a0 a1
star a2a3a4a5a6a7a8a9a10 6
star a1122–27 a12a13a14a8a15a16a17a18a19a20a6a7
a0a1a2 a3a4a5a6a7a8a9a10 a111
a12
a13a14a15 a16a17a18a19a20a21a22a23
§7.1 a24a25a26a27
a28a29a30a31 a32a33a34G
a35a36a37C a38a39a40a41a42a43a35a44a45a46a47a48a49a50
a51a52a53a54a55a56a57a58a59 b
k, k =
1,2,3,···,na60a61a62a63f(z)a64G a65a45a66a67a68a61a64 G a69a70a71a61a72a64C a73a74
a53f(z)
a35
a58a59
a61a75
contintegraldisplay
C
f(z)dz = 2pii
nsummationdisplay
k=1
resf(bk).
resf(bk) a76a38 f(z) a64 bk
a77
a35a78a63a61a79a80a81 f(z) a64 bk a35a82
a34
a65Laurent a83a84a69(z ?bk)?1 a35a85a63
a(k)?1 a50
a867.1
a87a88a89a90
a91 a92a937.1
a61a94a95a96
a55a58a59b
k a97a46a47a48a49γk a61a98γk a99a64G a65a61a72a100a101a102a103a61a75a104a105a106a70
a107a33a34 Cauchy
a108a109a110a62a63
a97
Laurenta83a84a111a35a85a63a112a113a61a114
a53
contintegraldisplay
C
f(z)dz =
nsummationdisplay
k=1
contintegraldisplay
γk
f(z)dz
= 2pii
nsummationdisplay
k=1
a(k)?1
= 2pii
nsummationdisplay
k=1
resf(bk). square
a115a116a117a118a119a120a121a122
a61a123a124a125
a116a126a127a128a129a130a131a132
a125
a116a133a127a128a134a126a135a136a137a138a139a140
a50a141a142
a143a144
a123a124a125
a116a126a127a128a129a130a131
a61a145a146
a143a144a147
a125
a116a133a127a128a134a135a136a148a126a115a116
a50
star a149f(z)a64
a58a59b
a77
a35a78a63a61
a150
a75a73a151a61a114a152a149f(z)a64z = ba35a82
a34
a65Laurenta83a84a69(z?b)?1
a153
a35a85a63a50
star a64a154
a59
a35a155a156a157a61a158a159
a107a160a161a162a163a164
a149a78a63a50
star a165a166a167a168a169a170a171
a32ba59
a152f(z)a35a39a172a154
a59
a61a75a64ba59a35a82
a34
a65a61
f(z) = a?1(z ?b)?1 + a0 + a1(z ?b) + a2(z ?b)2 +···.
§7.1 a3a4a5a6 a112a12
a159(z ?b)a173a83a84a113a174a175a61
(z ?b)f(z) = a?1 + a0(z ?b) + a1(z ?b)2 + a2(z ?b)3 +···.
a176
a159
a?1 = lim
z→b
(z ?b)f(z).
star a177a178a179a180a35a155a156a152f(z)a158a159a181a182a38P(z)/Q(z)a61P(z)a183Q(z)
a99
a64ba59a110a184a82a34a65a67a68a61b
a152Q(z)a35a39a172a185
a59
a61Q(b) = 0a61Qprime(z) negationslash= 0a61P(b) negationslash= 0a61a75
a?1 = lim
z→b
(z ?b)f(z) = lim
z→b
(z ?b)P(z)Q(z) = P(b)Qprime(b).
a186 7.1
a149
1
z2 + 1 a64
a58a59
a77
a35a78a63a50
a187 z = ±i
a152a79a35a39a172a154
a59
a50
resf(±i) = 12z
vextendsinglevextendsingle
vextendsingle
z=±i
= ?i2.
a186 7.2
a149
eiaz ?eibz
z2 a64
a58a59
a77
a35a78a63a50
a187 z = 0
a152a79a35a39a172a154
a59
a50
resf(0) = limz→0z · e
iaz ?eibz
z2 . = limz→0
eiaz ?eibz
z = i(a?b).
star a188a166a167a168a169a170a171
a32z = b
a152f(z)a35ma172a154
a59
a61m ≥ 2a61
f(z) = a?m(z ?b)?m + a?m+1(z ?b)?(m?1) +···
+a?1(z ?b)?1 + a0 + a1(z ?b) +···.
a174a175a173a73 (z ?b)m a61
(z ?b)mf(z) = a?m + a?m+1(z ?b) +···+ a?1(z ?b)m?1
+a0(z ?b)m + a1(z ?b)m+1 +···.
a189
a111a?1 a152(z ?b)mf(z)a35a83a84a113a69(z ?b)m?1 a153a35a85a63a61a190
a?1 = 1(m?1)! d
m?1
dzm?1(z ?b)
mf(z)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=b
.
a186 7.3
a1491/(z2 + 1)3 a64
a58a59
a77
a35a78a63a50
a187 z = ±i
a152a79a35a191a172a154
a59
a50
resf(±i) = 12! d
2
dz2(z ?i)
3 · 1
(z2 + 1)3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=±i
= 12! d
2
dz2
1
(z ±i)3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=±i
a0a1a2 a3a4a5a6a7a8a9a10 a113
a12
= 12!(?3)(?4)(z±i)?5
vextendsinglevextendsingle
vextendsinglevextendsingle
z=±i
= ? 316i.
star a192
a29a193∞
a168a169
a28a29
a194
a81∞a59a61a108a195
resf(∞) = 12pii
contintegraldisplay
Cprime
f(z)dz,
a189a196
a35Cprime a152a95∞a59a197a198(a199a114a152a200a111a201a202
a198)
a39a203a35a94a204a61a64a94a204a65
a52 ∞a59
a158a205a152f(z)a35
a58a59
a60a178a206
a58a59
a50
star resf(∞)a207a101a152f(z)a64∞a82
a34
a65Laurenta83a84a69z1 a153a35a85a63a50
resf(∞) = 12pii
contintegraldisplay
Cprime
f(z)dz = ? 12pii
contintegraldisplay
C
f
parenleftbigg1
t
parenrightbigg dt
t2
=? 1t2f
parenleftbigg1
t
parenrightbigg
a64t = 0a59a82a34a65a208a209a63a83a84a69t?1a153a35a85a63
=?f
parenleftbigg1
t
parenrightbigg
a64t = 0a59a82
a34
a65a208a209a63a83a84a69t1a153a35a85a63
=?f(z)a64z = ∞a59a82
a34
a65a208a209a63a83a84a69z?1a153a35a85a63a50
star a189a55a210a211a183a53a54a212
a77
a101a213a214
a77a215
1. a216a217a218a219a220a61a125
a116f(z)a133∞a136a126a115a116
a61a221a222f(z)
a133∞a136a223a224a134a225a226a116a227a228a229z?1
a230
a126
a231a116a232a233?1
a61a234a235a236a142
a237a238a239a240
a50
2. a216a241a242a219a220a61a243a222z?1 a230a244a245a222f(z)a133∞a136a223a224a134a225a226a116a227a228a246a126a247a248a249a130a61a250a251a61a252
a253∞a136a254
a244f(z)
a126a135a136
a61resf(∞)a255a0
a233a254
a141 0a50
a1a2
a61a252
a253∞a136
a244f(z)
a126a135a136
a61
a3a4
a244a237a5
a6a136
a61a255a0
a233
a141 0a50
star a28a29a169a7a8 a9
a31
a192
a29
a169a10a11a11a12a50
a13
a50a14a62a63
f(z) = 1(z ?1)(z ?2)(z?3)
a15
a40a40a113a50
1
(z ?1)(z ?2)(z ?3) =
A
z ?1 +
B
z?2 +
C
z ?3.
a191
a55a16
a108a179a63a61A, Ba183C a61
a197a17
a114a152a62a63f(z)a64a39a172a154
a59z = 1, z = 2
a183z = 3a59
a77
a35a78a63a50
a18a19
A = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=1
= 12,
§7.1 a3a4a5a6 a114a12
B = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=2
= ?1,
C = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=3
= 12.
a92a211
a62a63f(z)a20
a53a21
a172a154
a59
a61a199a158a159a22a23a24
a77
a109a50
a13a92
a61
1
(z ?1)2(z ?2)(z ?3) =
A
(z ?1)2 +
B
z ?1 +
C
z?2 +
D
z ?3.
a25a26a27a28
A = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=1
= 12,
B = res 1(z ?1)2(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=1
= 34,
C = res 1(z ?1)2(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=2
= ?1,
D = res 1(z ?1)2(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=3
= 14.
star a28a29a169a7a8 a29a30
a30a31
a11a50
a78a63a108a109a32a94a204a33a40a35
a163a164a34a35
a38a78a63a35
a163a164
a61
a36a37
a205a32a108a33a40a183a39a108a67a68a62a63a35a94a204a33a40
a38
a85a39a40a61a114
a53
a158a205a41a42a44a43a24
a163a164a28a189a44
a108a33a40a50
a0a1a2 a3a4a5a6a7a8a9a10 a115
a12
§7.2 a45a27a46a47a48a25a49a50a51
a53
a109a191a52a62a63a35a33a40a35a53a113a152
I =
integraldisplay 2pi
0
R(sinθ,cosθ)dθ,
a184a69Ra152sinθ, cosθa35
a53
a109a62a63a61a64a33a40
a33a54
a73a152a70a71a35a50
a97a55a56
z = eiθ a61a75
sinθ = z
2 ?1
2iz , cosθ =
z2 + 1
2z , dθ =
dz
iz ,
a57a58
a35a33a40a59a60a75
a55
a38 z a61a62a73a35a45a63a64a35a64a203|z| = 1a50a81a152a61
I =
contintegraldisplay
|z|=1
R
parenleftbiggz2 ?1
2iz ,
z2 + 1
2z
parenrightbigg dz
iz
=2pi
summationdisplay
|z|<1
res
braceleftbigg1
zR
parenleftbiggz2 ?1
2iz ,
z2 + 1
2z
parenrightbiggbracerightbigg
.
a53
a109a191a52a62a63R(sinθ,cosθ)a64a33a40
a33a54[0,2pi]
a73a70a71a61a114a65a66a67
a53
a109a62a63R
parenleftbiggz2 ?1
2iz ,
z2 + 1
2z
parenrightbigg
a64a45a63a64a35a64a203a73a206
a58a59
a50
a186 7.4 a163a164
a33a40 I =
integraldisplay 2pi
0
1
1 + εcosθdθ, |ε| < 1a50
a187 a68a69
a73a62a35a202a70a71a72a61a73a74
a53
I =
integraldisplay 2pi
0
1
1 + εcosθdθ =
contintegraldisplay
|z|=1
1
1 + εz
2 + 1
2z
dz
iz
=
contintegraldisplay
|z|=1
2
εz2 + 2z + ε
dz
i = 2pi
summationdisplay
|z|<1
res
braceleftbigg 2
εz2 + 2z + ε
bracerightbigg
= 2pi· 22εz + 2
vextendsinglevextendsingle
vextendsinglevextendsingle
z=(?1+√1?ε2)/ε
= 2pi√1?ε2.
a189a196
a64
a163a164
a78a63a111a61
a37a75a76
a62a63 2/(εz2 + 2z + ε)a53a174
a55
a154
a59
a61
z = ?1±
√1?ε2
ε ,
a77a78
a81a79a74a35a173a33a38 1a61
a176
a159a101a79a80a81a61a39a108
a36a53
a39
a55
a154
a59
a61 z = (?1 +√1?ε2)/εa61
a77
a81a45a63a64
a65a50
§7.3 a82a83a84a85
a116
a12
§7.3 a86a87a50a51
a206a88a33a40a35a108a195a38 integraldisplay
∞
?∞
f(x)dx = limR
1 → +∞R
2 → +∞
integraldisplay R2
?R1
f(x)dx.
a53
a111
a189a89
a154
a54
a101a90a64a61
a77
limR→+∞
integraldisplay R
?R
f(x)dxa90a64a61a76a38a33a40a91a66a61a92a38
v.p.
integraldisplay ∞
?∞
f(x)dx = lim
R→+∞
integraldisplay R
?R
f(x)dx.
a93a94
a61a95
a189
a174
a89
a154
a54a96
a90a64a111a61a79a74a97a108
a57
a80a50
a64a106a61a62a73
a27
a61a33a40 integraldisplay
∞
?∞
f(x)dx
a152a98a99a100a101a102a103a35a61a207a101a104a105a106
a55
a62a63a35a94a204a33a40a50
? a73a74a158a159
a25a26
a24a14a100a62a63 f(x)a106a107a38a106a62a63f(z)
? a38a67a205a104a105a94a204a33a40a207
a58a108
a78a63a108a109
a163a164
a61a109a97a110
a215
(1) a111a73a112a95a35a33a40a59a60a113a53a105a46a47a94a204a61
a163a164
contintegraldisplay
f(z)dz a114
(2) a64a111a73a35a59a60a73a35a33a40a61
a115a116a117a176a37
a149
a163a164
a35a206a88a33a40a118a119
a57a120
a61
a115a116
a158a159a44a45a202a43a24
a163a164
a28
a40a50
a121a122a94
a35a123a70a95
a94
a152a111a73a159
a150a59
a38a64a124a61 Ra38a125a60a35a73a125a64CR a61contintegraldisplay
C
f(z)dz =
integraldisplay R
?R
f(z)dz +
integraldisplay
CR
f(z)dz.
a86 7.2
a113a126a127R → ∞a50
a189a128
a61a73a74a43a129
a37a163a164
integraldisplay
CR
f(z)dz a35a154
a54
a66a50
a36a37f(z)
a130a131a112a95a35a132a133a61
a189
a152a158a159a123a134a35a50
a101a135a136
a32
a62a63f(z)a130a131a157a137a132a133
a215
a0a1a2 a3a4a5a6a7a8a9a10 a117
a12
1. f(z)a64a73a125a61a62
a52
a67
a53a54a55a56a57a58a59
a60a152
a77a77
a67a68a35a61
a64a100a101a73a74
a53a58a59
a114
2. a64 0 ≤ argz ≤ pia138a94a65a61a95|z| → ∞a111a61zf(z)a39a139a24
a140
a81 0 a61a141
a194
a81a142a143a35 ε > 0 a61a90a64 M(ε) > 0 a61a98a95
|z|≥ M a610 ≤ argz ≤ pia111a61|zf(z)| < εa50
a234a144
a238a145a146a147
a254a148a149
a50a1501
a238a145a146a151a152
a142
a153a154a126a155a156a129a130a254
a244a157
a129a130
a61
a147a158
a0
a233a159a160
a115a116a117a118a143a144a127a128a129a130
contintegraldisplay
C
f(z)dz =
integraldisplay R
?R
f(z)dz +
integraldisplay
CR
f(z)dz = 2pii
summationdisplay
a219a161a162a163
resf(z).
a1502a238a145a146a61a164a165a244a166a141a155a156a167a168a129a130a126a169a170a145a146
limx→±∞xf(x) = 0
a126a171a172a173a174
a61a175a176a61a177a178a179
a118 3.1
a61a180
a151a152
a142
lim
R→∞
integraldisplay
CR
f(z)dz = 0.
a181
a154
a54R →∞
a61a114a182a134 integraldisplay
∞
?∞
f(x)dx = 2pii
summationdisplay
a73a125a61a62
resf(z).
a186 7.5 a163a164
a108a33a40I =
integraldisplay ∞
?∞
dx
(1 + x2)3 a50
a187 a19
a111
a93a94a183
a47a73a184
a37
a149a35a132a133a61a190
I =
integraldisplay ∞
?∞
dx
(1 + x2)3 = 2pii·res
1
(1 + z2)3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=i
=2pii·
parenleftbigg
?3i16
parenrightbigg
= 38pi.
a121
a126a61a38a67
a194a58a108
a78a63a108a109
a163a164
a108a33a40a35a185a186a187a188
a53
a39
a55
a41a42a189a190a35a109a67a61a101a135a191a192a106a39a157
a193
a62a35a194a184
a215
a38a67a205a195
a58a108
a78a63a108a109
a163a164
a206a88a33a40a61a73a74a97a110
a215
1. a111a73a112a95a35a33a40a59a60a113a53a105a46a47a94a204a61
a163a164
contintegraldisplay
f(z)dza114
2. a64a111a73a35a59a60a73a35a33a40a61
a115a116a117a176a37
a149
a163a164
a35a206a88a33a40a118a119
a57a120
a61
a115a116
a158a159a44a45a202a43a24
a163a164a28
a40a50
§7.3 a82a83a84a85
a118
a12
a185a81
a189a128
a35a109a67a61a114a158a159a196a197a198a199a24a200
a108
a78a63a108a109
a163a164
a108a33a40a50
star a201a218
a244f(x)
a202a125
a116
a61
a248a203
a222
a129a130
integraldisplay ∞
0
f(x)dxa61a243a222
integraldisplay ∞
0
f(x)dx = 12
integraldisplay ∞
?∞
f(x)dx,
a204a233a205a172
a0
a233a206a160a2077.2a126a127a128
a61
a147a208a209
a219a163
a126a210a211
a61a212a213a214integraldisplay
∞
0
f(x)dx = 12
integraldisplay ∞
?∞
f(x)dx = pii
summationdisplay
a219a161a162a163
resf(z).
star a201a218
a133a129a130
integraldisplay ∞
0
f(x)dx a229a61a215
a129
a125
a116f(z)
a216
a139a217a218a203a219a220a221
a61a222a201
f(z) = f(zeiθ),
a223a224
a61a255a0
a233a206a160a2077.3 a229a126a127a128a154a143a144
a50
a86 7.3
a186 7.6 a163a164
a108a33a40
integraldisplay ∞
0
dx
1 + x4 a50
a86 7.4
a187 a78
a81
a189a196
a35a225a33a62a63 f(x) = 11 + x4 a152x4 a35a62a63a61
a176
a159a61a73a74a158a159a226
a108a93 7.4
a35a94a204
a215
a98
a197
a100a101
a780
a134Ra61a98a64a227a134a228
a197a229
a101a61a191a98
a197a229
a101
a78iR
a230a134
a150a59
a50
a189a128
a61a104a105a78a63a108a109a61
a53
contintegraldisplay
C
dz
1 + z4 =
integraldisplay R
0
dx
1 + x4 +
integraldisplay
CR
dz
1 + z4 +
integraldisplay 0
R
idy
1 + (iy)4
=(1?i)
integraldisplay R
0
dx
1 + x4 +
integraldisplay
CR
dz
1 + z4
a0a1a2 a3a4a5a6a7a8a9a10 a119
a12
=2pii res 11 + z4
vextendsinglevextendsingle
vextendsinglevextendsingle
z=eipi/4
= pi2 1?i√2 .
a181
a154
a54R →∞
a61
a18
a38
limz→∞z · 11 + z4 = 0,
a176
a159a61a104a105a231a109 3.1a61
a53
lim
R→∞
integraldisplay
CR
dz
1 + z4 = 0.
a81a152a114a182a134 integraldisplay
∞
0
dx
1 + x4 =
√2
4 pi.
a133
a234
a238
a222a232
a229
a61a233
a172a205a172
a0
a233a206a160
a161a234a235
a126a127a128
a50a234a176a215
a129
a125
a116 1/(1+z4)a133a127a128a134a139
a144
a238
a135a136
a215
z = eipi/4 a236z = ei3pi/4 a50
a143a144a237
a233
a172a238a239a240a241
a237a242
a50a0
a233a243a244
a61a201a218
a238a143a144
a117a129a130
integraldisplay ∞
0
dx
1 + x100,
a206a160a245a246
a141pi/50a126a247a235
a127a128
a61
a127a128a134
a145
a139
a237a238
a135a136
a114a212
a206a160
a161a234a235
a127a128
a61
a127a128a134a248a139
50a238a135a136a50a144a248
a133a143a144a237
a219
a126a249a250a251a252
a0a253a50
a201a218a220a61
a133
a219a163a234
a242
a222a232
a229
a61
a247
a235
a127a128
a236
a161a234a235
a127a128
a144a248a254a255a0a0a1a2
a126a3
a61
a223a224
a61
a133
a4
a163a234
a238
a222a232
a229
a61
a247
a235
a127a128a5
a145a6
a244a7a237
a126
a1a2a50
a186 7.7 a163a164
a33a40
integraldisplay ∞
0
dx
1 + x3 a50
a187 a93a94
a61
a189
a111
a58a8a9a10a11
a52a38 2pi/3a35a12a53a94a204 (a937.5)a50
a86 7.5
contintegraldisplay
C
dz
1 + z3 =
integraldisplay R
0
dx
1 + x3 +
integraldisplay
CR
dz
1 + z3 +
integraldisplay 0
R
ei2pi/3dx
1 + x3
=
parenleftBig
1?ei2pi/3
parenrightBigintegraldisplay R
0
dx
1 + x3 +
integraldisplay
CR
dz
1 + z3
= 2pii res 11 + z3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=eipi/3
= 2pi3 e?ipi/6.
a181
a154
a54R →∞
a61
a18
a38
limz→∞z · 11 + z3 = 0,
a176
a159
lim
R→∞
integraldisplay
CR
dz
1 + z3 = 0.
§7.3 a82a83a84a85 a1310a14
a121
a126a114a182a134 integraldisplay
∞
0
dx
1 + x3 =
2pi
3
e?ipi/6
1?ei2pi/3 =
pi
3cos pi6
= 2pi3√3.
a15a16a17 a18a19a20a21a22a23a24a25
a1311a14
§7.4 a26a27a28a29a30a31a32a33a34a35
a36a37a38a39a40a41a42a43a44a45a46a47a48a49
I =
integraldisplay ∞
?∞
f(x)cospxdx a50 I =
integraldisplay ∞
?∞
f(x)sinpxdx.
a36a51a52a53a54a55p > 0
a56
a57a58a59a60a61a62a63a64a65a66a67a68a69a70a71a72a73a74a63a75a76
a56
a77a78a79a64a80a81a82a83a84a85a86a87a88f(z)cos pz
a89f(z)sinpz
a56
a59a78a90a88z = ∞a78a80a81 sinza89cosz a63a91a92a93a94(a59a95a96a97a98z a69a82a99
a100a101a102a103∞
a104
a66sinza89cosza68a69a105a106a103a82a99a63a81a107) a66a82a108a103a109a110a111a112
lim
R→∞
integraldisplay
CR
f(z)cospzdz a89 lim
R→∞
integraldisplay
CR
f(z)sinpzdz.
a113a114a41a115a116a117a118a119a39a120a121a122a123 f(z)eipz
a56a124a125
a120a121f(z)eipz
a126a127a128a129a130a131a132a133a133a134a135a136a137
a66a138
contintegraldisplay
C
f(z)eipzdz =
integraldisplay R
?R
f(x)eipxdx +
integraldisplay
CR
f(z)eipzdz
=
integraldisplay R
?R
f(x)[cospx + isinpx]dx +
integraldisplay
CR
f(z)eipzdz
= 2pii
summationdisplay
a139a140a141a142
res braceleftbigf(z)eipzbracerightbig.
a132a143a144a145a146a147a148
lim
R→∞
integraldisplay
CR
f(z)eipzdz,
a40a149a150a151a152a153a154a155a153a66a156a46a47a157a158
integraldisplay ∞
?∞
f(x)cospxdx a154
integraldisplay ∞
?∞
f(x)sinpxdx.
a88a159a66a160a161a162a163a164a58
a56
a165a166 7.1(Jordan a165a166) a55
a1260 ≤ argz ≤ pi
a41a167a168
a131
a66a169|z| → ∞
a170
a66Q(z)
a171a172a173a174a175a176
0a66a138
lim
R→∞
integraldisplay
CR
Q(z)eipzdz = 0,
a177a178p > 0a66C
R
a117a47a179
a137
a123a180a181a66Ra123
a128a182
a41
a127a128
a180a183
a56
a184 a169z
a126CR a127
a170
a66z = Reiθ a66
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
CR
Q(z)eipzdz
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay pi
0
QparenleftbigReiθparenrightbigeipR(cosθ+isinθ)Reiθidθ
vextendsinglevextendsingle
vextendsinglevextendsingle
a183a185a186a187a188a189a190a191a192a193a194a195a196a197p > 0
a198a199a200
a190a191a201a202a203Rep > 0
a204
§7.4 a205a206a207a208
a19a209a210a211a212a213 a21412
a215
≤
integraldisplay pi
0
vextendsinglevextendsingleQparenleftbigReiθparenrightbigvextendsinglevextendsinglee?pRsinθRdθ
<εR
integraldisplay pi
0
e?pRsinθdθ
=2εR
integraldisplay pi/2
0
e?pRsinθdθ.
a2167.6
a217a218a41a219a220
a126
a176a221
a114a222
a146 sinθ
a223a56a224a2257.6a46a226a66a1690 ≤ θ ≤ pi/2a170
a66
a133sinθ ≥ 2θ/pi
a66a227a47
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
CR
Q(z)eipzdz
vextendsinglevextendsingle
vextendsinglevextendsingle < 2εR
integraldisplay pi
0
e?pR·2θ/pidθ
= 2εR pi2pR parenleftbig1?e?pRparenrightbig
= εpip parenleftbig1?e?pRparenrightbig.
a36a228a66a156a217a218a229
lim
R→∞
integraldisplay
CR
Q(z)eipzdz = 0. square
a176
a117a66
a126a230a231Jordan
a232a233
a41a234a235a236a66
integraldisplay ∞
?∞
f(x)eipxdx = 2pii
summationdisplay
a139a140a141a142
resbraceleftbigf(z)eipzbracerightbig.
a40a149a122a152a153a154a155a153a66a237a158
integraldisplay ∞
?∞
f(x)cospxdx =Re
?
?
?2pii
summationdisplay
a139a140a141a142
resbracketleftbigf(z)eipzbracketrightbig
?
?
?
= ?2piIm
??
?
summationdisplay
a139a140a141a142
resbracketleftbigf(z)eipzbracketrightbig
??
?,
integraldisplay ∞
?∞
f(x)sinpxdx =Im
??
?2pii
summationdisplay
a139a140a141a142
resbracketleftbigf(z)eipzbracketrightbig
??
?
a238a239a240 a18a19a20a21a22a23a24a25 a21413
a215
=2piRe
??
?
summationdisplay
a139a140a141a142
resbracketleftbigf(z)eipzbracketrightbig
??
?.
a2417.8
a146a147
a39a40
integraldisplay ∞
0
xsinx
x2 + a2dx, a > 0a56
a242 a243a244
a127a130
a41a245a246a66
a133
integraldisplay ∞
?∞
xeix
x2 + a2dx = 2pii·
1
2e
i·ia = piie?a.
a227a47
integraldisplay ∞
?∞
xsinx
x2 + a2dx = pie
?a,
integraldisplay ∞
0
xsinx
x2 + a2dx =
pi
2e
?a.
a247a248a249
a170
a66a250a158a251
integraldisplay ∞
?∞
xcosx
x2 + a2dx = 0.
a36a117a252a253a41a66a254a123a119a39a120a121a117
a136
a120a121
a56
§7.5 a255a0a1a2a3a4
a209a5a6 a21414
a215
§7.5 a7a8a9a10a11a12a31a13a14
a15a39a40
(
a55a15
a137
a123
c)
a41a38a16a117
integraldisplay b
a
f(x)dx = lim
δ1→0
integraldisplay c?δ1
a
f(x)dx + lim
δ2→0
integraldisplay b
c+δ2
f(x)dx.
a124a125
a36a17
a135a18a134a19a20a21
a52a22
a126
a66a23a117
lim
δ→0
bracketleftbigg integraldisplay c?δ
a
f(x)dx +
integraldisplay b
c+δ
f(x)dx
bracketrightbigg
a22
a126
a66a138a24a123a15a39a40a41a25
a223
a22
a126
a66a26a123
v.p.
integraldisplay b
a
f(x)dx = lim
δ→0
bracketleftbigg integraldisplay c?δ
a
f(x)dx +
integraldisplay b
c+δ
f(x)dx
bracketrightbigg
.
a169a253a66
a124a125
a15a39a40a27a177a25
a223
a21
a22
a126
a66a28a29a30a31
a171
a38a32a33
a56
a90a159a66a34a35a36a37a64a65a78a162a163a38a64a65a66a39a57a58a40a41a63a42a37a64a65
contintegraldisplay
C
f(z)dza104
a66a36a43a44a63a38
a94a45a78a79a64a80a81a63a93a94a66a46a47a48a49a93a94a50a51a52a53a54a63a64a65a75a76
a56
a55a56a57a58a59a60a61a163a62a63
a64a65a66a67a68a57a58a59a61a64a65a63a69a91a70a71
a56
a2417.9
a146a147
a39a40
integraldisplay ∞
?∞
dx
x(1 + x+ x2) a56
a242 a36a117
a171
a135a72a73
a39a40a66
a72a73a74a75a76a77a126
a39a40a78a79a123a80a81a78a79a66a82
a76a77
a123a119a39a120a121
a126x = 0a137
a52a83a84 (x = 0
a137
a123a15
a137)
a56
a248a39a40
a126
a25
a223a85
a16a236a22
a126
a66
v.p.
integraldisplay ∞
?∞
dx
x(1 + x + x2)
= lim
R1→∞
integraldisplay ?1
?R1
dx
x(1 + x + x2) + limR2→∞
integraldisplay R2
1
dx
x(1 + x + x2)
+ lim
δ→0
bracketleftBiggintegraldisplay ?δ
?1
dx
x(1 + x + x2) +
integraldisplay 1
δ
dx
x(1 + x + x2)
bracketrightBigg
.
a254a248a66
a126a86a87a88
a121a38
a233
a146a147
a248a39a40
a170
a66
a86a89a90a91a92a93
a39a40
contintegraldisplay
C
dz
z(1 + z + z2),
a177a178a41a39a40a168a94C
a124a2257.7a227a95a66a224
a47a179
a137
a123a180a181a96δ a123
a128a182
a41a97
a128
a180a98 C
δ
a154a47a179
a137
a123a180a181a96
Ra123a128a182a41a99a128a180a98 CR a47a27a100a101a102?R →?δa154δ → Ra103
a49
a56a176
a117a66a243a244
a88
a121a38
a233
a66
a133
a238a239a240 a104a105a20a21a22a23a24a25 a21415
a215
a2167.7
contintegraldisplay
C
dz
z(1 + z + z2) =
integraldisplay ?δ
?R
dx
x(1 + x + x2) +
integraldisplay
Cδ
dz
z(1 + z + z2)
+
integraldisplay R
δ
dx
x(1 + x + x2) +
integraldisplay
CR
dz
z(1 + z + z2)
=2pii·res 1z(1 + z + z2)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=ei2pi/3
= ? pi√3 ?ipi.
a254a123
limz→∞z · 1z(1 + z + z2) = 0,
a227a47a66a243a244
a232a2333.1
a66
a133
lim
R→∞
integraldisplay
CR
dz
z(1 + z + z2) = 0.
a82a254a123
a126z = 0a137
a41a106a107
a131
a66
1
z(1 + z + z2) =
1
z + a0 + a1z +···,
a227a47
integraldisplay
Cδ
dz
z(1 + z + z2) =
integraldisplay
Cδ
dz
z +
integraldisplay
Cδ
[a0 + a1z +···]dz.
a126a18a134a108
a44δ → 0a236a66
a133
lim
δ→0
integraldisplay
Cδ
dz
z(1 + z + z2) = ?pii.
a36a228a66a122
a18a134R →∞
a66δ → 0a66a156a158a251
v.p.
integraldisplay ∞
?∞
dx
x(1 + x + x2) = ?
pi√
3.
a109a110a111
a124a125
a39a40a168a94a178a41a97
a128
a180a98a117a112a236
a128a129a130a113a114 z = 0a137
a66a254a115a116
z = 0a137a117
a168
a126
a168a94
a131
a66a117a118a119a158a251a52a249a41a120
a125a121
a123a122a29
a121
a123a44a56
a63a111a112a124a68a69a125a126a66a127a103a64a65a128a129a44a130a93a94a63a131a74a66a132a133a111a112a75a48a93a94a63a134a73
a135a44a63a64a65a107(
a136a137
a86a67a66a133a111a112a138a63a139a140a107)
a56
§7.5 a255a0a1a2a3a4
a209a5a6 a21416
a215
a39a130a141a131a142 (a62a34a66a143a144a145a80a81a63a146a147a64a65)
a55a66a91a64a36a37a64a65a148a82a78a38a64a65a66a77a149a103
a39a40a41a63a42a37a64a65a124a66a148a82a78a84a85a86a150a79a64a80a81 f(x)
a151
a52f(z)a66a90a50a39a42a37a80a81a63a75
a76a64a65a124a66a64a65a128a129a44a152a68a69a126a153a93a94
a56
a59a123a55a56a63a62a63a124a68a69a125a126
a56
a2417.10
a146a147
a39a40
integraldisplay ∞
?∞
sinx
x dxa56
a242 a154a155a253
a173
a66
a86
a169
a90a91
a39a40
contintegraldisplay
C
eiz
z dz
a66a39a40a168a94C a154a1569a32a249(
a2257.7)a56
contintegraldisplay
C
eiz
z dz =
integraldisplay ?δ
?R
eix
x dx +
integraldisplay
Cδ
eiz
z dz +
integraldisplay R
δ
eix
x dx +
integraldisplay
CR
eiz
z dz.
a126
a39a40a168a94
a117
a168a41a78a107
a131
a66a119a39a120a121a157a158a66a159a168a94a39a40a1230
a56
a243a244Jordan
a232a233
a154
a232a2333.2a66a40a149a133
lim
R→∞
integraldisplay
CR
eiz
z dz = 0, limδ→0
integraldisplay
Cδ
eiz
z dz = ?pii.
a254a248
integraldisplay ∞
?∞
eix
x dx = pii.
a150a151a17a160a41a152a153a154a155a153a66a237a158
v.p.
integraldisplay ∞
?∞
cosx
x dx = 0,
integraldisplay ∞
?∞
sinx
x dx = pi.
a219
a176
a36a161a37a162a41a39a40a66a250a46a47a163
a148
integraldisplay ∞
?∞
sin2x
x2 dx =pi;integraldisplay
∞
?∞
sin3x
x3 dx =
3
4pi;
integraldisplay ∞
?∞
sin4x
x4 dx =
2
3pi;integraldisplay
∞
?∞
sin5x
x5 dx =
115
192pi;integraldisplay
∞
?∞
sin6x
x6 dx =
11
20pi;
a50a164
a66a165a166a167a41a120
a125a168
integraldisplay ∞
?∞
sinnx
xn dx =
pi
(n?1)!
[n/2]summationdisplay
k=0
(?)k
parenleftbiggn
k
parenrightbiggparenleftbiggn?2k
2
parenrightbiggn?1
.
a146a147
a36a169a39a40a66a219a220
a126
a176
a113a114
a173a170a171
a92a93
a39a40a41a119a39a120a121
a56
a156
a124
a66a123a229
a146a147
a39a40
integraldisplay ∞
?∞
sin2x
x2 dx,
a156
a86a89a90a91a92a93
a39a40
contintegraldisplay
C
1?ei2z
z2 dz,
a238a239a240 a104a105a20a21a22a23a24a25 a21417
a215
a39a40a168a94C
a172a124a2257.7a56
a36a51a66a156
a92a93
a39a40a115a173a66
a126
a152a174
a127
a46a47
a133a136a137
a56
a23a36a161
a136a137
a66
a171a175a176a177
a66
a132a144
a117a46a178
a136a137
a50a171a179
a18a137
a56
a36a112
a232a2333.2
a156a46a47a180
a148
a56a124a125
a117a181
a179a50
a181
a179
a47
a127
a41
a18a137
a66
a50
a117a182
a74
a136a137
a66a183a97a180a98 C
δ
a41a39a40a156a46
a144
a174a176∞a56
§7.6 a184a185a208
a105a209a212a213 a21418
a215
§7.6 a186a187a29a30a31a34a35
a43a114
a173a176
a66a36a51a227
a176
a41a188
a223
a120a121a41a39a40a117a112
a92a93
a120a121a41a189a190
a176
a41
a56
a112
a92
a121a107
a177
a180a66a152
a93
a38a39a40a178
a41a39a40
a93a191xa126x > 0
a170
a86a89
a233
a157a123
argx = 0a56
a171
a161
a73
a226a41a188
a223
a120a121a39a40a117
I =
integraldisplay ∞
0
xs?1Q(x)dx,
a177a178sa123a152a121a66Q(x)
a19
a223
a66
a126
a113a152a174
a127a192a133a136a137
a56
a123a229a193a217a39a40a194a195a66
a143
a157
limx→∞x·xs?1Q(x)dx = limx→∞xsQ(x) = 0.
a196a31
a90a91
a32
a86
a41
a92a93
a39a40
contintegraldisplay
C
zs?1Q(z)dz =
integraldisplay R
δ
xs?1Q(x)dx +
integraldisplay
CR
zs?1Q(z)dz
+
integraldisplay δ
R
parenleftbigxei2piparenrightbigs?1 Q(x)dx +integraldisplay
Cδ
zs?1Q(z)dz.
a149a103z = 0
a197z = ∞a78a79a64a80a81a63a198a94a66a199a69a200a133a150a201a56a202a203a36a43a204a49a66a148a205a206a202a204a207
a44a208argz = 0
a56
a59
a104
a63a64a65a128a129a149a204a49a63a209a134a73a135 (a72a129a65a210a88R
a211δ)a197
a204a207a44a55a208
a212a52(
a213a2147.8)a56
a202a204a207a44a55a208a63a64a65a215a216a109a110a217a199a133a111a112a63a36a37a64a65a130a218
a56a219a220
a78a34
a221a111a112a202a209a134a73a135a63a64a65a107
a56
a2167.8
a224a232a2333.1a154a232a2333.2a46a47a180a148a66a124a125
a1260 ≤ argz ≤ 2pi
a41a167a168
a131
a66
limz→0zsQ(z) = 0,
limz→∞zsQ(z) = 0,
a238a239a240 a104a105a222a21a22a23a24a25 a21419
a215
a138
lim
δ→0
integraldisplay
Cδ
zs?1Q(z)dz = 0,
lim
R→∞
integraldisplay
CR
zs?1Q(z)dz = 0.
a165a223
a171a224
a66
a124a125Q(z)a126a225a129a130a127a226a229a133a134a135a227a228a136a137(a52a126a113a152a174a127)a229
a66a117
a19
a223
a157a158a41a66a254a115a46
a47
a86a87a88
a121a38
a233a56
a126
a122
a18a134δ → 0, R → ∞
a230
a66a156a158a251
parenleftbig1?ei2pisparenrightbigintegraldisplay ∞
0
xs?1Q(x)dx = 2pii
summationdisplay
a231a141a142
res braceleftbigzs?1Q(z)bracerightbig.
a227a47
integraldisplay ∞
0
xs?1Q(x)dx = 2pii1?ei2pis
summationdisplay
a231a141a142
res braceleftbigzs?1Q(z)bracerightbig.
a232
a143a233
a85
a66
a126a146a147a88
a121
a170
a66
a143a234a235a127a130a236
a176
a188
a223
a120a121 zsa227a237a41
a134a238
a66a237 0 ≤ argz ≤ 2pi
a56
a109a110a111
a124a125a239
a38
a126a240
a101
a127a241argz = 2pi
a66a117a118a242a243a244
a230
a120
a125a121
a109a110a111
a124a125Q(x)a245
a133
a171
a38a41
a236
a24
a74a246
a66a156
a124
a117
x
a41
a136
a120a121
a50a247
a120a121a66a117a118a46a47a122a177a248a44a45
a41a168a94
a121
a2417.11
a146a147
a39a40
integraldisplay ∞
0
xα?1
x + ei?dx
a660 < α < 1, ?pi < ? < pi
a56
a242 a36a51a41a119a39a120a121a252a253
a230a231a127a249
a245a246a178a41
a143
a157a66a254a248
integraldisplay ∞
0
xα?1
x+ ei?dx =
2pii
1?ei2piαe
i(?+pi)(α?1)
= pisinpiα ·ei?(α?1) (star)
a112a36
a135
a39a40a250a46a47a250
a148
a171
a169a165a223
a171a224
a41a120
a125a56
a156
a124
a66a237a123a36
a135
a39a40a41a251a252
a108
a44a66 ? = 0a66a138
integraldisplay ∞
0
xα?1
1 + xdx =
pi
sinpiα.
a126Γ
a120a121
a171a253
a178
a143
a100a254
a86a87
a251a36
a135
a120
a125a56
a82
a124
a66a150a151 (star)a45a17a160a41a155a153a66a250a46a47a158a251
integraldisplay ∞
0
xα?1
x2 + 2xcos?+ 1dx =
pi
sinpiα
sin(1?α)?
sin? .
a59a163a255a35a78a39 0 < α < 1a63a0a1a55a2a3a63a66a77a78a68a69a4a5a6a7a30 < α < 2
a56a8a9 (star)
a101a61a10a63a36a11a66a45a68a69a2a3a99a12a63a255a35
a56
a13
a171
a161a188
a223
a120a121a41a39a40a14a27
a236
a121a120a121
a56a15
a245a246a236
a130
a41a156a16
a56
a2417.12
a146a147
a39a40
integraldisplay ∞
0
lnx
1 + x + x2dxa56
a242 a122a168a94
a124a2257.8a66a146a147a92a93a39a40contintegraldisplay
C
lnz
1 + z + z2dz =
integraldisplay R
δ
lnx
1 + x + x2 dx +
integraldisplay
CR
lnz
1 + z + z2dz
§7.6 a184a185a208
a105a209a212a213 a21420
a215
+
integraldisplay δ
R
lnparenleftbigxei2piparenrightbig
1 + x + x2dx +
integraldisplay
Cδ
lnz
1 + z + z2dz
=2pii
summationdisplay
a231a141a142
res
braceleftbigg lnz
1 + z + z2
bracerightbigg
=2pii
parenleftbigg 2pi
3√3 ?
4pi
3√3
parenrightbigg
= ?4pi
2i
3√3.
a254a123
limz→∞z· lnz1 + z + z2 = 0, limz→0z · lnz1 + z + z2 = 0,
a243a244
a232a2333.1a154a232a2333.2a66a133
lim
R→∞
integraldisplay
CR
lnz
1 + z + z2dz = 0, limδ→0
integraldisplay
Cδ
lnz
1 + z + z2dz = 0.
a227a47a66a122
a18a134R →∞, δ → 0
a66a237a158
integraldisplay ∞
0
lnx
1 + x+ x2dx?
integraldisplay ∞
0
lnx + 2pii
1 + x + x2 dx = ?
4pi2i
3√3.
a17a18a153a39a202a204a207a44a55a208a63a64a65a19a217a199a133a111a112a63a64a65a130a218a66a77a78a66a20a21a82a22a66a138a58a152a40a23
a24a25a26a27a66a50a28a29a55a162a163a148a20a57a58a199a133a111a112a63a206a64a65
integraldisplay ∞
0
1
1 + x + x2 dx =
2pi
3√3.
a59a60a75a76a64a65
contintegraldisplay
C
lnz
1 + z + z2dz
a111a112
integraldisplay ∞
0
lnx
1 + x + x2 dx
a63a30a31a32a33a34a27a35
star a36a37
a41a179a254a117a66a154a243a45a120a121a52a249a66
a236
a121a120a121 lnza41a188
a223
a74a76a77a126
a155a153
a127
a66a254a248a183
a240
a101
a127
a236
a241
a39a40
a170
a66a177a152a153 (a237lnx)
a38
a32a39a40
a56
star a41a36a37a42a43a44a45
a247a194a46
a168
? a47a48a49
a236a50a51a52a53
integraldisplay ∞
0
f(x)dxa49a54a55f(x)a56a57a58a59a60 (a61a62a63a64a65a66a67 7.3a68a69a43a70
a66a71a72)a49a63a73a74a75a76a67a77a60
a51a78
a71a72a79a80
a52a53
contintegraldisplay
C
f(z) lnzdz a81a82a83a84
? a47a85a49a54a55a86a71a72
a52a53
integraldisplay ∞
0
f(x)lnxdxa49a87a63a73a88a89a90a91
a52a53
contintegraldisplay
C
f(z)ln2zdz a84
a61a92a93a94a95a96a97a98a99 ln2z a43a59a60a100 ln2x a101 (lnx+ 2pii)2 a102a103a104a105a49a106a98a43a107
a108a109a110a111a112a113
a86a43 lnxa114a84
a115a116a117
a81a118a119a120 12 a69
a112
a86a82a43
a52a53
a71a72a84a92a62a49a88a89
a52a53
contintegraldisplay
C
ln2z
1 + z + z2dz a49a79a80C a56a91a84
a121a122a123 a124a125a126a127a128a129a130a131 a13221
a133
a134
a90a97a135a43a71a72a136a137a49
a117
a83a138
integraldisplay ∞
0
ln2x
1 + x + x2 dx ?
integraldisplay ∞
0
(lnx + 2pii)2
1 + x+ x2 dx
= 2pii
summationdisplay
a139a140a141
res
braceleftbigg ln2z
1 + z + z2
bracerightbigg
= 2pi√3
bracketleftbigg16
9 pi
2 ? 4
9pi
2
bracketrightbigg
= 83√3pi3.
a50
a57
?4pii
integraldisplay ∞
0
lnx
1 + x + x2dx + 4pi
2
integraldisplay ∞
0
1
1 + x + x2dx =
8
3√3pi
3.
a112
a73a49
a117
a83a138
a110a111a112
a86a82a43
a52a53
integraldisplay ∞
0
lnx
1 + x + x2dx = 0.
a142
a62a143a144a49a145a146a63a73a147a148a83a138 integraldisplay
∞
0
1
1 + x + x2 dx =
2pi
3√3.
a73a97a149a150a151a77a60
a51a78a152
a48a153a154a155a156
a152
a76a67 a71a72
a51a52a53
a84a157
a50a158a159a152a160a161
a49a93a162a163a164a165a151
a154a166a167
a152a168
a153a169a170
a152a51a52a53
a84
a142
a151a93
a168
a153a169a170a143a144a49a146
a109a171a172
a48a173a169a170
a152a51a52a53
a49
a174a175a1764.5
a68a69
a152a177a178a179a152
a65a180
a52a53
a49a145a63a73a67a77a60
a51a78
a71a72a84
a77a60
a51a78
a145a56a57a181a64
a152
a49
a109
a173a169a170
a152a51a52a53
a117a182
a73a183a67a77a60
a51a78
a81a71a72a84a156a184a69a146a164a165a151a71
a72
a51a52a53a152
a171a172
a70a66a84
a185a186a187a188 a13222
a133
a189a190a191a192a193a194a195
integraldisplay ∞
?∞
sin2n+1 x
x2n+1 dx, n = 1,2,··· a196a197a198
a199a200Euler
a201a202a49
a109
sin2n+1 x =
parenleftbiggeix ?e?ix
2i
parenrightbigg2n+1
=
parenleftbigg 1
2i
parenrightbigg2n+1 2n+1summationdisplay
k=0
parenleftbigg2n + 1
k
parenrightbiggparenleftbig
eixparenrightbig2n+1?kparenleftbig?e?ixparenrightbigk
=
parenleftbigg 1
2i
parenrightbigg2n+1 2n+1summationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
ei(2n+1?2k)x
=
parenleftbigg 1
2i
parenrightbigg2n+1 nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbiggbracketleftBig
ei(2n+1?2k)x ?e?i(2n+1?2k)x
bracketrightBig
= (?)
n
22n
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
sin(2n + 1?2k)x
a61a62a49a88a89a90a91
a52a53 contintegraldisplay
C
1
z2n+1f(z)dz,
a52a53a203a204C
a54a205a206a49a207
f(z) =
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
ei(2n+1?2k)z ?Q2n?1(z),
Q2n?1(z) a57a56a208a75 2n? 1 a148a152a209a114a202a49a210 z = 0 a92a211a52a59a60 f(z)/z2n+1 a152a48a212a213a214a49a215 z = 0 a92
f(z)a1522na212a216a214a49
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbiggbracketleftbig
i(2n + 1?2k)bracketrightbigl ?Ql2n?1(0) = 0, l = 0,1,2,···,2n?1.
a50
a57
Q2n?1(0) =
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
Qprime2n?1(0) = i
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2m + 1?2k) = 0
parenleftbigg
a61a92
d
dx sin
2n+1 xvextendsinglevextendsingle
x=0 = 0
parenrightbigg
Qprimeprime2n?1(0) = ?
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2m + 1?2k)2
...
a121a122a123 a124a125a126a127a128a129a130a131 a13223
a133
Q(2n?2)2n?1 (0) = (?)n?1
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2m + 1?2k)2n?2
Q(2n?1)2n?1 (0) = (?)n?1i
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2m + 1?2k)2n?1 = 0
parenleftbigg
a61a92
d2n?1
dx2n?1 sin
2n+1 xvextendsinglevextendsingle
x=0 = 0
parenrightbigg
a157a62a215a63
a51a217
Q2n?1(z) =
n?1summationdisplay
l=0
(?)l
(2l)!
bracketleftBigg nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2n + 1?2k)2l
bracketrightBigg
z2l,
a215Q2n?1(z)a572n?2a148
a152
a58a148
a209
a114a202a49a218a60a92a219a60a84
a199a200
a77a60
a51a78
a109
integraldisplay ?δ
?R
1
x2n+1f(x)dx +
integraldisplay
Cδ
1
z2n+1f(z)dz
+
integraldisplay R
δ
1
x2n+!f(x)dx +
integraldisplay
CR
1
z2n+1f(z)dz = 0.
a61a92
limz→∞ 1z2n+1 = 0,
a112
a73
lim
R→∞
integraldisplay
CR
1
z2n+1e
i(2n+1?2k)zdz = 0;
a220
a61a92
limz→∞z · 1z2n+1 = 0,
a112
a73
lim
R→∞
integraldisplay
CR
1
z2n+1Q2n?1(z)dz = 0.
a221a222a223
a81
a117
a83a138
lim
R→∞
integraldisplay
CR
1
z2n+1f(z)dz = 0.
a224
a48a70a135a49
limz→0z· 1z2n+1f(z) = limz→0 1z2nf(z)
= limz→0 1z2n
braceleftBigg nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
ei(2n+1?2k)z ?Q2n?1(z)
bracerightBigg
= 1(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
[i(2n + 1?2k)]2n
= (?)
n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n,
a185a186a187a188 a13224
a133
a112
a73
lim
δ→0
integraldisplay
Cδ
1
z2n+1f(z)dz = ?pii×
(?)n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n.
a225
a213
a160δ → 0, R →∞
a49a215a83integraldisplay
∞
?∞
1
x2n+1f(x)dx = pii
(?)n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n.
a226a227a228a229
a49
a222a230a231 Q
2n?1(x)a152a218a60a92a219a60a49
a117
a83a138integraldisplay
∞
?∞
1
x2n+1
braceleftBigg nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
sin(2n + 1?2k)x
bracerightBigg
dx
= (?)n22n
integraldisplay ∞
?∞
sin2n+1 x
x2n+1 dx
= pi(?)
n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n.
a154a232
a117
a82
a217
a151 integraldisplay
∞
?∞
sin2n+1 x
x2n+1 dx =
pi
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbiggparenleftbigg2n + 1
2 ?k
parenrightbigg2n
.
a121a122a123 a124a125a126a127a128a129a130a131 a13225
a133
a189a190a191a192a193a194a195
integraldisplay ∞
?∞
sin2n x
x2n dx, n = 1,2,···a196a197a198
a199a200Euler
a201a202a49
a109
sin2n x =
parenleftbiggeix ?e?ix
2i
parenrightbigg2n
= (?)
n
22n
2nsummationdisplay
k=0
parenleftbigg2n
k
parenrightbiggparenleftbig
eixparenrightbig2n?kparenleftbig?e?ixparenrightbigk
= (?)
n
22n
2nsummationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)x
= (?)
n
22n
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)x + (?)n
parenleftbigg2n
n
parenrightbigg
+
2nsummationdisplay
k=n+1
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)x
bracerightBigg
= (?)
n
22n
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbiggbracketleftBig
ei(2n?2k)x + e?i(2n?2k)x
bracketrightBig
+ (?)n
parenleftbigg2n
n
parenrightbiggbracerightBigg
= (?)
n
22n
braceleftBigg
2
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
cos(2n?2k)x + (?)n
parenleftbigg2n
n
parenrightbiggbracerightBigg
a61a62a49a88a89a90a91
a52a53 contintegraldisplay
C
1
z2nf(z)dz,
a52a53a203a204C
a54a205a206a49a207
f(z) =
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)z + (?)
n
2
parenleftbigg2n
n
parenrightbigg
?Q2n?2(z),
Q2n?2(z)a57a56a208a752n?2a148
a152a209
a114a202a49a210z = 0a92a211
a52
a59a60f(z)/z2na152a48a212a213a214a49a215z = 0a92 f(z)
a1522n?1
a212a216a214a49
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
+ (?)
n
2
parenleftbigg2n
n
parenrightbigg
?Q2n?2(0) = 0,
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbiggbracketleftbig
i(2n?2k)bracketrightbigl ?Ql2n?2(0) = 0, l = 1,2,···,2n?2.
a50
a57
Q2n?2(0) =
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
+ (?)
n
2
parenleftbigg2n
n
parenrightbigg
= 0
parenleftBig
a61a92sin2nvextendsinglevextendsinglex=0 = 0
parenrightBig
Qprime2n?2(0) = i
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)
a185a186a187a188 a13226
a133
Qprimeprime2n?2(0) = ?
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)2 = 0
parenleftbigg
a61a92
d2
dx2 sin
2nvextendsinglevextendsingle
x=0 = 0
parenrightbigg
...
Q(2n?3)2n?2 (0) = (?)ni
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)2n?3
Q(2n?2)2n?2 (0) = (?)n+1
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)2n?2 = 0
parenleftbigg
a61a92
d2n?2
dx2n?2 sin
2nvextendsinglevextendsingle
x=0 = 0
parenrightbigg
a157a62a215a63
a51a217
Q2n?2(z) = i
n?2summationdisplay
l=0
(?)l
(2l + 1)!
bracketleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2l+1
bracketrightBigg
z2l+1,
a215Q2n?2(z)a572n?3a148
a152a233
a148
a209
a114a202a49a218a60a92a234
a228
a60a84
a199a200
a77a60
a51a78
a109
integraldisplay ?δ
?R
1
x2nf(x)dx +
integraldisplay
Cδ
1
z2nf(z)dz
+
integraldisplay R
δ
1
x2nf(x)dx +
integraldisplay
CR
1
z2nf(z)dz = 0.
a61a92
limz→∞ 1z2n = 0,
a112
a73
lim
R→∞
integraldisplay
CR
1
z2ne
i(2n?2k)zdz = 0;
a220
a61a92
limz→∞z · 1z2n = 0,
a112
a73
lim
R→∞
integraldisplay
CR
1
z2ndz = 0;
a147a61a92
limz→∞z · 1z2nQ2n?2(z) = 0,
a112
a73
lim
R→∞
integraldisplay
CR
1
z2nQ2n?2(z)dz = 0.
a93
a168
a229
a53
a221a222a223
a81
a117
a83a138
lim
R→∞
integraldisplay
CR
1
z2nf(z)dz = 0.
a121a122a123 a124a125a126a127a128a129a130a131 a13227
a133
a224
a48a70a135a49
limz→0z · 1z2nf(z) = limz→0 1z2n?1f(z)
= limz→0 1z2n?1
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)z + (?)
n
2
parenleftbigg2n
n
parenrightbigg
?Q2n?2(z)
bracerightBigg
= 1(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
[i(2n?2k)]2n?1,
a112
a73
lim
δ→0
integraldisplay
Cδ
1
z2nf(z)dz = ?pii×
i2n?1
(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1
= (?)n+1 pi(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1.
a225
a213
a160δ → 0, R →∞
a49a215a83integraldisplay
∞
?∞
1
x2nf(x)dx = (?)
n pi
(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1.
a226a227
a219
a229
a49
a222a230a231 Q
2n?2(x)a152a218a60a92a234
a228
a60a49
a117
a83a138
integraldisplay ∞
?∞
1
x2n
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
cos(2n?2k)x + (?)
n
2
parenleftbigg2n
n
parenrightbiggbracerightBigg
dx
= (?)n22n?1
integraldisplay ∞
?∞
sin2n x
x2n dx
= (?)n pi(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1.
a154a232
a117
a82
a217
a151 integraldisplay
∞
?∞
sin2n x
x2n dx =
pi
(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(n?k)2n?1
= pi(2n?1)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(n?k)2n?1.