767
in hydrolysis
of acyl chlorides, 782¨C783
of amides, 806, 808
of carboxylic acid anhydrides, 786¨C787
of esters, 792¨C794, 798, 820
in reaction of esters with ammonia, 800
H9004
9
-Tetrahydrocannabinol, 947, 1019
Tetrahydrofuran, 116, 620. See also Oxolane
acid-catalyzed cleavage, 630
complex with borane, 228
dipole moment of, 622
as solvent, 550
Tetrahydropyran, 620, 621. See also
Oxane
Tetrahymanol, 1046
Tetramethylsilane, 493, 512
electrostatic potential map, 487
Tetrapeptide, 1051
Tetraterpene, 1026
Thalidomide, 273
Theobromine, 1091
Thermochemistry, 77
Thermodynamic control
addition of hydrogen bromide to
1,3-butadiene, 381¨C382, 392
addition to H9251,H9252-unsaturated aldehydes and
ketones, 722¨C724
Fries rearrangement, 952
glycoside formation, 991
Kolbe-Schmitt reaction, 952¨C954
Thiazole, 431
Thiirane, 620
Thioesters
acetyl coenzyme A, 1016¨C1017
nucleophilic acyl substitution in, 800
Thiols
acidity of, 604¨C605, 609, 638
conjugate addition to H9251,H9252-unsaturated
carbonyl compounds, 723
oxidation of, 605, 611
physical properties of, 604
preparation of, 603¨C604, 609
Thionyl chloride, 18
reactions of
with alcohols, 147, 161, 591
carboxylic acids, 454, 754, 780
Thiopental sodium, 846
Thiophene, 430
bonding in, 432
electrophilic aromatic substitution in, 477
Thiourea, 604, 846
Threo, stereochemical prefix, 278
L-Threonine, 1055, 1059
electrostatic potential map, 1053
D-Threose, 975
L-Threose, 975
Thymidine, 1092
Thymine, 1090
Thymol, 947
Thyroxine, 273¨C274
Tin, reduction of nitro groups by, 878, 902
Toluene, 398, 399
benzylic halogenation of, 415
bond dissociation energy, 414
nitration of, 457¨C460, 474
oxidation of, 417
physical properties of, 941
p-Toluenesulfonic acid
INDEX I-30
as acid catalyst, 670
acidity of, 326, 327
esters
preparation of, 326, 332, 591
as substrates in nucleophilic aliphatic
substitution, 326¨C328, 332
nucleophilic aromatic substitution in, 946
p-Toluenesulfonyl chloride, reaction with
alcohols, 326, 332, 591
o-Toluidine, 894
Torsional strain
boat conformation of cyclohexane, 99
cyclobutane, 107¨C108
cyclopentane, 108
cyclopropane, 107
eclipsed conformation of butane, 95¨C96
eclipsed conformation of ethane, 92
Torsion angle, 91¨C92
Tosylates. See p-Toluenesulfonic acid, esters
Transamination, 1063¨C1065
s-Trans conformation, 376¨C377
Transcription, 1096
Transfer RNA. See Ribonucleic acid, transfer
Transition metal organometallic compounds,
566, 572¨C573
Transition state
and activation energy, 93
addition of bromine to alkenes, 236
bimolecular elimination (E2), 193¨C194
bimolecular nucleophilic substitution (S
N
2),
146, 307, 309, 318, 329, 331
electrostatic potential map, 302
bond rotation in ethane, 93
carbocation rearrangement, 188¨C189
conversion of primary alcohols to primary
alkyl halides, 146, 162, 329
Diels-Alder reaction, 384
double-bond rotation, 172¨C173
epoxide ring opening, 634, 635
free-radical halogenation, 157
hydrolysis of ethyl bromide, 318
nucleophilic capture of carbocation, 142,
143, 316
oxonium ion dissociation, 144¨C146
proton transfer, 136¨C137, 143
unimolecular nucleophilic substitution
(S
N
1), 143¨C146, 316
Translation, 1096¨C1100
Tranylcypromine, 907
Triacylglycerols. See Glycerol, esters
Tribromomethane. See also Bromoform
dibromocarbene from, 565¨C566
Tricarboxylic acid cycle, 1064
Trichloroacetic acid, 746
Trichloromethane, 148. See also Chloroform
boiling point of, 132
2,4,5-Trichlorophenol, 955
2,4,5-Trichlorophenoxyacetic acid, 955
cis-9-Tricosene, 363
Triethylamine, 866
Trifluoroacetic acid, 766
p-(Trifluoromethyl)aniline, 867
(Trifluoromethyl)benzene, nitration of,
457¨C458, 461¨C462
Triglycerides. See Glycerol, esters
Trigonal planar geometry
and sp
2
hybridization, 38¨C40, 141, 171,
405, 657
and VSEPR, 28¨C29
Trigonal pyramidal geometry, 28¨C29
Trimer, 244
Trimethylamine, 863
2,2,4-Trimethylpentane, 244
photochemical chlorination of, 166
Trimethyl phosphate, 596
Trimethyl phosphite, 596
Trimyristin, 795¨C796
Triose phosphate isomerase, 1004
Tripeptide, 1051
Triphenylamine, 867
Triphenylmethane, 577
Triphenylmethyl perchlorate, 419
Triphenylphosphine, 680
Triple bond, 14, 40¨C42, 47, 339, 341¨C343. See
also Bonds
in benzyne, 928, 930
Tristearin, 788, 1017¨C1018
Triterpenes, 1026
biosynthesis of, 637¨C638, 1030, 1035¨C1037
Trityl. See Triphenylmethyl
Trivial names. See Common names
Tropylium cation. See Cycloheptatrienyl
cation
Trypsin, 1071
L-Tryptophan, 1054, 1059
electrostatic potential map, 1053
Twist boat. See Skew boat conformation of
cyclohexane
Tyrian purple, 4, 46, 920
L-Tyrosine, 1054, 1059, 1064
electrostatic potential map, 1053
Ubiquinone, 959
Ultraviolet-visible spectroscopy, 522¨C526, 536
alcohols, 607
aldehydes and ketones, 686¨C687
amines, 899¨C900
carboxylic acids and derivatives, 765, 818
ethers and epoxides, 643
phenols, 961
Unimolecular
elementary step, 144
elimination, 196¨C198, 201 (see also E1
mechanism)
nucleophilic substitution, 143¨C146,
315¨C321 (see also S
N
1 mechanism)
H9251,H9252-Unsaturated aldehydes and ketones
conjugate addition to, 722¨C725, 728¨C729,
846¨C847, 852
preparation of, 717¨C720, 729
resonance in, 721
stabilization of, 720¨C721
Uracil, 1090
Urea
from ammonium cyanate, 2
electrostatic potential map, 1
industrial synthesis of, 802
reaction of, with diethyl malonate, 845
Urethans, 813. See also Carbamic acid, esters
Urey, Harold C., 754
Uridine, 1091
Uronic acids, 1000¨C1001
Valence-bond theory, 32¨C34, 42, 46
Valence electrons, 10
and Lewis structures, 20
Valence-shell electron pair repulsion
and molecular geometry, 26¨C29, 45
L-Valine, 1054, 1059
electrostatic potential map, 1053
L-Vancosamine, 988
van der Waals forces
attractive, 72¨C74
and stability of isomeric alkanes, 76
repulsive, 74, 95, 99¨C100, 104
in stereoisomers, 110, 178¨C180, 199 (see
also van der Waals strain)
van der Waals radius, 74, 96, 99
van der Waals strain, 95. See also Steric effects;
Steric hindrance; Steric strain
alkenes, 178¨C180, 199
[10]-annulene, 425
axial substituents in cyclohexane, 104¨C107
boat conformation of cyclohexane, 99
butane, 95, 96
S
N
2 reactions, 310¨C312
in stereoisomers, 110, 120, 178¨C180, 199
Vane, John, 1025
Van¡¯t Hoff, Jacobus, 259, 265
Vernolepin, 758
Veronal, 845
Vibrations of methylene group, 518
Vicinal coupling, 500, 534
dihedral angle dependence, 544
Vicinal dihalides. See Dihaloalkanes, vicinal
Vicinal diols, 589
cyclic acetals from, 670¨C671, 672
preparation of, 589¨C590
reaction with periodic acid, 602¨C603, 609
Vicinal halohydrins. See Halohydrins
Vinyl chloride, 48, 170, 176, 247, 248, 550
Vinyl group, 169¨C170
Vinyl halides. See Alkenyl halides;
Vinyl chloride
Vinylic, 366
Vinyllithium, 556
Vinylmagnesium chloride, 550
Visible light, 488
Vision, chemistry of , 675¨C676
Vitalism, 2
Vitamin, 858
A, 676, 1027
B
6
, 675
B
12
, 568
C (see Ascorbic acid)
D
3
, 1038¨C1039, 1044
K, 959
von Baeyer, Adolf, 97, 845
VSEPR. See Valence-shell electron pair
repulsion
Vulcanization, 383
Walden, Paul, 308
Walden inversion, 308
I-31 INDEX
Wallach, Otto, 1028
Water
acidity of, 134¨C135, 345, 552
bond angles, 28¨C29
dipole moment of, 129
solubility of alcohols in, 132
Watson, James D., 1094
Wave equation, 7
Wave function, 7
Wavelength, 488
Wave number, 518
Waxes, 1024
Wedge-and-dash structural formulas, 26,
28, 91
Whitmore, Frank C., 187
Williamson, Alexander, 626
Williamson ether synthesis, 626¨C627, 644,
954¨C956
intramolecular, 631
Willst?tatter, Richard, 422
Wittig, Georg, 677
Wittig reaction, 677¨C681, 690
Wohler, Friederich, 2
Wolff-Kishner reduction, 456, 662
Wood alcohol, 128, 579
Woodward, Robert B., 390, 616
Woodward-Hoffmann rules, 390
Wool, 1085
Wotiz, John, 401
Wurtz, Charles-Adolphe, 3
X-ray crystallography and structure of
carbohydrates, 982, 985, 996
nucleic acids, 1094
proteins, 1084
vitamin B
12
, 568
X-rays, 488
m-Xylene, 406
nitration of, 472
o-Xylene, 406
Birch reduction of, 434
p-Xylene, 406
Friedel-Crafts acylation of, 471
oxidation of, 750
D-Xylonic acid, 1000
D-Xylose, 977
furanose forms, 981
oxidation, 1000
L-Xylulose, 986
Yields in chemical reactions, 138
Ylides, 677¨C681
Z (abbrevation for benzyloxycarbonyl group),
1078
Z (stereochemical prefix), 173¨C175, 199
Z (symbol for atomic number), 7
Zaitsev, Alexander M., 184
Zaitsev¡¯s rule, 184, 191, 199, 200
Zidovudine, 1098
Ziegler, Karl, 246, 569
Ziegler-Natta catalyst, 246, 383, 567¨C570
Zigzag conformations of alkanes, 97
Zinc
in carboxypeptidase A, 1086¨C1088
in Clemmensen reduction, 456¨C457, 474
electronegativity of, 547
in hydrolysis of ozonides, 241
Zinc-copper couple, 564
Zusammen, (Z), 173¨C175, 199
Zwitterion, 1057, 1103
WHERE TO FIND IT
A GUIDE TO FREQUENTLY CONSULTED TABLES AND FIGURES
Acids and Bases
Dissociation Constants for Selected Br?nsted Acids (Table 4.2, p. 135)
Acidities of Hydrocarbons (Table 14.2, p. 552)
Acidities of Carboxylic Acids (Table 19.2, p. 746)
Acidities of Phenols (Table 24.2, p. 944)
Acidities of Substituted Benzoic Acids (Table 19.3, p. 748)
Acid-Base Properties of Amino Acids (Tables 27.2 and 27.3, p. 1059)
Basicities of Alkylamines (Table 22.1, p. 866)
Basicities of Arylamines (Table 22.2, p. 867)
Classification of Isomers (Table 7.2, p. 291)
Free-Energy Difference-Composition Relationship in an Equilibrium Mixture (Figure 3.17, p. 107)
IUPAC Nomenclature
Names of Unbranched Alkanes (Table 2.4, p. 62)
Rules for Alkanes and Cycloalkanes (Table 2.7, pp. 81¨C82)
Rules for Alkyl Groups (Table 2.8, p. 83)
Reactivity
Nucleophilicity of Some Common Nucleophiles (Table 8.4, p. 313)
Leaving Groups in Nucleophilic Substitution (Table 8.8, p. 327)
Substituent Effects in Electrophilic Aromatic Substitution (Table 12.2, p. 464)
Spectroscopy Correlation Tables
Proton Chemical Shifts (Table 13.1, p. 496)
13
Chemical Shifts (Table 13.3, p. 513)
Infrared Absorption Frequencies (Table 13.4, p. 519)
Stereochemistry
Cahn-Ingold-Prelog Priority Rules (Table 5.1, p. 175)
Absolute Configuration Using Cahn-Ingold-Prelog Notation (Table 7.1, p. 269)
Fisher Projections of D-Aldoses (Figure 25.2, p. 977)
Structure and Bonding
Electronegativities of Selected Atoms (Table 1.2, p. 15; Table 14.1, p. 547)
How to Write Lewis Structures (Table 1.4, p. 20)
Rules of Resonance (Table 1.5, pp. 24¨C25)
Bond Dissociation Energies (Table 4.3, p. 151)
Bond Distances, Bond Angles, and Bond Energies in Ethane, Ethene, and Ethyne (Table 9.1, p. 342)
Structures of H9251-Amino Acids (Table 27.1, pp. 1054¨C1055)
1
H
1.008
2
He
4.003
3
Li
6.941
4
Be
9.012
11
Na
22.99
12
Mg
24.31
19
K
39.10
20
Ca
40.08
37
Rb
85.47
38Sr
87.62
55
Cs
132.9
56
Ba
137.3
87Fr
(223)
88
Ra
(226)
21
Sc
44.96
22Ti
47.88
39
Y
88.91
40Zr
91.22
71
Lu
175.0
72Hf
178.5
103
Lr
(260)
104
Rf
(261)
23
V
50.94
24Cr
52.00
41
Nb
92.91
42
Mo
95.94
73Ta
180.9
74W
183.9
105Db
(262)
106
Sg
(266)
25
Mn
54.94
26
Fe
55.85
43
Tc
(98)
44
Ru
101.1
75
Re
186.2
76
Os
190.2
107Bh
(262)
108
Hs
(265)
27
Co
58.93
45
Rh
102.9
77
Ir
192.2
109
Mt
(266)
57
La
138.9
58
Ce
140.1
60
Nd
144.2
61
Pm
(145)
62
Sm
150.4
63
Eu
152.0
59Pr
140.9
89
Ac
(227)
90
Th
232.0
92
U
238.0
93
Np
(237)
94
Pu
(242)
95
Am
(243)
91
Pa
(231)
28Ni
58.69
29
Cu
63.55
46
Pd
106.4
47
Ag
107.9
78Pt
195.1
79
Au
197.0
30
Zn
65.39
48
Cd
112.4
80
Hg
200.6
64
Gd
157.3
65
Tb
158.9
67
Ho
164.9
68Er
167.3
69
Tm
168.9
70
Yb
173.0
66
Dy
162.5
96
Cm
(247)
97
Bk
(247)
99
Es
(252)
100Fm
(257)
101Md
(258)
102No
(259)
98Cf
(251)
31
Ga
69.72
32
Ge
72.61
49In
114.8
50
Sn
118.7
81Tl
204.4
82
Pb
207.2
33
As
74.92
51
Sb
121.8
83Bi
209.0
34
Se
78.96
35Br
79.90
52Te
127.6
53
I
126.9
84
Po
(209)
85At
(210)
36Kr
83.80
54
Xe
131.3
86
Rn
(222)
5
B
10.81
6
C
12.01
13Al
26.98
14Si
28.09
7
N
14.01
15
P
30.97
8
O
16.00
9F
19.00
16
S
32.07
17Cl
35.45
10
Ne
20.18
18Ar
39.95
34567
3B(3)
4B(4)
5B(5)
6B(6)
7B(7)
(9)
(10)
1B
(11)
2B
(12)
3A
(13)
4A
(14)
5A
(15)
6A
(16)
7A
(17)
8A
(18)
2 167
(8)
1A(1)
2A(2)
8B
LanthanidesActinides
TRANSITION ELEMENTS
INNER TRANSITION
ELEMENTS
MAIN¨CGR
OUP
ELEMENTS
MAIN¨CGR
OUP
ELEMENTS
P eriod
110
111
112
(269)
(
272
)(
277
)
Metals (main-group)Metals (transition)Metals (inner transition)MetalloidsNonmetals
P
eriodic
T
a
b
le of the Elements
As of
mid-1999, elements 110 through 112 have not yet
been named.