Wu Chong-shi Wu Chong-shi Wu Chong-shi 2 a0 a1 a2 a3a4a5 a6a7a8a6a9a10a7 1. a11a12a13a14a15a16a17a18a19a20a21a19a20a22a23a24a25a26 (1) 1 + i√3; (2) eisinx, xa27a18a16; (3) eiz; (4) ez; (5) eiφ(x), φ(x)a28a18a29a16xa17a18a30a16; (6) 1?cosα+ isinα, 0 ≤α<2pi. 2. a31a13a14a32a33a34a35a36a37a38a39a40a12a41a26 (1) |z|< 2; (2) |z| = 2; (3) |z|> 2; (4) Rez> 12; (5) 1 <Imz <2; (6) 0 <arg(1?z) < pi4; (7) |z?a| = |z?b|, a,ba27a42a16; (8) |z?a|+|z?b| =c, a,b, ca43a27a42a16, c>|a?b|. 3. a44a13a14a45a14{zn}a17a46a47a23a48a49a50a51a52a28a18a16a45a14a50a53a54a55a44a12a56a48a49a23a13a48a49a26 (1) zn = (?)n n2n+ 1; (2) zn = (?)n 12n+ 1; (3) zn =n+ (?)n(2n+ 1)i; (4) zn = (2n+ 1)+ (?)nni; (5) zn = parenleftbigg 1 + in parenrightbigg sin npi6 ; (6) zn = parenleftbigg 1 + 12n parenrightbigg cos npi3 . a3a57a5 a58a59a10a7 1. a60a61a13a14a30a16a62a36a63a64a65(a66a44a12a67a65a16)a20a62a36a63a68a69a26 (1) |z|; (2) z?; (3) zm, m = 0, 1, 2, ···; (4) zRez; (5) parenleftbigx2 + 2yparenrightbig+ iparenleftbigx2 +y2parenrightbig; (6) (x?y)2 + 2i(x+y). 2. a70a71a72a73a48a74a75a33(r,θ)a13a17Cauchy–Riemanna76a77a26 ?u ?r = 1 r ?v ?θ, ?v ?r = ? 1 r ?u ?θ, u(r, θ)a23v(r, θ)a78a79a27a15a29a30a16a17a18a19a23a21a19a80 3. a81a34 a72a73 a48a74a75a33(r,θ)a13a17Cauchy–Riemanna76a77a70a71a26 fprime(z) = rz parenleftbigg?u ?r + i ?v ?r parenrightbigg = 1z parenleftbigg?v ?θ ?i ?u ?θ parenrightbigg . 4. a82z = x+ iya50a83a84a68a69a30a16f(z) = u(x,y) + iv(x,y)a17a18a19 u(x,y)a51a13a50a85a44a12a68 a69a30a16f(z)a26 Wu Chong-shi a86 a87 3 (1) x2 ?y2 +x; (2) xx2 +y2; (3) ey cosx; (4) cosxcoshy. 5. a82z =x+iya50a83 a84 a68a69a30a16f(z) =u(x,y)+iv(x,y)a17a18a19a88a21a19a51a13a50a85a44fprime(z)a26 (1) u =x+y; (2) u = sinxcoshy. 6. a89f(z) = u(x,y)+ iv(x,y)a68a69a50a90 u?v = (x?y)(x2 + 4xy+y2), a85a44f(z)a80 7. a68a13a14a76a77a26 (1) sinz = 34 + i4; (2) cosz = 4; (3) sin2z? 32 sinz?1 = 0; (4) tanz = i; (5) sinhz = 0; (6) 2cosh2z?3coshz+ 1 = 0. 8. a60a61a13a14a30a16a28a91a92a17a93a28a94a92a17a26 (1) √z2 ?1; (2) z+√z?1; (3) sin√z; (4) cos√z; (7)sin √z √z ; (8) cos √z √z ; (9) lnsinz; (10) sinparenleftbigilnzparenrightbig. 9. a95a12a13a14a94a92a30a16a17a96a47a50a66a97a98za99a100a101a96a47a102a103a100a104a105 a106a107 a63a108a30a16a92a17a29a109a80 a51a52a54a55a99a110a101a20a111a101a20a112a113a114a94a101a96a47a100a104a50a30a16a92a115a51a36a29a109a116 (1) radicalbig(z?a)(z?b), anegationslash= b; (2) radicalbiggz?a z?b, anegationslash= b; (3) 3radicalbig(z?a)(z?b), anegationslash= b; (4) 3radicalbig(z?a)2; (5) √1?z3; (6) 3√1?z3; (7) ln(z2 + 1); (8) lncosz. 10. a44a13a14a30a16a62a117a118a47a17a119a19a64a120a121a92a26 (1) lnz,z = 1,i,?1,1+ i; (2) zi, z = 2,i,?1,(1+ i). 11. a122a118a30a16w = z 3√z?2a62a372.1 a123 a124a125 a56a126a17 a24a25a270a50a85a44a127a30a16a62 a124a125 a13a126z = 3a63a17a16a92a80 a115a128a26 a129 a101a30a16a130a35a101a91a92a78a96a116a44a12a62a67a131a78a96 a123 a124a125 a13a126z = 3a63a17a30a16a92a80 a1322.1 Wu Chong-shi 4 a0 a133 a2 a1322.2 12. a83 a84 a30a16w = ln(1 ?z2) a50a122a118w(0) = 0 a50a85a97a98a134z a49a135a62a37 2.2(a) a23 (b) a123a17 w(3)a92a80a89a136 a124a125 a51a372.2(c)a50a53a62 a124a125 a56a20a13a126z = 3a63wa115a121a36a92a116 a1322.3 13. a137a138a139a30a16arctanza17a118a140a27 arctanz ≡ 12i ln 1 + iz1?iz. a89a136 a124a125 a51a372.3a50a66a122a118 arctanzvextendsinglevextendsinglez=0 = pi, a44a30a16a62z = 2a63a17a65a16a92a80 14. a83 a84 a30a16f(z) =z?p(1?z)p, ?1 <p<2a80a89a62a18a141a56a1420a1061a136 a124a125 a50a122a118 a124a125 a56a126argz = arg(1?z) = 0a50a85a44f(±i)a23f(∞)a80 15. a89a30a16f(z) a62a143a144G a145a68a69a50a90a67a22a27a42a16a50a70a71f(z) a146a147a148 a149 a27a42a16a80 a3a150a5 a6a9a151a152 1. a85a153a154a118a17a155a156a157a158a13a14a159a78a26 (1) integraldisplay 2+i 0 Rezdza50a159a78a155a156a27a26 (i)a125a160[0, 2]a23[2, 2 + i]a161a162a17a163 a125 a50 (ii)a125a160z = (2 + i)t, 0 ≤t≤ 1; (2) integraldisplay C dz√ z a80a122a118 √zvextendsinglevextendsingle z=1 = 1a50a159a78a155a156a27a164z = 1a12a165a17a26 (i)a91a166a167a17a56a168a104a50 (ii)a91a166a167a17a13a168a104a80 2. a157a158a13a14a159a78a26 (1) contintegraldisplay |z|=1 dz z ; (2) contintegraldisplay |z|=1 |dz| z ; (3) contintegraldisplay |z|=1 dz |z|; (4) contintegraldisplay |z|=1 vextendsinglevextendsingle vextendsinglevextendsingledz z vextendsinglevextendsingle vextendsinglevextendsingle. 3. a157a158a13a14a159a78a26 (1) contintegraldisplay C 1 z2 ?1 sin piz 4 dza50Ca78a79a27a26 Wu Chong-shi a86 a87 5 (i) |z| = 12, (ii) |z?1| = 1, (iii) |z| = 3, (iv) |z| = R,R→∞; (2) contintegraldisplay C 1 z2 + 1e izdz a50Ca78a79a27a26 (i) |z?i| = 1, (ii) |z| = 2, (iii) |z+ i|+|z?i| = 2√2, (iv)a169a170a171 a125r = 3?sin2θ 4. 4. a157a158a13a14a159a78a26 (1) contintegraldisplay |z|=2 cosz z dz; (2) contintegraldisplay |z|=2 z2 ?1 z2 + 1dz; (3) contintegraldisplay |z|=2 sin(ez) z dz; (4) contintegraldisplay |z|=2 ez coshzdz. 5. a157a158a13a14a159a78a26 (1) contintegraldisplay |z|=2 sinz z2 dz; (2) contintegraldisplay |z|=2 |z|ez z2 dz; (3) contintegraldisplay |z|=2 sinz z4 dz; (4) contintegraldisplay |z|=2 dz z2(z2 + 16). 6. (1)a157a158a159a78 contintegraldisplay |z|=1 ez z3dza172 (2) aa121a36a92a55a50a30a16F(z) = integraldisplay z z0 ez parenleftBig1 z + a z3 parenrightBig dza28a91a92a17a116 7. a44|sinz|a62a169a143a1440 ≤ Rez ≤ 2pi, 0 ≤ Imz ≤ 2pi a123a17a173a174a92a80 a3a175a5 a176a177a178a7 1. a60a61a13a14a179a16a17a180a181a182a183a184a185a180a181a182a26 (1) ∞summationdisplay n=2 in lnn; (2) ∞summationdisplay n=1 in n. 2. a70a71a179a16 ∞summationdisplay n=1 zn?1 (1?zn)(1?zn+1), |z|negationslash= 1 a180a181a50a66a44a67a23a80 3. a85a186a118a13a14a179a16a17a180a181a143a144a26 (1) ∞summationdisplay n=1 zn!; (2) ∞summationdisplay n=1 parenleftbigg z 1 +z parenrightbiggn ; (3) ∞summationdisplay n=1 (?)n(z2 + 2z+ 2)n; (4) ∞summationdisplay n=1 2n sin z3n. Wu Chong-shi 6 a0 a187 a2 4. a70a71a179a16 ∞summationdisplay n=0 bracketleftBigzn+1 n+ 1 ? 2z2n+3 2n+ 3 bracketrightBig a17a23a30a16a62z = 1a47a188a189a190a80 5. a70a71a26 ln(1?z) = ?z? z 2 2 ? z3 3 ? z4 4 ?···, |z|< 1, a66a164 a191 a65a12 rcosθ?r2cos2θ2 +r3cos3θ3 ?+··· = 12 lnparenleftbig1 + 2rcosθ+r2parenrightbig, rsinθ?r2sin2θ2 +r3sin3θ3 ?+··· = arctan rsinθ1 +rcosθ, a67a123?1 <r<1a80 6. a44a13a14a179a16a192a23a26 (1) cosθ+ cos2θ2 + cos3θ3 + cos4θ4 +···, 0 <θ< 2pi, sinθ+ sin2θ2 + sin3θ3 + sin4θ4 +···, 0 <θ< 2pi; (2) cosθ+ cos3θ3 + cos5θ5 + cos7θ7 +···, 0 <θ<pi, sinθ+ sin3θ3 + sin5θ5 + sin7θ7 +···, ?pi2 ≤θ≤ pi2; (3) sinθ? sin3θ32 + sin5θ52 ? sin7θ72 +?···, ?pi2 ≤θ ≤ pi2; (4) cosθ? cos5θ5 + cos7θ7 ? cos11θ11 +?···, ?pi3 <θ< pi3. a193a194 a26a195a196a197a198a199a200a201 a202Abel a203 a204a205a206 a80 7. a85a44a13a14a207a179a16a17a180a181a168a156a26 (1) ∞summationdisplay n=1 1 nnz n; (2) ∞summationdisplay n=1 1 2nnnz n; (3) ∞summationdisplay n=1 n! nnz n; (4) ∞summationdisplay n=1 (?)n 22n(n!)2z n; (5) ∞summationdisplay n=1 nlnnzn; (6) ∞summationdisplay n=1 1 22nz 2n; (7) ∞summationdisplay n=1 lnnn n! z n; (8) ∞summationdisplay n=1 parenleftbigg 1? 1n parenrightbiggn zn. a3a208a5 Taylor a209a210 a8 Laurent a209a210 1. a211a13a14a30a16a62a117a118a47a212a213a27Taylora179a16a50a66a154a12a67a180a181a168a156a26 Wu Chong-shi a86 a87 7 (1) 1?z2,a62z = 1a212a213a172 (2) sinz,a62z = npia212a213a172 (3) 11 +z+z2,a62z = 0a212a213a172 (4) sinz1?z,a62z = 0a212a213a172 (5) exp braceleftbigg 1 1?z bracerightbigg ,a62z = 0a212a213(a64a214a44a215a216a217)a80 2. a211a13a14a30a16a62a117a118a47a212a213a27Taylora179a16a50a66a154a12a67a180a181a168a156a26 (1) lnz,a62z = ia212a213a50a122a1180 ≤ argz< 2pi; (2) lnz,a62z = ia212a213a50a122a118lnzvextendsinglevextendsinglez=i = ?32pi; (3) arctanza17a218a92a50a62z = 0a212a213a172 (4) ln 1 +z1?z,a62z = ∞a212a213a50a122a118 ln 1 +z1?z vextendsinglevextendsingle vextendsingle z=∞ = (2k+ 1)pia80 3. a44a13a14a219a220a179a16a192a23a26 (1) ∞summationdisplay n=0 1 2n+ 1z 2n+1, |z|< 1; (2) ∞summationdisplay n=0 1 (2n)!z 2n, |z|<∞. 4. a44a13a14a30a16a17Laurenta212a213a26 (1) 1z2(z?1),a62z = 1a221a222a212a213; (2) 1z2(z?1),a212a213a143a144a271 <|z|<∞; (3) 1z2 ?3z+ 2,a212a213a143a144a271 <|z|< 2; (4) 1z2 ?3z+ 2,a212a213a143a144a272 <|z|<∞; (5) (z?1)(z?2)(z?3)(z?4),a212a213a143a144a273<|z|<4; (6) (z?1)(z?2)(z?3)(z?4),a212a213a143a144a274<|z|<∞. 5. a34a179a16a223a224a17a76a225a44a13a14a30a16(a121a218a92a78a96)a62z = 0a47a221a222a17a179a16a212a213a26 (1) ?ln(1?z)ln(1 +z); (2) ln(1 +z2)arctanz. 6. a60a61a13a14a30a16a226a47a17a182a227a50a51a52a28a48a47a50a186a118a67a228a16a26 (1) 1z2 +a2, anegationslash= 0; (2) cosazz2 ; (3) cosaz?cosbzz2 , anegationslash= b; (4) sinzz2 ? 1z; (5) cos 1√z; (6) √z sin√z; (7) 1(z?1)lnz; (8) integraldisplay z 0 sinh√ζ√ ζ dζ. 7. a60a61a13a14a30a16a62∞a47a17a182a227a26 (1) z2; (2) 1z; (3) coszz ; (4) zcosz; (5) z 2 + 1 ez ; (6) exp braceleftbigg ? 1z2 bracerightbigg ; (7) 1cosh√z; (8) radicalbig(z?1)(z?2). Wu Chong-shi 8 a0 a229 a2 a3a230a5 a231a232a152a233a234a235a236a178a7a58a237 1. a44a238a228 a125 a182a42a239a78a76a77a50a240a67a68a27a26 (1) w1(z) =z,w2(z) = ez; (2) w1(z) = exp braceleftbigg1 z bracerightbigg , w2(z) = exp braceleftbigg ?2z bracerightbigg ; (3) w1(z) = cos az, w2(z) = sin az; (4) w1(z) = z 2 z2 ?1,w2(z) = z z2 ?1. 2. a44a13a14a76a77a62z = 0a241a144a145a17a110a101a179a16a68a26 (1) wprimeprime ?z2w = 0; (2) wprimeprime ?zw = 0; (3) (z2 ?1)wprimeprime +zwprime ?w = 0; (4) (1 +z+z2)wprimeprime + 2(1 + 2z)wprime + 2w = 0; 3. a44a13a14a76a77a62z = 0a241a144a145a17a110a101a179a16a68a26 (1) z2(1?z)wprimeprime+z(1?3z)wprime?(1+z)w = 0; (2) 9z2wprimeprime ?15zwprime + (36z4 + 7)w = 0. (3) zwprimeprime ?zwprime +w = 0; (4) zwprimeprime + (z?1)wprime +w = 0; 4. a44a76a77 d 2u dz2 + 2 z du dz +m 2u = 0 a62z = 0a221a222a17a110a101a242a243a68a80 5. a44a76a77 d2w dz2 + 1 z dw dz ?m 2w = 0 a62z = 0a221a222a17a110a101a242a243a68a80 a3a244a5 a58a59a245a246 1.a205a247a248a249a250a251a252a253a254a255a0a1a2a3a201 a4a5a6a7a8a9 a80a136a27a100a101a10a11a50a70a71 f1(z) = 1 +az+a2z2 +a3z3 +··· a183 f2(z) = 11?z ? (1?a)z(1?z)2 + (1?a) 2z2 (1?z)3 ?+··· a12 a27a68a69a13a14a80 2. a219a220a179a16a62a188a54a143a144a145a64a15a180a181 a106 a188a54a17a23a30a16a80a16 a255a0a17a18a2a19a20( a248a249a250a251 a252a253) a21a22 a250 a23a24a254a1a2a25a26a24 a50a27a28 a249a4a5a6a7a8a9 a80a136a27a100a101a10a11a50a70a71a179a16 ∞summationdisplay n=1 parenleftbigg 1 1?zn+1 ? 1 1?zn parenrightbigg a62a143a144|z|<1a183|z|>1 a145a78a79a29a39a110a101a68a69a30a16a50a30a188 a12 a27a68a69a13a14a80 3. a83 a84 a26 f(z) = ∞summationdisplay n=0 z2n = z+z2 +z4 +z8 +z16 +···, |z|< 1. (1)a70a71a26 z = 1a28f(z)a17a226a47a172 (2)a70a71a26 f(z) =z+f(z2)a50a31 a191 a50z2 = 1a17a32a148a33a28f(z)a17a226a47a172 Wu Chong-shi a86 a87 9 (3)a34a35a36a70a71a26 z2k = 1a172k a101a32a148a28f(z)a17a226a47a50ka27a37a38a138a39a16a172 (4) a164 a191 a70a71a26a188a64a120a211f(z)a13a14 a106 a91a166a167 a40 a80 a3a41a5 a42a7a43a44a45a46a47a48 1. a44a13a14a30a16a62a117a118a47z0 a63a17a49a16a26 (1) 1z?1 expparenleftbigz2parenrightbig, z0 = 1; (2) 1(z?1)2 expparenleftbigz2parenrightbig,z0 = 1; (3) parenleftbigg z 1?cosz parenrightbigg2 , z0 = 0; (4) z 2 z4 ?1, z0 = i; (5) 1z2 sinz, z0 = 0; (6) 1+ e z z4 ,z0 = 0; (7) e z (z2 ?1)2, z0 = 1; (8) 1cosh√z, z0 = ? parenleftbigg2n+ 1 2 pi parenrightbigg2 , n = 0,1,2,···. 2. a44a13a14a30a16a62a226a47a63a17a49a16a26 (1) 1z3 ?z5; (2) 1(1 +z2)m+1,ma27a138a39a16; (3) z1?cosz; (4) √z sinh√z; (5) exp bracketleftbigg1 2 parenleftbigg z? 1z parenrightbiggbracketrightbigg ; (6) cos 1√z; (7) 1(z?1)lnz; (8) 1z bracketleftbigg 1 + 1z+ 1 + 1(z+ 1)2 +···+ 1(z+ 1)n bracketrightbigg . 3. a44a13a14a30a16a62∞a47a63a17a49a16a26 (1) 1z; (2) coszz ; (3) zcosz; (4) (z2 + 1)ez; (5) exp parenleftbigg ? 1z2 parenrightbigg ; (6) radicalbig(z?1)(z?2). 4. a157a158a13a14a159a78a92a26 (1) contintegraldisplay |z?1|=1 1 1 +z4dz; (2) contintegraldisplay |z?1|=2 1 1 +z4dz; (3) contintegraldisplay |z?1|=1 1 z2 ?1 sin piz 4 dz; (4) contintegraldisplay |z|=3 1 z2 ?1 sin piz 4 dz; Wu Chong-shi 10 a0 a50 a2 (5) contintegraldisplay |z|=n tanpizdz,na27a138a39a16; (6) contintegraldisplay |z|=2 1 z3(z10 ?2)dz; (7) contintegraldisplay |z|=1 ez z3dz; (8) contintegraldisplay |z|=R z2 e2piiz3 ?1dz,n<R 3 <n+ 1,n a27a138a39a16a80 5. a157a158a13a14a159a78a26 (1) integraldisplay 2pi 0 cos2nθdθ, na27a138a39a16; (2) integraldisplay 2pi 0 dx (a+bcosx)2,a>b>0; (3) integraldisplay pi 0 dθ 1 + sin2θ; (4) integraldisplay pi 0 dθ (1 + sin2θ)2. 6. a157a158a13a14a159a78a26 (1) integraldisplay ∞ ?∞ x2 1 +x4dx; (2) integraldisplay ∞ ?∞ x2m 1 +x2ndx, n,ma43a27a138a39a16a50a90n>m; (3) integraldisplay ∞ ?∞ 1 (1 +x2)n+1dx, na27a138a39a16; (4) integraldisplay ∞ ?∞ dx (1 +x2)cosh pix2 . 7. a157a158a13a14a159a78a26 (1) integraldisplay ∞ 0 cosx 1 +x4dx; (2) integraldisplay ∞ 0 cosx (1 +x2)3dx; (3) integraldisplay ∞ ?∞ xsinx x2 ?2x+ 2dx; (4) integraldisplay ∞ 0 sin(a+ 2n)x?sinax (1 +x2)sinx dx, a>?1,na27a138a39a16. 8. a157a158a13a14a159a78a26 (1) v.p. integraldisplay ∞ ?∞ dx x(x?1)(x?2); (2) integraldisplay ∞ 0 sin(x+a)sin(x?a) x2 ?a2 dx, a> 0; (3) integraldisplay ∞ 0 x?sinx x3(1 +x2)dx; (4) integraldisplay ∞ ?∞ epx ?eqx 1?ex dx, 0 <p<1, 0 <q< 1. 9. a157a158a13a14a159a78a26 (1) integraldisplay ∞ 0 xα?1 1?xdx, 0 <s< 1; (2) integraldisplay ∞ 0 x?α(cospx?cosqx)dx, 0<α<2,p,q>0; (3) integraldisplay ∞ 0 xs (1 +x2)2dx, ?1 <s<3; (4) integraldisplay ∞ 0 xα?1 lnx 1+x dx, 0 <α<1; (5) integraldisplay ∞ 0 lnx x2 +a2dx, a>0; (6) integraldisplay ∞ 0 lnx (x+a)(x+b)dx, b>a>0. Wu Chong-shi a86 a87 11 a3a51a5 Γ a10a7 1. a211a13a14a189a224a159a34Γa30a16a39a40a12a41a26 (1) (2n)!!; (2) (2n?1)!!; (3) (1 +ν)(2 +ν)(3 +ν)···(n+ν); (4) bracketleftbign(n+ 1)?ν(ν + 1)bracketrightbigbracketleftbig(n?1)n?ν(ν + 1)bracketrightbig···bracketleftbig0?ν(ν + 1)bracketrightbig. 2. a157a158a13a14a159a78a26 (1) integraldisplay ∞ 0 x?α sinxdx, 0 <α<2, integraldisplay ∞ 0 x?α cosxdx, 0 <α<1; (2) integraldisplay ∞ 0 xα?1e?xcosθ cos(xsinθ)dx, α>0, ?pi2 <θ< pi2, integraldisplay ∞ 0 xα?1e?xcosθ sin(xsinθ)dx, α>0, ?pi2 <θ< pi2. 3. a82ψ(z) = ddz lnΓ(z) = Γ prime(z) Γ(z) a50a70a71a26 (1) ψ(z+ 1) = 1z +ψ(z); (2) ψ(z+n)?ψ(z) = 1z+ 1z+1+···+ 1z+n?1; (3) ψ(1?z)?ψ(z) = picotpiz; (4) 2ψ(2z)?ψ(z)?ψ parenleftbigg z+ 12 parenrightbigg = 2ln2. 4. a157a158a13a14a159a78a26 (1) integraldisplay 1 ?1 (1?x)p(1 +x)qdx, Rep>?1, Req>?1; (2) integraldisplay pi/2 0 tanαθdθ, integraldisplay pi/2 0 cotαθdθ, ?1 <α< 1; (3) integraldisplay ∞ ?∞ dx (r?ix)a(s?ix)b, r> 0,s> 0, 0 <a< 1, 0 <b< 1, a+b> 1; (4) integraldisplay pi/2 0 cosa+b?2θ cos(b?a)θdθ, 0 <a<1, 0 <b< 1,a+b> 1; 5. a44a13a14a219a220a179a16a192a23a26 (1) ∞summationdisplay n=1 1 n(4n2 ?1); (3) ∞summationdisplay n=?∞ 1parenleftbig n2 + 1parenrightbig2 . a3a52a5 Laplace a9a53 (a54a55a56a198a57 a254a58a18a2f(t) a50a59a60 a206a6a5a61 a21η(t)) 1. a44a13a14a30a16a17Laplacea62a63a26 Wu Chong-shi 12 a0 a64 a2 (1) tn, n = 0,1,2,···; (2) tα, Reα>?1; (3) eλt sinωt, λ> 0,ω> 0; (4) sinωtt , ω> 0; (5) 1?cosωtt2 , ω> 0; (6) integraldisplay ∞ t cosτ τ dτ. 2. a89f(t)a27a104a65a30a16a50a104a65a27αa50a66f(t+α) = f(t), t>0a80a51a52f(t)a17Laplacea29a62 a67 a62a50a70a71a26a68a30a16a28 F(p) = 11?e?αp integraldisplay α 0 e?ptf(t)dt. 3. a44a13a14a30a16a17Laplacea62a63a26 (1) |sinωt|, ω> 0; (2) t?a bracketleftbiggt a bracketrightbigg , a> 0. 4. a44a13a14Laplacea62a63a17 a107 a30a16a26 (1) a 3 p(p+a)3; (2) ω pparenleftbigp2 +ω2parenrightbig, ω> 0; (3) 4p?1(p2 +p)(4p2 ?1); (4) p 2 +ω2 (p2 ?ω2)2, ω> 0; (5) e ?pτ p2 , τ > 0; (6) 1 p e?αp 1?e?αp, α> 0. 5. a81a34Laplacea29a62a44a68a13a14a239a78a76a77(a161)a88a159a78a76a77a26 (1)a51a379.1a50a83 a84i(0) = 0, q(0) = 0, a44i(t); a132 9.1 a132 9.2 (2)a51a379.2a50a83 a84i(0) = 0, q(0) = 0, a44i(t); (3) y(t) = asint?2 integraldisplay t 0 y(τ)cos(t?τ)dτ; (4) f(t) + 2 integraldisplay t 0 f(τ)cos(t?τ)dτ = 9e2t. 6. a81a34Laplacea29a62a157a158a13a14a159a78a26 (1) integraldisplay ∞ 0 e?ax ?e?bx x coscxdx, a> 0,b> 0,c> 0; (2) integraldisplay ∞ 0 1?cosbx x2 dx, b> 0; (3) integraldisplay ∞ 0 sinxt x(x2 + 1)dx. 7. a34a69a70a137a71a72a63a44a13a14Laplacea62a63a17a107a30a16a26 Wu Chong-shi a86 a87 13 (1) pp2 ?ω2, ω> 0; (2) e ?pτ p4 + 4ω4, τ >0,ω> 0; (3) 1pe?αp,α> 0; (4) 1pcosh(l?x) √p coshl√p , 0 <x<l. 8. a44a13a14a219a220a179a16a192a23a26 (1) ∞summationdisplay n=0 (?1)n 3n+ 1; (2) ∞summationdisplay n=0 (?1)n 4n+ 1; (3) ∞summationdisplay n=0 (?1)n (3n+1)(3n+2)(3n+3); (4) ∞summationdisplay n=0 1 (3n+1)(3n+2)(3n+3). a3a52a4a5 δ a10a7 1. a70a71δa30a16a17a13a14a182a227a26 (1) δ(x) = δ(?x); (2) xδ(x) = 0; (3) f(x)δ(x) =f(0)δ(x); (4) xδprime(x) = ?δ(x); (5) δ(ax) = 1aδ(x), a> 0; (6) δ(x2 ?a2) = 12abracketleftbigδ(x?a)+δ(x+a)bracketrightbig, a> 0. 2. a44a13a14a42a239a78a76a77a73a92a128a74a17a68a26 (1) bracketleftBig d2 dx2 ?k 2 bracketrightBig g(x;t) = δ(x?t), x, t> 0,k> 0, g(0;t) = 0, dg(x;t)dx vextendsinglevextendsingle vextendsingle x=0 = 0; (2) bracketleftBig d2 dx2 ?x 2 bracketrightBig g(x;t) =δ(x?t), x, t> 0, g(0;t) = 0, dg(x;t)dx vextendsinglevextendsingle vextendsingle x=0 = 0; (3) bracketleftBigparenleftbig 1 +x+x2parenrightbig d 2 dx2 + 2(1 + 2x) d dx + 2 bracketrightBig g(x;t) = δ(x?t), x, t>0, g(0;t) = 0, dg(x;t)dx vextendsinglevextendsingle vextendsingle x=0 = 0. a193a194 a26a201a197a56a75a76 a2a77a78a79a80a81a254a6a82 a203 a83a84a85 a198a80 3. a34Greena30a16a76a225a44a68a13a14a42a239a78a76a77a73a92a128a74a26 (1) d 2y(x) dx2 +k 2y(x) = f(x), x>0,k> 0, y(0) =A, dy(x)dx vextendsinglevextendsingle vextendsingle x=0 =B; (2) d 2y(x) dx2 ?k 2y(x) = f(x), x>0,k> 0, Wu Chong-shi 14 a0 a64 a86 a2 y(0) =A, dy(x)dx vextendsinglevextendsingle vextendsingle x=0 =B; (3) d 2y(x) dx2 ?x 2y(x) = f(x), x>0, y(0) =A, dy(x)dx vextendsinglevextendsingle vextendsingle x=0 =B. 4. a44a13a14a42a239a78a76a77a87a92a128a74a17a68a26 (1) bracketleftBig d2 dx2 ?k 2 bracketrightBig g(x;t) = δ(x?t), 0 <x, t< 1,k> 0, g(0;t) = 0, g(1;t) = 0; (2) bracketleftBig d2 dx2 ?x 2 bracketrightBig g(x;t) =δ(x?t), 0 <x, t< 1, g(0;t) = 0, g(1;t) = 0; (3) bracketleftBigparenleftbig 1 +x+x2parenrightbig d 2 dx2 + 2(1 + 2x) d dx + 2 bracketrightBig g(x;t) = δ(x?t), 0 <x, t<l< 1, g(0;t) = 0, g(l;t) = 0. 5. a34Greena30a16a76a225a44a68a13a14a42a239a78a76a77a87a92a128a74a26 (1) d 2y(x) dx2 +k 2y(x) = f(x), 0 <x<1, y(0) =A, y(1) = B; (2) d 2y(x) dx2 ?k 2y(x) = f(x), 0 <x<1, k>0, y(0) =A, y(1) = B; (3) d 2y(x) dx2 ?x 2y(x) = f(x), 0 <x<1, y(0) =A, y(1) = B. Wu Chong-shi Wu Chong-shi 16 a0 a64 a133 a2 a3a52a57a5 a7a88a89a44a233a234a8a43a58a90a91 1. a100a92a27 l a20a93a94 a73 a159a27 S a17a43a95a96a182a97a50a83 a84 a100a98 (x = 0) a99a118a50a100a100a98 (x = l) a132 12.1 a62a97a141a76a101a56a102a103a104F a136a34a105a106 a106a72a107 ( a108a37 12.1)a80a62t = 0 a55a50a109a110 a40 a104F a80a85a14a12a97a17a111a112a103a113a114a115a17a76a77a20a87a116a117a118 a23a73a119a117a118a80 2. a62a120a121a123a50 a122a123 a123a11a17a124a125a126a103 a40 a50a93 a67 a62a123a11a17a127a180 a23a128a129a130a77a80a82a62a91a166a55a131a145a20a91a166a132a159a123a127a180a23a128a129a17a123a11 a16a43a138a133 a134 a127a55a135a20a127a63a17a123a11a136a137 u(r,t)a50a31a105a138a128a123a11a16a64a39 a27αu(r,t)a50αa27a133a10a42a16a80a85a65a12u(r,t)a113a114a115a17a139a239a78a76a77a80 3. a130a92a27la17a43a95a140a97a50a141a142a130a67a110a98a20a62a91a166a55a131a145a20a143 a91a166 a73 a159a78a79a144a154a145a146q1 a183q2 a80a85a11a12a223a147a17a87a116a117a118a80 4. a130a100a168a156a27aa20a39 a73a148a149 a17a150a151a152a50a153a154 a134a155a156 a13 (a108a37 12.2)a50a62a157a158 a134a156a125 a17a91a166 a73 a159a56a50a91a166a55a131a145a127a180a145a146M a80a54 a55a50a152 a73 a153Newtona159a160a118a161a125a145(a188a162a121a104a163 a164 a227a17a165a137a270)a80 a85a62a166a134a17a74a75a33a123a11a12a87a116a117a118a80 a132 12.2 a3a52a150a5 a167a168a169a232a152a233a234a235a170a58 1. a44a13a14 a125 a182a171a172a139a239a78a76a77a17a142a68a26 (1) ? 2u ?x2 ?2 ?2u ?x?y ?3 ?2u ?y2 = 0; (2) ?2u ?x2 ?2 ?2u ?x?y + 2 ?2u ?y2 = 0; (3) ? 2u ?x2 ?2 ?2u ?x?y = 0; (4) ?2u ?t2 = c2 r2 ? ?r parenleftbigg r2?u?r parenrightbigg , cnegationslash= 0; (5) parenleftbiga2 ?b2parenrightbig? 2u ?x2 + 2a ?2u ?x?t + ?2u ?t2 = 0, bnegationslash= 0; (6) ? 4u ?x4 ? ?4u ?y4 = 0. 2. a44a13a14 a125 a182a173a171a172a139a239a78a76a77a17a142a68a26 (1) ? 2u ?x2 + ?2u ?y2 = x 2 +xy; (2) ? 2u ?x2 ? ?2u ?y2 = xy?x; (3) ? 2u ?x2 ?2 ?2u ?x?y + ?2u ?y2 = x 2 +y. 3. a44a68a139a239a78a76a77a26 (1) x2? 2u ?x2 ?2xy ?2u ?x?y +y 2? 2u ?y2 +x ?u ?x +y ?y ?y = 0; Wu Chong-shi a86 a87 17 (2) ? 2u ?x2 ? ?2u ?y2 = parenleftbigx2 ?y2parenrightbigsinxy. 4. a44a139a239a78a76a77 ? ?x bracketleftbiggparenleftBig 1? xl parenrightBig2 ?u ?x bracketrightbigg ? 1a2 parenleftBig 1? xl parenrightBig2 ?2u ?t2 = 0 a17a142a68a50a66a174a100a175a44a12a131a62a73a119a117a118 uvextendsinglevextendsinglet=0 = φ(x), ?u?t vextendsinglevextendsingle vextendsingle t=0 =ψ(x) a13a17a68a80 a3a52a175a5 a152a176a9a177a237 1. a92a27la20a110a98a99a118a17a43a95a178a50a73a119a55a50a178a179a103a213a51a37 14.1a50a180 a106a72a107 a108a181a182a183a184a80a44a68 a191 a128a74a80 2. a92a272la17a43a95a97a50a110a98a102a104a136a34a105a78a79a185a186 a123αl a80 t = 0a55a109a110 a40 a104a80a44a68 a191 a97a17a111a112a103a128a74a80 3. a44a68a140a97a17a65a145a128a74a80a97a92la50a110a98(x = 0,l)a43a187 a188 a27a189a137a50a73a119a165a137a78a190a27u vextendsinglevextendsingle t=0 = b x(l?x) l2 a80 a132 14.1 4. a100a43a95a191a101a54a182a17a96a182a192a193a50 0 ≤x ≤ l, 0 ≤y ≤ la50a216a104a194a195a80a73a119a166a102a27Axy(l? x)(l?y)a50a73a119a196a137a270a80a44a68a193a17a93a112a103a80 5. a44a68a26 ?2u ?x2 + ?2u ?y2 = 0, uvextendsinglevextendsinglex=0 =u0, uvextendsinglevextendsinglex=a =u0y, ?u ?y vextendsinglevextendsingle vextendsingle y=0 = 0, ?u?y vextendsinglevextendsingle vextendsingle y=b = 0, a67a123a27a83 a84 a42a16a80 6. a44a68a26 ?2u ?t2 ?a 2?2u ?x2 =bx(l?x), uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, uvextendsinglevextendsinglet=0 = 0, ?u?t vextendsinglevextendsingle vextendsingle t=0 = 0. 7. a44a68a197a198a238a199a1971a74a80 8. a100a140a92a97a50x = 0a98a99a118a50x =la98a102a104a65a104Asinωta136a34a80a44a68 a191 a97a17a111a112a103a128a74a80 a82a73a166a102a23a73a196a137a43a270a80 Wu Chong-shi 18 a0 a64 a200 a2 9. a62a201a38a143a1440 ≤x≤a, ?b/2 ≤y ≤b/2 a123a44a68a26 (1) ?2u = ?2, (2) ?2u = ?x2y, ua62a87a116a56a17a16a92a43a270a80 10. a85a44a13a14a118a68a128a74a192a68a26 ?2u ?t2 ?a 2?2u ?x2 = 0, uvextendsinglevextendsinglex=0 = cos pilat, ?u?x vextendsinglevextendsingle vextendsingle x=l = 0, uvextendsinglevextendsinglet=0 = cos pilx, ?u?t vextendsinglevextendsingle vextendsingle t=0 = sin pi2lx. 11. a44a68a13a14a118a68a128a74a26 ?u ?t ?κ ?2u ?x2 = 0, uvextendsinglevextendsinglex=0 = Aexpbraceleftbig?α2κtbracerightbig, uvextendsinglevextendsinglex=l = Bexpbraceleftbig?β2κtbracerightbig, uvextendsinglevextendsinglet=0 = 0. 12. a134a202a203a120a121a17a204a137a205a130a100a118a206a116a92a55a50a123a11a136a137a211a207a55a131a105a128a208a50a15a209a210a211a120a121a212 a213 a80 a129a214 a28 a107 a11a96a212 a213 a17a215a146a130a77a80a85a216a157a202a203a120a121a17a206a116a204a137a80a123a11a136a137a114a115a17a139a239a78a76a77 a108a197a198a238a199a1972a74a50a217a118a87a116a117a118a27a171a172a17a197a100a34a87a116a117a118a80 a3a52a208a5 a218a219a220a221a222a223a224 1. a100a101a168a156a27aa17a219a220a92a225a226a65a132a167 a227 a50a78a162a110a168a50 a12 a223a184a228a80a100a168a229 a230 a27 V a50a100a100 a168a229 a230 a27?V a80a44 a227 a145a17a229 a230 a78a190a80 2. a168a156a27aa20a39 a73a231a149 a17a43a95a150a151a167 a227 a50 a72 a183a62a36a56a50a102 a106a232a156a233a234 a50a62a157a158 a134a156a125 a17 a91a166 a73 a159a56a91a166a235a236a145a127a180a145a146a27M a50a54a55a50 a227a73 a153 Newtona159a160a118a161a101 a40 a125a145a80a85a44 a227 a145 a17a237a118a165a137a78a190a80a121 a40 a116a165a137a27 0a50a66a82a167 a227 a27a219a220a92a80 3. a44a62a238a38a143a144a≤r ≤b a145a114a115a87a116a117a118 uvextendsinglevextendsingler=a = f(φ), uvextendsinglevextendsingler=b =g(φ) a17a239a23a30a16a80 4. a62a167a1440 ≤x2 +y2 ≤a2 a56a44a68a26 (1) ?? ? ?2u = ?4, uvextendsinglevextendsinglex2+y2=a2 = 0; (2) ?? ? ?2u = ?4y, uvextendsinglevextendsinglex2+y2=a2 = 0; (3) ? ? ? ?2u = ?4xy, uvextendsinglevextendsinglex2+y2=a2 = 0; (4) ? ? ? ?2u = ?4(x+y), uvextendsinglevextendsinglex2+y2=a2 = 0. Wu Chong-shi a86 a87 19 5. a100a101a164 a240a241 a65a132a242a162a17a219a220a92a243a65a244a50a67a94 a73 a43a95a50a51a37 15.1 a113a40a80a244a145a27a245a225a80 a217a118a100a101 a72a73 ( a66a37a123a17a100a117a158a87) a17a229 a230 a27V a50a67a246 a73 a56 a17a229 a230 a43a270a80a85a44a243a65a244a145a17a229 a230 a78a190a80 6. a44a68a152a145a17a118a68a128a74a26 ?u ?t ? κ r2 ? ?r parenleftBig r2?u?r parenrightBig = 0, uvextendsinglevextendsingler=0a130a116, uvextendsinglevextendsingler=1 = Aexp braceleftBig ?(ppi)2κt bracerightBig , uvextendsinglevextendsinglet=0 = 0. a193a194 a26 1 r2 ? ?r parenleftBig r2?u?r parenrightBig ≡ 1r? 2(ru) ?r2 . a132 15.1 a3a52a230a5 a247a10a7 (a62a13a14a191a74a123a50k,la43a27a248a182a16) 1. a70a71a26 integraldisplay 1 x Pk(x)Pl(x)dx = parenleftbig1?x2parenrightbig P prime k(x)Pl(x)?P prime l(x)Pk(x) k(k+ 1)?l(l+ 1) , knegationslash=l. 2. a157a158a159a78 integraldisplay 1 ?1 (1 +x)kPl(x)dx, a249 a38a78a79a97a98k≥la23k,la110a250a251a38a80 3. a157a158a13a14a159a78a26 (1) integraldisplay 1 ?1 Pl(x)ln(1?x)dx; (2) integraldisplay 1 ?1 Pl(x)(1?x)?αdx, 0 <α<1. 4. a252Legendrea94a217a63a17a253a162a30a16a70a71a26 (1) Pl(?1/2) = 2lsummationdisplay k=0 Pk(?1/2)P2l?k(1/2); (2) Pl(cos2θ) = 2lsummationdisplay k=0 (?)kPk(cosθ)P2l?k(cosθ). 5. a157a158a13a14a159a78a26 (1) integraldisplay 1 0 Pk(x)Pl(x)dx; (2) integraldisplay 1 ?1 xPl(x)Pl+1(x)dx; (3) integraldisplay 1 ?1 x2Pl(x)Pl+2(x)dx; (4) integraldisplay 1 ?1 bracketleftBig xPl(x) bracketrightBig2 dx; 6. a211a13a14a118a140a62[?1, 1]a56a17a30a16a153Legendrea94a217a63a212a213a26 (1) f(x) =x2; (2) f(x) = √1?2xt+t2; (3) f(x) = |x|; (4) f(x) = 12bracketleftbigx+|x|bracketrightbig. Wu Chong-shi 20 a0 a64 a229 a2 7. a44a68a225a226a152a254a145a17a118a68a128a74a26 ?2u = 0, a<r<b, uvextendsinglevextendsingler=a = u0, uvextendsinglevextendsingler=b =u0cos2θ. 8. a44a68a152a145a17a118a68a128a74a26 ?2u = 0, 0 <r<a, 0 <θ<pi, uvextendsinglevextendsingler=0a130a116, uvextendsinglevextendsingler=a = u0η(α?θ). 9. a44a68a197a198a238a199a1974a74a80 10. a100a255a119a0a1a17a43a95a140 a125 a50 x = 0 a98a99a118a62a95a196a2a3a4a5a6a7a8a9a10a11 ω a7a12a13a14 (x = l) a15 a16 a17a18a19a20a21a22a23a24 a4a25a26a27a7 a16a28a29a30a31a32 a20 a4a33a34a7a35a36a37a4a38a39a40a41a11a42a38 a37 a17a43 a35a37a44a45 a28 a38a39a40a41a33a46a47a3a48a7a49a50a51a52a53a25a26a11 ?2u ?t2 ? ω2 2 ? ?x bracketleftBigparenleftbig l2 ?x2parenrightbig?u?x bracketrightBig = 0, uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l a54a55 , uvextendsinglevextendsinglet=0 = φ(x), ?u?t vextendsinglevextendsingle vextendsingle t=0 = ψ(x). a56a57 a53a35a52a53a58a59 a17 11. a60 a54 a13a61a62a11aa4a63a64a61a65a7a65a66a67a68a11a69a70u0 a7 a71 a66a67a68a110a17a57a61a65a72a4a73a52 a67a68a74a75 a17 12. a54 a13a61a62a11ba4a76a77a63a64a65a78a7a72 a79a80 a54 a13a81a82 a83 a7 a83 a4a61a62a11aa7 a83a32a84 a65 a32 a19 a85 a7 a83 a6a86a87a88a89a7a90a89 a91 a11Qa17a57a65a72a4a89a92a74a75a17 13. a93a27a94a95a70a96a65a97a95a70Yml (θ,φ)a98a99a100 (1) sin2θcos2φ; (2) parenleftbig1 + cosθparenrightbigsinθcosφ. 14. a13a61a62a11a4a86a87a63a64a65a7a101a66a67a68a11a100 (1) uvextendsinglevextendsingler=a = P11(cosθ)cosφ; (2) uvextendsinglevextendsingler=a=P1(cosθ)sinθcosφ. a56a57a102 a65a72a4a73a52a67a68a74a75 a17 15. a57a53a65a72a58a59a100 ?2u = A+Br2 sin2θcosφ, uvextendsinglevextendsingler=a = 0, a103a104A, B a11a105 a106 a69a70 a17 Wu Chong-shi a107 a108 21 a109a110a111a112 a113a114a115 1. a116a117a100 (1) cosx = J0(x)?2J2(x)+2J4(x)?+···, (2) x = 2bracketleftbigJ1 + 3J3(x) + 5J5(x) +···bracketrightbig; sinx = 2J1(x)?2J3(x)+2J5(x)?+···; (3) x2 = 2 ∞summationdisplay n=1 (2n)2J2n(x); (4) J20(x) + 2 ∞summationdisplay n=1 J2n(x) = 1. 2. a93a95a70f(θ) = cos(xsinθ)a118g(θ) = sin(xsinθ)a98a99a11 Fouriera119a70a17 3. a120a121a27a94a122a74a100 (1) integraldisplay x 0 x?nJn+1(x)dx; (2) integraldisplay a 0 x3J0(x)dx; (3) integraldisplay t 0 J0parenleftbig radicalbig x(t?x)parenrightbigdx; (4) integraldisplay t 0 bracketleftbigradicalbigx(t?x)bracketrightbignJ n parenleftbigradicalbigx(t?x)parenrightbigdx. 4. a61a62a11Ra4a82 a123a124 a7a125a126a127a52a7a128a129 a123a130a131a132a133a134a135 a66 uvextendsinglevextendsinglet=0 = A parenleftbigg 1? r 2 R2 parenrightbigg a123 a7a128a136a110a17a57a53a82 a124 a4a46a47a3a58a59 a17 5. a57a53a27a94a52a53a58a59a100 ?u ?t ?κ bracketleftBig1 r ? ?r parenleftBig r?u?r parenrightBig + 1r2 ? 2u ?φ2 bracketrightBig = 0, uvextendsinglevextendsingler=0 a54a55 , uvextendsinglevextendsingler=a = 0, uvextendsinglevextendsinglet=0 =u0 sin2φ. 6. a13a137a11pia138a61a62a111a4a82a139a123a63a64a7a139a64a4a140a66a118a6a27a71a4a67a68a86a141a142a11 0a7a128a129a48 a139 a64a72a4a67a68a74a75a11f(r)sinza7 a57a139 a64a72a67a68a4a74a75 a84a143a144 a17 7. a13a145 a32 a82 a139 a7a72a61a62a11aa7 a146 a61a62a11ba7 a147 a142a72 a146a139 a66a4a67a68a11 0a17a148a60a139a64a149ha7 a6a27 a71a150a151 a7a128a67a11u0 a7 a57a139 a64a72a67a68a4a74a75 a84a143a144 a17 8. a61a62a11Ra4a82 a123a152 a7a125a126a127a52a7 a18a153 a40a154 a91 a6a155a156a157 a20 (1) f(r,t) = Asinωt, (2) f(r,t) =A parenleftbigg 1? r 2 R2 parenrightbigg sinωt a4a33a34a7 a57 a53a82 a124 a4a158a159a47a3a7a60a128a40a160 a84 a128a136a68a86a11 0a17 9. a120a121a27a94a122a74a100 (1) integraldisplay 1 0 √1?xsinparenleftbiga√xparenrightbigdx, a> 0; (2) integraldisplay ∞ 0 e?axJ0parenleftbig √ bxparenrightbigdx, a> 0,b≥ 0; (3) integraldisplay ∞ 0 e?axJν(bx)xν+1dx, ν >?1,a>0, b> 0; Wu Chong-shi 22 a161 a162 a163 a164 (4) integraldisplay ∞ 0 expbraceleftbig?a2x2bracerightbigJν(bx)xν+1dx, ν >?1,a>0, b> 0. 10. a13a63a64a65a7a61a62a11aa7a128a67a11a69a70u0 a7a65a66a67a68a110a17a57a65a72a67a68a4a74a75a118 a143a144 a17 11. a120a121a122a74a100 (1) integraldisplay ∞ 0 e?ax/2 sinbxI0 parenleftBigax 2 parenrightBig dx, integraldisplay ∞ 0 e?ax/2 cosbxI0 parenleftBigax 2 parenrightBig dx, a103a104a>0,b> 0a165 (2) integraldisplay ∞ 0 J0(αx)K0(βx)xdx, α> 0, Reβ > 0. 12. a149a11ha138a61a62a11aa4a82a139a64a7a6a27a71a141a142a67a68a110a7a166a139a66a67a68a11u0 sin 2pih za7a57a139 a64a72a4a73a52a67a68a74a75 a17a167a168a169 a52a6a27 a71a170 a18 a4a38a66a74a171a11z = ha118z = 0a17 13. a93a27a94a95a70 a18t = 0 a4a172a173a72a33Taylora98a99a100 (1) 1z sin√z2 + 2zta7a174a52 √z2 + 2ztvextendsinglevextendsinglevextendsingle t=0 = z; (2) 1z cos√z2 ?2zta7a174a52√z2 ?2zt vextendsinglevextendsingle vextendsingle t=0 =z; (3) 1z sinh√z2 ?2izta7a174a52 √z2 ?2izt vextendsinglevextendsingle vextendsingle t=0 =z; (4) 1z cosh√z2 + 2izta7a174a52 √z2 + 2iztvextendsinglevextendsinglevextendsingle t=0 = z. 14. a57a137a82a139a123a118a82a123a175a176a4a177 a55 a61a62 a17 a109a110a178a112 a179a180a181a182a183a184a185 1. a93a27a94a49a50 a144 a11Sturm–Liouvillea186a49a50a4a187a188 a123a189 a100 (1) xd 2y dx2 + 2 dy dx + (x+λ)y = 0; (2) x(1?x) d2y dx2 + (a?bx) dy dx ?λy = 0; (3) xd 2y dx2 + (1?x) dy dx +λy = 0; (4) d2y dx2 ?2x dy dx + 2λy = 0. 2. a57a53a190a191a192a58a59a100 1 r d dr parenleftbigg rdRdr parenrightbigg + λr2R = 0, R(a) = 0, R(b) = 0, a103a104b>a> 0 a17 3. a60 a54 a190a191a192a58a59 d dx bracketleftBig p(x)dydx bracketrightBig +bracketleftbigλρ(x)?q(x)bracketrightbigy = 0, y(b) = α11y(a) +α12yprime(a), yprime(b) =α21y(a)+α22yprime(a), Wu Chong-shi a107 a108 23 a103a104p(a) = p(b) a17 a56 a116a117a7 a43 vextendsingle vextendsinglevextendsingle vextendsinglevextendsingle vextendsingle α11 α12 α21 α22 vextendsinglevextendsingle vextendsinglevextendsingle vextendsinglevextendsingle = 1 a48a7a45a193a194a195a190a191a192a4a190a191a95a70a196a197 a17 4. a60a190a191a192a58a59 ?2Φ +λΦ = 0, ΦvextendsinglevextendsingleΣ = 0 a4a53(a190a191a95a70)a11Φk a7a45a193a4a190a191a192a11λk a7 a167a168 a4ka198a190a191a192a4a199a200 a17 a56 a116a117a100 a43λ = 0 a194a198a190a191a192a48a7Poissona49a50a4a201a13a202a125a192a58a59 ?2u = ?f, uvextendsinglevextendsingleΣ = 0 a4a53a11 u = summationdisplay k Ak λk Φk, Ak a198a203a204a205a206f a96{Φk}a98a99a4a207a70a7 f = summationdisplay k AkΦk. a167a168a208 a60Φk a105 a209 a13 a144 a17 5. a34a2014a59a4a49a210 a57 a53a211 a123a212 a1730 ≤x≤a, 0 ≤y ≤b a72Poissona49a50a4a52a53a58a59 ?2u ?x2 + ?2u ?y2 = ?f(x, y), uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=a = 0, uvextendsinglevextendsingley=0 = 0, uvextendsinglevextendsingley=b = 0. a109a110a213a112 a214a179a181a215 1. a34Laplacea143a216a57a53a61a217 a55 a58a59a100 ?u ?t ?κ ?2u ?x2 = 0, x> 0,t>0, uvextendsinglevextendsinglex=0 = u0, uvextendsinglevextendsinglex→∞ a54a55 , t> 0, uvextendsinglevextendsinglet=0 = 0, x> 0. 2. a60 a54a218 a81a61a217 a55a219 a7a67a68a74a171a11 0a118u0 a7 a18t = 0 a48a93 a218a219 a14a220a44a76a7 a57 t> 0 a48 a219 a104a221 a220a4a67a68a74a75 a17 Wu Chong-shi 24 a161 a222 a162 a164 3. a223a34Laplacea143a216a57a53a201a224a225a226a20111a59 a17 4. a34Fouriera143a216a49a210 a57 a53a13 a147 a217 a55a227 a6a4a158a159a47a228a58a59 ?2u ?t2 ?a 2?2u ?x2 =f(x,t), uvextendsinglevextendsinglet=0 = φ(x), ?u?t vextendsinglevextendsingle vextendsingle t=0 = ψ(x). 5. a34Fouriera143a216a49a210a57a53a229a147a217 a55 a38a66a6a4a15 a16 a47a228a58a59 ?2u ?t2 ?a 2 bracketleftbigg?2u ?x2 + ?2u ?y2 bracketrightbigg = 0, uvextendsinglevextendsinglet=0 = φ(x,y), ?u?t vextendsinglevextendsingle vextendsingle t=0 = ψ(x,y). 6. a13a61a217 a55a227 x≥ 0a7 a230a231a28 a38a39 a130a232 a17 a60 a18t> 0 a48x = 0a14a33a233a234a47a228Asinωta17a56 a57 a227 a6 a221 a220a4a235a228 a17 7. a89 a236a237a238a104 a69a239a240a13a241a242 a153 a4a243a89 a244a245 a246 a62a247a248 a245 a7a249a4 a218a250 a198 a218 a81a217a251a76a252 a4 a246 a62(a60a11a)a195a5a137a82a248a7 a103 a89 a92 a74a171a11V0 a118?V0 a17a57a248a72a4a243a89 a92 a17 a253a254 a100a255a0a1a2a3a4u vextendsinglevextendsingle r=a = V0e ?k|z|sgnz a5a6a7Fouriera8a9a10a11a7a12a13a14k → 0a17 a109a15a110a112 Green a114a115a16a183 1. (1)a34a89 a17 a210 a57a102 a65a72Laplacea49a50a201a13a202a125a192a58a59a4Greena95a70G(r; rprime)a165 (2)a57a102a125 a55 a66(a65a66r = a)a6 a221 a220a4a18a19a89 a20a21 a68σ(θ, φ)a165 (3)a116a117 a17 a89 a20 a118a18a19a89 a20 a18 a65a72 a22a23a246a24 a165 (4)a116a117a65a72Laplacea49a50a201a13a202a125a192a58a59 ?2u = 0, uvextendsinglevextendsingler=a =f(θ, φ) a4a53a198 u(r,θ, φ) = a parenleftbiga2 ?r2parenrightbig 4pi integraldisplay 2pi 0 bracketleftbiggintegraldisplay pi 0 f(θprime, φprime)parenleftbig a2 +r2 ?2arcosψparenrightbig3/2 sinθprimedθprime bracketrightbigg dφprime, a103a104ψ a198r(r, θ, φ)a84rprime(rprime, θprime,φprime)a4a25a8a7 cosψ = cosθcosθprime + sinθsinθprime cosparenleftbigφ?φprimeparenrightbig. 2. a13a217a26a137 a227 a7t = t0 a48 a18x = x0 a231 a155a240a27a48a4a28a29a7 a30a91 a11Ia17a56a57a53 a227 a4a46a47a228a7 a60a128a40a160a118a128a136a68a86a110a17 3. a34Greena95a70a49a210a53a217 a55a227 a4a46a47a228a58a59a7a52a53a58a59a11 ?2u ?t2 ?a 2?2u ?x2 = 0, Wu Chong-shi a107 a108 25 uvextendsinglevextendsinglet=0 = φ(x), ?u?t vextendsinglevextendsingle vextendsingle t=0 = ψ(x). 4. a218 a14a127a52a4 a227 a7a137a11l a17t = t0 a48a34a36a31a32a29 a227 a6x =x0 a220a7 a33a34a35a231a36a34a30a91I a17 a57 a53 a227 a4a46a47a228a7a60a128a40a160a118a128a136a68a86a11 0a17 5. a34Greena95a70a49a210a53a201a224a225a226a2016a59 a17 6. a3420.5a37 a104a57 a53a38 a147 a217 a55 a145a39a40a228a49a50 Greena95a70a4a49a210a7 a57a151a41 a63a49a50a4 Greena95 a70 a17 a109a15a110a42a112 a181a179a183a43a44 1. a45 a102a33 a27a94a46a95 a169 a250 a192a4Euler–Lagrangea49a50a7a47 a57 a53a100 (1) integraldisplay x1 x0 radicalBig 1 +y2yprime2dx; (2) integraldisplay x1 x0 parenleftbigy2 +yprime2parenrightbigdx; (3) integraldisplay x1 x0 x x+yprimedx; (4) integraldisplay x1 x0 √1 +xradicalBig1 +yprime2dx. a174a52 a250 a192a48a37a86a49a50a38a66a6a4a105 a106 a220 (x0, y0)a118(x1, y1)a17 2. a57a51a66x2 +y2 = z2 a6a4 a52 a53 a50a37a54(a188a55a56a7a57a11a58a77a37a7 Geodesic)a17 3. a57a82 a139 a66a6a59a58a77a37a7a60a82 a139 a59a60a37a38a61 a28z a5 a17 4. a237a18a62a63a10a11na59a64a154 a104 a59 a41a65 a136a10a11v = dsdt = cn a7ca198a66a145 a104 a59a136a10a7 a28 a198 a237a16 Aa220(x0,y0)a41a65a240Ba220(x1,y1)a59a48a39a67a198 T = integraldisplay (x1,y1) (x0,y0) ds v = 1 c integraldisplay (x1,y1) (x0,y0) nds. Fermata230a68a56a7 a237 a37 a16A a240Ba59a69a70a71a62a193 a43 a33T a169 a250 a192 a17 a56a57a237 a18 a27a94a64a154 a104a41a65 a48a59 a69a70a72a73a100 (1) n = k(x+ 1); (2) n = k√y; (3) n = k2x+ 3; (4) n = ky; (5) n = key; (6) n = k√x+y; (7) n = kr?1/2; (8) n = kr. a103a104k a86a11a105 a106 a69a70a7r2 = x2 +y2 a17 5. a56a45 a102 a190a191a192a58a59 ?2u+λu = 0, bracketleftbigg αu+β?u?n bracketrightbigg Σ = 0 a170 a45a193a59a46a95 a250 a192a58a59a7a60β negationslash= 0a17 Wu Chong-shi 26 a161a222a162a222a164 6. a34Rayleigh–Ritza49a210 a57a102 yprimeprime +λy = 0, y(?1) = 0, y(1) = 0 a59a74a75a59 a218 a81a190a191a192a59a252a76a192a7 a169 a56a77 a95a70a11a100 (1) y =c1parenleftbig1?x2parenrightbig+c2xparenleftbig1?x2parenrightbiga165 (2) y = c1parenleftbig1?x2parenrightbig+c2x2parenleftbig1?x2parenrightbiga17 a109a15a110a15a112 a115a78a79a80a81a82a83a84 1. a85a86a27a94a49a50a59a202a186a7a47a93a249a87 a144 a11a187a188 a123a189 a100 (1) ? 2u ?x2 + 2 ?2u ?x?y ?3 ?2u ?y2 + 2 ?u ?x + 6 ?u ?y = 0; (2) ? 2u ?x2 + 4 ?2u ?x?y + 5 ?2u ?y2 + ?u ?x + 2 ?u ?y = 0; (3) ? 2u ?x2 +y ?2u ?y2 + 1 2 ?u ?y = 0; (4) parenleftbig1 +x2parenrightbig? 2u ?x2 + parenleftbig1 +y2parenrightbig?2u ?y2 +x ?u ?x +y ?u ?y = 0; (5) tan2x? 2u ?x2 ?2ytanx ?2u ?x?y +y 2? 2u ?y2 +y 2?u ?y = 0. (6) ? 2u ?x2 ?2sinx ?2u ?x?y ?cos 2x? 2u ?y2 ?cosx ?u ?y = 0. 2. a54a88 a49a50a7a45a89 a106 a95a70a33a90 a43 a59 a143a216a91 a7 a21a22a92a93 a13a94a95a63a70a206 a17 (1)a116a117a100 a18 a143a216 u(x,y) = e?(ax+by)v(x,y) a27a7a49a50 ?2u+ 2a?u?x + 2b?u?y = 0 a144 a11Helmholtza49a50 ?2v?parenleftbiga2 +b2parenrightbigv = 0, a103a104a, b a11a69a70a165 (2)a96 a57 a90 a43 a59 a143a216 a7 a33 a49a50 ?2u ?x2 ? ?2u ?y2 + 2a ?u ?x + 2b ?u ?y = 0 a18 a143a216a91 a194a97a98 a54 a13a94a95a63a70a206a165 Wu Chong-shi a107 a108 27 (3)a60 a54 a49a50 a? 2u ?x2 + 2b ?2u ?x?y +c ?2u ?y2 +d ?u ?x +e ?u ?y +fu = ?u ?t, a103a104a, b,c, d, e,f a11a69a70a7a99b2 ?acnegationslash= 0a17a116a117a100 a18 a143a216 u(x,y,t) = eαx+βy+γtv(x,y,t) a27a7 a21 a33v(x,y,t) a100a101a49a50 a? 2v ?x2 + 2b ?2v ?x?y +c ?2v ?y2 = ?v ?t. 3. a57a53 a227 a47a228a49a50a59Goursata58a59a100 ?2u ?t2 ?a 2?2u ?x2 = 0, uvextendsinglevextendsinglex?at=0 =φ(x), uvextendsinglevextendsinglex+at=0 = ψ(x), a103a104φ(x), ψ(x) a100a101φ(0) =ψ(0)a17 4. a18a40a228a49a50 ?2u ?t2 ?a 2?2u ?x2 = 0 a104 a34iya102a103ata7a104a87a105a106 a34 a240Laplacea49a50a59 a52a128a192a54a58a59 ?2u ?x2 + ?2u ?y2 = 0, uvextendsinglevextendsingley=0 = φ(x), ?u?y vextendsinglevextendsingle vextendsingle y=0 = ψ(x) a59 a123a189 a53a11 u = 12bracketleftbigφ(x+ iy)+φ(x?iy)bracketrightbig+ 12i integraldisplay x+iy x?iy ψ(ξ)dξ. (1)a107 φ(x) =x, ψ(x) = e?x, a108 a21 a34 u(x,y) = x+ e?x siny. a109 a116 a167 a81a101a110 a189a231a231 a100a101Laplacea49a50a7a111a100a101y = 0a48a59 a52a128a129a54a25a26a165 (2)a112a113 φ(x) = 11 +x2, ψ(x) = 0, a108a123a189 a53 a143 a11 u(x,y) = 1 +x 2 ?y2 parenleftbig1 +x2 ?y2parenrightbig2 + 4x2y2. a116a117a100 a167 a81a95a70 a18(0, ±1) a220a194a114a115a7a116a35a7a117a118 a18a167 a88 a220a6a7a47a194a100a101 Lpalacea49a50 a17 a167 a56a117a100 a18 a13a119a120a121a27a7Laplacea49a50a59 a52a128a192a54a58a59a217a53 a17