Laplace
a0 a1
star a2a3a4a5a6a7a8a9a10 6
star a1114 a12a13a14a8a15a16a17a18a19a20a21
star §9.5 a22a6a7
a0a1a2 Laplace
a3 a4 a51a6
a7a8a9 Laplace
a10 a11
? Laplacea12a13(a14a15a16a17a12a13)a18a19a20a21a22a23a24a25a12a13a26
a27a28a29a30a31a32a33a34a35a36a29a37
a38a39a40
a21a41a20a26
? a42a43a44a45 Laplacea12a13a21a46a47
a33a48a49
a42a50a51a52a53
a33a54
a21a14a55a41a20a26
§9.1 Laplace a56 a57
Laplacea58a59a60a61a62a63a64a58a59a52a65a66 f(t)a58a59a67F(p)a52
F(p) =
integraldisplay ∞
0
e?ptf(t)dt.
a68a69a70 t
a71a72a73a52 pa71a74a73a52 p = s + iσ a26 F(p)a75a76f(t)a70 Laplacea77a78a52a79a75a80a81a77a78a26 e?pt
a71Laplacea82a77
a70a83
a26
a84a85a86 Laplace
a82a77a79a87a76
F(p) =a88{f(t)} a89 F(p)equaldotrightleftf(t);
f(t) =a88?1{F(p)} a89 f(t) equaldotleftrightF(p).
f(t)a90F(p)a91a92a93a94a95a75a76 Laplacea82a77
a70a96a97
a73a90a98
a97
a73a26
a99a100a101a102
a52
a27
a42a43
a37a103
a46a104 f(t)a41a105
a32a106a107 f(t)η(t)
a52
a48a37
η(t) =
braceleftBigg
1, t > 0,
0, t < 0.
a108a109a101
a52a110t < 0a111a41a105
a32a106a107 f(t) = 0
a26
a112 9.1 a97
a73f(t) = 1a70Laplacea77a78a76
1 equaldotleftright
integraldisplay ∞
0
e?pt dt = ? 1p e?pt
vextendsinglevextendsingle
vextendsinglevextendsingle
∞
0
= 1p, Rep > 0.
a68a69a70a113a114a115a116 Rep > 0
a71a76a117a118a119a120a94a121a122a52a89a123a124a71 Laplacea82a77a125a126
a70a115a116
a26
a112 9.2 a97
a73f(t) = eαt a70Laplacea77a78a76
eαt equaldotleftright
integraldisplay ∞
0
e?pt ·eαt dt
= ? 1pe?(p?α)t
vextendsinglevextendsingle
vextendsinglevextendsingle
∞
0
= 1p?α, Rep > Reα.
a68a69a70a113a114a115a116 Rep > Reα
a127a128a71a76a117a118a119a120a94a121a122a52a129 Laplacea82a77a125a126a26
§9.1 Laplace a3 a4 a52a6
a130a131 1
a90
a131 2
a132a133a134a135a52a136a137 Laplacea82a77
a70a83
a71 e?pt a52a138a133a139a137a140a141a142a143
a70a97
a73f(t)a52a144
a80a81a77a78a145a125a126a146a147a148a141 t → ∞, f(t) → ∞a92a52f(t)
a70
a80a81a77a78a93a132a149a125a126a26
Laplacea58a59a150a151a152a153a154a155a156a60a63a64
integraldisplay ∞
0
e?ptf(t)dta157a158a152a153a154a26a126a159a160a161a73a72a162a163a164a165a52f(t)
a145a149a166a167
1. f(t)a27a168a1690 ≤ t < ∞ a37a170a171a172a22a173a169a174a175a176a177a18a178a179a21a52a180a181a38a178a179a182a28a52a27a183a184a38a185
a168a169a37a186
a23
a169a174a175
a21
a28a187
a18
a38a185
a21a146
2. f(t)a38a38a185a21a188a189a190
a28
a52a191a192
a27a193a28M > 0a33sprime ≥ 0
a52
a194a195a196a183a184t
a197(a198a199a200a52a201
a100a195a196
a202a203a204
a21ta197)a52
|f(t)| < Mesprimet.
a68
a71Laplace a58a59a150a151a152a205a64a153a154a26
a206a207
a163a164a165a208a209
a70a97
a73a145a149a166a167
a68a210a211a212
a26
a213a214sprime
a125a126
a70a215
a52a216
a206a217a218a219a220a206
a52a221a76a222sprime a160
a70a223a224a225
a73a93a226a227
a211a212
a26 sprime a70a228a229a75a76a157
a158a230a231a52a232a76s0 a26
a0a1a2 Laplace
a3 a4 a53a6
§9.2 Laplace a233a234a235a236a237a238a239
a240a241 1 Laplace
a58a59a60a61a242a243
a240
a58a59a52a129a244
f1(t) equaldotleftrightF1(p), f2(t) equaldotleftrightF2(p),
a245
α1f1(t) + α2f2(t) equaldotleftrightα1F1(p) + α2F2(p).
a186a246
a50a51a247a248a249a250Laplacea12a13a21a46a47a251a252a52
a253a107a54
a201a254a255a18a24a25a0a1a21a2a50a50a51a21a3
a4
a26a5a6
a186a246
a50a51a52a7a191a251a252
sinωt = e
iωt ?e?iωt
2i
equaldotleftright 12i
bracketleftbigg 1
p?iω ?
1
p + iω
bracketrightbigg
= ωp2 + ω2;
cosωt = e
iωt ?e?iωt
2
equaldotleftright 12
bracketleftbigg 1
p?iω +
1
p + iω
bracketrightbigg
= pp2 + ω2.
a240a241 2 Laplace
a59a8a152a9a10
a240
a26
a213a214a97
a73f(t)a166a167Laplacea82a77a125a126
a70a11
a94
a115a116
a52
a245
vextendsinglevextendsinglee?ptf(t)vextendsinglevextendsingle < Me?(s?s
0)t, s = Rep.
a141s?s0 ≥ δ > 0a92a52 vextendsingle
vextendsinglee?ptf(t)vextendsinglevextendsingle < Me?δt.
a120a94
integraldisplay ∞
0
Me?δt dta121a122a52a12
integraldisplay ∞
0
e?ptf(t)dta126 Rep ≥ s0 + δ a165
a206a13
a121a122a52a221a14a126Rep > s0 a70a15a16
a17a18a19a20
a206
a210a21a22a97
a73a52a129 F(p)a126
a15a16a17 Rep > s
0
a18a21a22
a26
a186a246
a50a51a23a53a20a24a25a46a26a27a28a29 s0 a52
a186a27a30 Laplace
a12a13a21a3a31a111a18a32a19a33
a100
a21a26
a240a241 3
a244f(t)a166a167 Laplacea82a77a125a126
a70a11
a94
a115a116
a52
a245
F(p) → 0, a141Rep = s → +∞.
a34
a221a76
|F(p)| ≤
integraldisplay ∞
0
vextendsinglevextendsinglee?ptf(t)vextendsinglevextendsingledt ≤ M integraldisplay ∞
0
e(s?s0)t dt = Ms?s
0
,
a12a141Rep = s → +∞a92a52F(p) → 0a26 square
§9.2 Laplacea3a4a35a36a37a38a39 a54a6
a72a162a40a52a136Riemann–Lebesquea217a41a42a43a132a119a44a52a141 Rep = s > s0 a92a52
lim
Imp→±∞
F(p) = 0.
a240a241 4
a45a46a47a152a48a47a152 Laplace a58a59a26a49 f(t) a50 fprime(t) a145a166a167 Laplace a82a77a125a126
a70a11
a94
a115
a116
a52f(t) equaldotleftrightF(p)a52
a245
a221a76integraldisplay
∞
0
fprime(t)e?pt dt = f(t)e?pt
vextendsinglevextendsingle
vextendsingle
∞
0
+ p
integraldisplay ∞
0
f(t)e?pt dt
= pF(p)?f(0),
a138a133
fprime(t) equaldotleftrightpF(p)?f(0).
a253a51
a52
a195a52a53a28f(t)
a21a54a55a0a1a56a57a58
a107a195a59a53a28F(p)
a21a60a61a0a1a52a180a181a62a63
a64a65a66
a171f(t)
a21a67a197a26
a193a253a107a186a246a68a175
a52
a69
a53Laplacea12a13a70a61a18
a30a106
a54a25a70
a35
a21a22a23a33
a100
a70
a61a26
a127a128a52
a71a211f(t), fprime(t), fprimeprime(t), ···, f(n)(t)
a145a166a167 Laplacea82a77a125a126
a70a11
a94
a115a116
a52f(t) equaldotleftrightF(p)a52
a245
fprimeprime(t) equaldotleftright p2F(p)?pf(0)?fprime(0),
f(3)(t) equaldotleftright p3F(p)?p2f(0)?pfprime(0)?fprimeprime(0),
...
f(n)(t) equaldotleftright pnF(p)?pn?1f(0)?pn?2fprime(0)?···
? pf(n?2)(0)?f(n?1)(0).
a72 9.1
a42 Riemann–Lebesquea73a74a75a76a77a78a79a80a81a82a83 f(t)a84a85a86a ≤ t ≤ ba87a88a89a90a91a92a93
limω→∞
integraldisplay b
a
f(t)sinωtdt = 0, limω→∞
integraldisplay b
a
f(t)cosωtdt = 0.
a0a1a2 Laplace
a3 a4 a55a6
a112 9.3 LR
a94a95a96a97(a98a999.1)a52Ka227a40a100a101a96a97a165a102a91a96a103a52
a212K
a227a40a104a96a97a165
a70
a96a103a26
a9 a105a106Kirchhoff
a217a107
a52a132a108a135a109a94a110a111
Ldidt + Ri = E,
i(0) = 0.
a49i(t) equaldotleftright I(p)a52
a245
di
dt equaldotleftrightpI(p)?i(0) = pI(p).
a138a133
LpI(p) + RI(p) = Ep , parenleftbigLp + RparenrightbigI(p) = Ep .
a68
a128a52a112a113 Laplacea82a77a52
a212a21a85
a109a94a110a111
a70
a163a164a114a115a116a76
a212a21a19
a73a110a111a52
I(p) = Ep 1Lp + R = ER
bracketleftbigg1
p ?
L
Lp + R
bracketrightbigg
.
a138a133
i(t) = ER
bracketleftBig
1?e?(R/L)t
bracketrightBig
.
a117a118
a46a47a119a120a121a122a45a46a47a152a123a124a125a67a119a126a26
a27a186a246a127a128a37
a52a129
a59a53a28a130
a25a25a131a52a132a133a20a190
a28a53a28a30a134a135a53a28a136a53a28
a21 Laplacea12a13
a137
a131a52a56a138
a30a139a52a53a28
a26
a240a241 5
a45a46a47a152a63a64a152 Laplace a58a59a26a49f(t)a166a167Laplacea82a77a125a126
a70a11
a94
a115a116
a52
a245
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay t
0
f(τ)dτ
vextendsinglevextendsingle
vextendsinglevextendsingle ≤
integraldisplay t
0
|f(τ)|dτ ≤
integraldisplay t
0
Mes0τ dτ = Ms
0
parenleftbiges
0t ?1
parenrightbig,
a138a133
integraldisplay t
0
f(τ)dτ a70Laplacea82a77a93a125a126a52
f(t) equaldotleftright F(p),
integraldisplay t
0
f(τ)dτ equaldotleftright a88
integraldisplay t
0
f(τ)dτ.
a140
a221a76
d
dt
integraldisplay t
0
f(τ)dτ = f(t)a52a105a106a141a142 4a52a91
F(p) = pa88
integraldisplay t
0
f(τ)dτ ?0.
a138a133 integraldisplay
t
0
f(τ)dτ equaldotleftright F(p)p .
§9.2 Laplacea3a4a35a36a37a38a39 a56a6
a72 9.2
a112 9.4 LC
a94a95a96a97 (a98a99 9.2)
q
C = L
di
dt, q = ?
integraldisplay t
0
i(τ)dτ + q0.
a138a133
Ldidt + 1C
integraldisplay t
0
i(τ)dτ = q0C .
a68
a71a143a137a144a145
a97
a73 i(t)a70a146a64a63a64a147a148a26a49i(t) equaldotleftrightI(p)a52
a245
a91
LpI(p) + 1C I(p)p = q0C 1p.
a138a133
a212a21
a109a94a120a94a110a111
a70
a163a164a93a115a116a76
a212a21a19
a73a110a111
I(p) = q0LCp2 + 1.
a149a150
a141a142 1 a165
a70a151a214a212a152a153
a52a129a154
i(t) = q0√LC sin t√LC.
a0a1a2 Laplace
a3 a4 a57a6
§9.3 Laplace a233a234a235a155a156
a118
a46a47a152a48a47a152a119a126 a49f(t)a166a167 Laplacea82a77a125a126
a70a11
a94
a115a116
a52f(t) equaldotleftright F(p)a52
a245F(p)
a126
Rep ≥ s1 > s0 a70a15a16a17a165a21a22a52a221a14a132a133a126a120a94a157a228a212a158
F(n)(p) = d
n
dpn
integraldisplay ∞
0
f(t)e?pt dt =
integraldisplay ∞
0
(?t)nf(t)e?pt dt.
a138a133
F(n)(p) equaldotrightleft (?t)nf(t).
a105a106
a68a210a159
a78a52a132a133a160a161a162a154a209
1
p2 = ?
d
dp
1
p equaldotrightleft t,
1
p3 =
1
2
d2
dp2
1
p equaldotrightleft
1
2t
2.
a244F(p)a71a91
a41
a97
a73a52
a245a163
a132a133
a84
a113a164a94a94a78
a212a152a153
a26
a131a213
1
p3(p + α) =
1
α
1
p3 ?
1
α2
1
p2 +
1
α3
1
p ?
1
α3
1
p + α
equaldotrightleft 12αt2 + 1α2t + 1α3 ? 1α3e?αt.
a118
a46a47a152a63a64a152a119a126
a213a214
integraldisplay ∞
p
F(q)dq a125a126
a42
a52a165a141t → 0a92a52|f(t)/t|a91
a229
a52
a245
integraldisplay ∞
p
F(q)dq equaldotrightleft f(t)t . (star)
a34 a166F(q)a70a20a167
a78
a19a168
a52
a218a169
a77a120a94a170a171integraldisplay
∞
p
F(q)dq =
integraldisplay ∞
p
dq
integraldisplay ∞
0
f(t)e?qt dt
=
integraldisplay ∞
0
f(t)dt
integraldisplay ∞
p
e?qt dq
=
integraldisplay ∞
0
f(t)
t e
?pt dt,
a143a137
a169
a77a120a94a170a171
a70
a227a172a141
a70a173a174
a52a98a175a176a177a178[1]a26 square
a149a150a68a210a159
a78a52a179a132a133a154a209a180a161
a97
a73
a70 Laplace
a82a77a26
a131a213
sinωt
t equaldotleftright
integraldisplay ∞
p
ω
q2 + ω2 dq =
pi
2 ?arctan
p
ω.
a42 a181a182a75a183a88a87a184a185a186a187a188 Rep → +∞a92a189a190a183a88a191a192a84F(p)a75a187a193a85a194a76a92a195a196a183a88a197a191a192a198a199a200
§9.3 Laplacea3a4a35a201a202 a58a6
a203
a95a71a52
a213a214 p → 0
a92a52(star)a78a204a205
a70
a120a94a206a125a126a52
a245
a91integraldisplay
∞
0
F(p)dp =
integraldisplay ∞
0
f(t)
t dt.
a149a150a68a210a151a214
a52a132a133a207a208
integraldisplay ∞
0
f(t)
t dta209
a70
a120a94a26
a131a213
integraldisplay ∞
0
sint
t dt =
integraldisplay ∞
0
1
p2 + 1 dp =
pi
2.
a186a246
a24a25a210a211a41a20a212
a28
a46
a32a213
a1a255a26
a186a214
a21
a213
a1a215
a107
a14a216a26
a91a217a120a94a218a172
a150a219
a73
a217a41
a207a208a52
a140a220
a132a133
a150a68a210a221
a172a207a208a26
a131a213
integraldisplay ∞
0
cosat?cosbt
t dt =
integraldisplay ∞
0
parenleftbigg p
p2 + a2 ?
p
p2 + b2
parenrightbigg
dp
= 12 ln p
2 + a2
p2 + b2
vextendsinglevextendsingle
vextendsinglevextendsingle
∞
0
= lnb?lna, a > 0, b > 0.
a118
a46a47a151∞a222a9a10a152a223a224
a213a214F(p)
a132a133a136
a15a16a17 Rep > s
0(a225a226a162)
a21a22a227a228
a209a229a91p = ∞
a230
a126
a18a70
a206a217a231a232
a18
a52a165a126 p = ∞a230a21a22a52
a68
a128a52
a97
a73 F(p)a114a132a133a126p = ∞a230a233 Taylora234a235
F(p) =
∞summationdisplay
n=1
cn p?n.
a236
a28a37
a254a237n = 0a238a52a18
a253a107F(p)
a239
a107Laplace
a13a131a52a41a110
a240a202Rep → +∞
a111F(p) → 0
a21
a100a30
a26
a166a241
a73a242a243
a212a152a153
a52a114a154a209
f(t) =
∞summationdisplay
n=0
cn+1
n! t
n.
a186
a23a239a61a21a244a61a50
a27a196a100a245a102a51
a236
a28
a26a27a52a250a180a25a246 f(t) equaldotleftright F(p) a26
a107a51
a239a247a248 CR :
|p| = Ra52
a27C
R
a176a249F(p)
a21a250
a175
a52
cn = 12pii
contintegraldisplay
CR
F(p)pn?1 dp.
a253a107p = ∞
a18F(p)a21a251
a175
a52
a69
a53
|F(p)| < MR , a110|p| > R,
a253a252
a52|cn| < MRn?1 a26a253
a51
a23a53a251a252vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
∞summationdisplay
n=0
cn+1
n! t
n
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle ≤
∞summationdisplay
n=0
|cn+1|
n! |t|
n < M
∞summationdisplay
n=0
1
n! R
n|t|n = MeR|t|,
a254a236a28
a26a27a26
a186a214a255
a111a0
a245a102a171f(t)
a1
a38a38a185
a21a188a189a190
a28
a52
a253
a180
a54
a21 Laplace a12a13a192
a27
a26 square
a0a1a2 Laplace
a3 a4 a59a6
a2a150a68a210
a110a172a132a133
a212
a135
a97
a73
1radicalbig
p2 + 1
a70a152a153
a26
a68
a71
a206
a210
a161a226
a97
a73a52
a213a214a3
a217
a225a226a94a4
1radicalbig
p2 + 1
vextendsinglevextendsingle
vextendsinglevextendsingle
p→∞
→ 1p,
a245
a91
1radicalbig
p2 + 1 =
∞summationdisplay
k=0
(?)k (2k)!22k(k!)2 1p2k+1
equaldotrightleft
∞summationdisplay
k=0
(?)k 122k(k!)2 t2k =
∞summationdisplay
k=0
(?)k
k!k!
parenleftbiggt
2
parenrightbigg2k
.
a68a225
a71 5.4 a5
a1317
a906.4 a5a165a98a209a113
a70 Bessela97
a73 J0(t)a26
a6
a206
a210a131a7
a71
1
pe
?1/p =
∞summationdisplay
n=0
(?)n 1n! 1pn+1
equaldotrightleft
∞summationdisplay
n=0
(?)n
n!n!t
n = J0(2√t).
a5a6 Laplace a12a13a21a2a50a50a51a52a8a9 Laplace a13a131 F(p) a23a53a25
a106a107a10a246a53a28 F
1(p) a11
F2(p)a252a11a52a12a13a52a54a21a3a31a14a15a110a16a56a247a14a55a104a201a100F1(p) a11 F2(p)a21
a52a53a28a177
a192
a27
a52
F(p)a21
a52a53a28
a56a18F1(p) a11 F2(p)a21
a52a53a28a252
a11a26a8a9 F(p)a23a53a25
a106a107F
1(p) a11 F2(p)
a252
a24a52
a48
a3a31a14a15a56
a99a100
a20a252a17a18a21a19a24a46
a32
a26
a20
a63a21a22 a49F1(p) equaldotrightleft f1(t)a52F2(p) equaldotrightleftf2(t)a52
a245
F1(p)F2(p) equaldotrightleftintegraltextt0 f1(τ)f2(t?τ)dτ.
a34
F1(p)F2(p) =
integraldisplay ∞
0
f1(τ)e?pτ dτ
integraldisplay ∞
0
f2(ν)e?pν dν
=
integraldisplay ∞
0
f1(τ)dτ
integraldisplay ∞
0
f2(ν)e?p(τ+ν) dν
=
integraldisplay ∞
0
f1(τ)dτ
integraldisplay ∞
τ
f2(t?τ)e?pt dt,
a132a133a126Otτ a16a17a40a23a135a120a94
a231a232 (
a98a9910.3)a52a24a104a25a82a120a94a170a171a52a129a154
§9.3 Laplacea3a4a35a201a202 a510a6
a72 9.3
F1(p)F2(p) =
integraldisplay ∞
0
e?pt dt
integraldisplay t
0
f1(τ)f2(t?τ)dτ,
a217a41
a154a119a26 square
a72 9.4
a112 9.5
a126LR a94a95a96a97 (a98a99 9.4) a165a26a40
a206
a110a27a28a29a96a30
E(t) =
braceleftBigg E
0, 0 ≤ t ≤ T;
0, t > T.
a212
a96a97a165
a70
a96a103 i(t)a52a49i(0) = 0a26
a9 a108a110a111
Ldidt + Ri = E(t),
i(0) = 0.
a233Laplace
a82a77a104a49i(t) equaldotleftrightI(p), E(t) equaldotleftright E(p)a52
a245
LpI(p) + RI(p) = E(p) a129 I(p) = 1Lp + R ·E(p).
a138a133
i(t) =
integraldisplay t
0
E(τ) 1Le?R(t?τ)/L dτ
a31a32a33 Laplace
a34 a35 a3611a37
=
?
??
??
E0
R
parenleftbig1?e?Rt/Lparenrightbig, 0 ≤ t ≤ T;
E0
R
parenleftbigeRT/L ?1parenrightbige?Rt/L, t > T.
§9.4 a38a39a201a202a40a41 a3612a37
§9.4 a42a43a44a45a46a47
a48a49a50 F(p), p = s + iσ
a51a52a53
(1) F(p) a54a55a56 Rep > s0
a57a58a59a60
(2) a54a55a56 Rep > s0
a57a60
|p| → ∞a61 F(p) a62a63a64a65a66 0
a60
(3) a67a66a68a69a70 Rep = s > s0
a60a71a72a73
L : Rep = s a70a74a75a76a77integraldisplay
s+i∞
s?i∞
|F(p)|dσ (s > s0)
a78a79
a60
a80a81a82 Rep = s > s
0 a60
F(p) a83
f(t) = 12pii
integraldisplay s+i∞
s?i∞
F(p)ept dp
a84 Laplace
a85a86
a60a87a88
t a89a90a85a91a92
a93a94a95a96a97a98a84a99a100a101a102a103a104
a92
a105a93a94a95a96a97a98a106Laplace
a85a86
a84a107a49a50
a60
a108a109a110a111a112a113a84a114a115a116a117
a92
a118a119a120a121a122a123
a50a124a125a126
a127a128
a92a129
a112a130a131a132a133a134
a92
a135 9.6
a122
a93a94a95a96a97a98a106 Laplace
a86
a98 F(p) = 1/(p2 + ω2)2 (ω > 0) a84a107a49a50
a92
a136 a105a93a94a95a96a97a98
a60a137a138
a49a50a84a107a49a50
a89
f(t) = 12pii
integraldisplay s+i∞
s?i∞
1
(p2 + ω2)2 e
pt dp.
a105a82a49a50 1/(p2 + ω2)2 a84a139a140a141a142a143a144a113
a60
a145a146a147a148a116a117a149a150
a88
a84 s > 0
a151
a120
a92
a152a112a153a154a93a94a99a100
a155
a60a156
t < 0 a157
a118
a124a158 f(t) = 0
a92a159
a137
a129
a112a160a161a162a163 t > 0 a84a164a165
a92
a147
a157
a60
a120a166a167a168a169a170 9.8
a92
a171 9.8
a172a173a174 Laplace
a175 a35 a3613a37
a105a82
limp→∞ 1(p2 + ω2)2 = 0,
a145a146
a60a176a177a178a179
a84 Jordan
a180
a125a181
a60
a120
a146a182a124
lim
R→∞
integraldisplay
CR
1
(p2 + ω2)2 e
pt dp = 0.
a147a183
a60
a105
a123
a50a124a125
a60a184a185a186
f(t) = 12pii
integraldisplay s+i∞
s?i∞
1
(p2 + ω2)2 e
pt dp = summationdisplay
a187a111a112
res
braceleftbigg 1
(p2 + ω2)2 e
pt
bracerightbigg
=
braceleftbiggbracketleftbigg t
(p + iω)2 ?
2
(p + iω)3
bracketrightbigg
ept
bracerightbigg
p=iω
+
braceleftbiggbracketleftbigg t
(p?iω)2 ?
2
(p?iω)3
bracketrightbigg
ept
bracerightbigg
p=?iω
= 12ω3bracketleftbigsinωt?ωtcosωtbracketrightbig.
a181 a188a189a190a191a192a193a194 Jordan
a195a196a197a198
a194a199a200a201a202a194 Jordan
a195a196(a2037.4a204)a205a206a207a208
a194a209a210a211a212a213a214
? a200Jordan a195a196
a190a215a216a194a217a218a219a220
a206 90? a221
? a222a223
a194a217a218a199a224a225a226 L : Rep = s > 0
a227a228a197
a190a229a230a231a232a233a234a217a218
a221
a235
a199
a197
a236
a229a237a238
a197
a239
a230a217a218a211a240a241a194a242a243 (
a244s)a245
a246 (
a247a248a249
a217a218a194a234a250 R →∞
a251a197
a240a241a252a253a217a218a194a254a255 → 0)
a197a0a195a196a1a2a3a4
a221
§9.4 a38a39a5a6a40a41 a3614a37
Jordan a7a8
a9
a62a10a11a12a13a14
a15
a54 0 ≤ argz ≤ pi a70a16a17a18
a60a19
|z|→ ∞a61
a60
Q(z) a62a63a64a65a20a66 0
a60a21
lim
R→∞
integraldisplay
CR
Q(z)eipzdz = 0
a22
a57
p > 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a33a34a35ζ = iz,z = ?iζ
a9
a11a10a36a12a13a14
a15
a54
pi
2 ≤ argζ ≤
3
2pi a70a16a17a18a60a19|ζ| → ∞a61a60 Q(ζ) a62a63a64a65a20a66 0 a60a21
lim
R→∞
integraldisplay
CR
Q(ζ)epζdζ = 0
a22
a57
p > 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a15
a54
pi
2 ≤ argζ ≤
3
2pi a70a16a17a18a60a19|ζ| → ∞a61a60 Q(ζ) a62a63a64a65a20a66 0 a60a21
lim
R→∞
integraldisplay
CR
Q(ζ)e?pζdζ = 0
a22
a57
p < 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a33a34a35ζ = ?iz,z = iζ
a9
a62a10a37a12a13a14
a15
a54?
pi
2 ≤ argζ ≤
pi
2 a70a16a17a18a60a19|ζ| → ∞a61a60 Q(ζ) a62a63a64a65a20a66 0 a60a21
lim
R→∞
integraldisplay
CR
Q(ζ)e?pζdζ = 0
a22
a57
p > 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a15
a54?
pi
2 ≤ argζ ≤
pi
2 a70a16a17a18a60a19|ζ| → ∞a61a60 Q(ζ) a62a63a64a65a20a66 0 a60a21
lim
R→∞
integraldisplay
CR
Q(ζ)epζdζ = 0
a22
a57
p < 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a33a34a35ζ = ?z,z = ?ζ
a9
a36a10a37a12a13a14
a15
a54 pi ≤ argζ ≤ 2pi a70a16a17a18
a60a19
|ζ| → ∞a61
a60
Q(ζ) a62a63a64a65a20a66 0
a60a21
lim
R→∞
integraldisplay
CR
Q(ζ)e?ipζdζ = 0
a22
a57
p > 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a15
a54 pi ≤ argζ ≤ 2pi a70a16a17a18
a60a19
|ζ| → ∞a61
a60
Q(ζ) a62a63a64a65a20a66 0
a60a21
lim
R→∞
integraldisplay
CR
Q(ζ)eipζdζ = 0
a22
a57
p < 0
a60
CR
a23a24a25a26a27a28a29a60
R
a27a30a31
a70
a30a28a32
a172a173a174 Laplace
a175 a38 a3915a40
a129
a112a41a130
a118
a132
a138
a49a50 F(p)
a89 p a84a42a43a49a50a84a164a165a92
a135 9.7
a122
a93a94a95a96a97a98a106 Laplace
a86
a98 F(p) = 1√
p e
?α√p
a60
α > 0 a84a107a49a50a92
a136 a105a93a94a95a96a97a98
a60
a107a49a50
a89
1√
p e
?α√p equaldotrightleft 1
2pii
integraldisplay s+i∞
s?i∞
1√
p e
?α√p ept dp.
a87a88
a84a116a117a149a150 L : Rep = s > 0
a83a44a45
a111a112a113a84
a118a46
a111a47a82a143a144a84a114a115a48a49
a92a50a51
a186a52
a116a49a50
a83
a42a43a49a50
a60
p = 0 a53p = ∞ a83a54
a140
a60
a145a146
a60
a142a55
a122a123
a50a124a125a127a128a147a132a116a117
a157
a60
a55a56
a166
a116a117
a167a168a169
a170 9.9
a92a159a89
a142a116a117
a167a168a57
a114a139a140
a60
a145a146
a171 9.9
contintegraldisplay
C
1√
p e
?α√p ept dp
=
integraldisplay B
A
1√
p e
?α√p ept dp +
integraldisplay
CR
1√
p e
?α√p ept dp
+
integraldisplay
C1
1√
p e
?α√p ept dp +
integraldisplay
Cδ
1√
p e
?α√p ept dp
+
integraldisplay
C2
1√
p e
?α√p ept dp +
integraldisplay
CprimeR
1√
p e
?α√p ept dp = 0.
a105
a178a179
a84 Jordan
a180
a125
a60
a120a58
lim
R→∞
integraldisplay
CR
1√
p e
?α√p ept dp = 0,
lim
R→∞
integraldisplay
CprimeR
1√
p e
?α√p ept dp = 0.
a59
a176a177
a180
a125 3.2
a60
a158
lim
δ→0
integraldisplay
Cδ
1√
p e
?α√p ept dp = 0.
§9.4 a38a39a5a6a40a41 a3916a40
a142 C
1 a53C2
a113
a60
argp = ±pi,
a60
a120
a117a61a62 p = re±ipi
a63
a185a186integraldisplay
C1
1√
p e
?α√p ept dp = ?i
integraldisplay R
δ
1√
r e
?iα√r e?rt dr,
integraldisplay
C2
1√
p e
?α√p ept dp = ?i
integraldisplay R
δ
1√
r e
iα√r e?rt dr.
a145a146
a60
a142
a166a64a65 R → ∞, δ → 0
a66
a60a184
a158
1√
p e
?α√p equaldotrightleft 1
2pi
integraldisplay ∞
0
1√
r
bracketleftBig
eiα
√r
+ e?iα
√rbracketrightBig
e?rt dr
= 2pi
integraldisplay ∞
0
e?x2t cosαxdx
= 1√pit exp
braceleftbigg
?α
2
4t
bracerightbigg
.
a147a148
a122
a186a67a68
4 a103a84a69a70 integraldisplay
∞
0
e?x2t cosαxdx = 12
radicalbiggpi
t exp
braceleftbigg
?α
2
4t
bracerightbigg
.
a142a147a132a69a70a84a71a72a113
a184
a120
a146a99a100
a129a73
a97a98
a53
1√
pF(
√p) equaldotrightleft 1√
pit
integraltext∞
0 f(τ)e
?τ2/4tdτ.
a74 a48a75a81
a44
a98a76a77a93a77a78
a85a86
a60a79a80
a86
a116a117a81a82
a60
a151
a120
a99a100
a53integraldisplay
∞
0
e?pt
braceleftbigg 1
√pit
integraldisplay ∞
0
f(τ)e?τ2/4tdτ
bracerightbigg
dt =
integraldisplay ∞
0
f(τ)
braceleftbiggintegraldisplay ∞
0
1√
pite
?τ2/4te?ptdt
bracerightbigg
dτ
=
integraldisplay ∞
0
f(τ) 1√pe?τ√pdτ = 1√pF(√p). square
a135 9.8 a106 1
p e
?α√p, α > 0 a84a107a49a50
a92
a68a83a84
a103a85
a122
a186
a147a132a69a70
a136 a142a113a98
a88a86a87
F(p) = 1pe?αp
a60a79a88a89
1
pe
?αp equaldotrightleftη(t?α)
a60a184
a158
1
p e
?α√p equaldotrightleft 1√
pit
integraldisplay ∞
0
η(τ ?α)e?τ2/4tdτ = 1√pit
integraldisplay ∞
α
e?τ2/4tdτ,
a105
a137
a151
a185 1
p e
?α√p equaldotrightleft erfc α
2√t.
a87a88
a84 erfcx
a90a89a91a92a93
a49a50
a60
a124a94
a89
erfcx = 2√pi
integraldisplay ∞
x
e?ξ2dξ.
a95a96a84a97a158
a92a93
a49a50 erf x
a60
erf x = 1?erfcx = 2√pi
integraldisplay x
0
e?ξ2dξ.
a172a173a174 Laplace
a175 a38 a3917a40
?§9.5
a98a99 Laplace a100a101a102a103a104a105a106
Laplace a85a86a107
a120
a146
a122
a126a127a128a108a109a110a50 summationtextF(n)
a111a53a92
a87
a71a102a112a149
a83
a121a122 Laplace
a85a86
F(p) =
integraldisplay ∞
0
f(t)e?ptdt,
a113a110a50a84a114a115a116a117a118a116a117
a60
a63
a66
a80
a86
a116a117
a53
a110a50a106
a53
a84a81a82
summationdisplay
F(n) =
summationdisplayintegraldisplay ∞
0
f(t)e?ntdt =
integraldisplay ∞
0
f(t)
bracketleftBigsummationdisplay
e?nt
bracketrightBig
dt,
a147a183
a60a184a119
a110a50a106
a53
a84a120a121a122a123
a89
a124a116a117a84a127a128
a92
a105a82a49a50 e?nt a84a124a142
a60
a142
a118a119
a164a125
a129a126a126
a120
a146
a127a99
a80
a86
a81a82a84a128a129a130
a92
a142a127a128
a88
a126
a122
a186
a84 Laplace
a85a86
a84a69a70a158
integraldisplay ∞
0
eαt e?pt dt = 1p?α,
integraldisplay ∞
0
tα?1e?pt dt = Γ(α)pα ,
integraldisplay ∞
0
e?pt sinωtdt = ωp2 + ω2,
integraldisplay ∞
0
e?pt cosωtdt = pp2 + ω2,
integraldisplay ∞
0
e?pt sinhatdt = ap2 ?a2,
integraldisplay ∞
0
e?pt coshatdt = pp2 ?a2.
a129
a112a114a155a131a132a133a134a126a131a132a133a100
a92
a135 9.9 a127a128a110a50
∞summationtext
n=1
1
n2 a111a53a92
a136 a134a135
a121a122
integraldisplay ∞
0
te?pt dt = 1p2, Rep > 0,
a113a110a50a123
a89
∞summationdisplay
n=1
1
n2 =
∞summationdisplay
n=1
integraldisplay ∞
0
te?nt dt
=
integraldisplay ∞
0
t
bracketleftBigg ∞summationdisplay
n=1
e?nt
bracketrightBigg
dt =
integraldisplay ∞
0
t
et ?1 dt.
a89
a67
a127a128a147a132a116a117
a60
a50a51
a110
a85
a116a117
contintegraldisplay
C
z2
ez ?1 dz a60
a167a168a169a170 9.10
a92
a171 9.10
?§9.5
a136a137Laplace a175a38a138a139a140a141a142 a3918a40
a147
a157
a60a176a177
a123
a50a124a125
a184
a158
contintegraldisplay
C
z2
ez ?1 dz =
integraldisplay R
0
x2
ex ?1 dx +
integraldisplay 2pi
0
(R + iy)2
eR+iy ?1 idy
+
integraldisplay δ
R
(x + 2pii)2
ex ? 1 dx +
integraldisplay
Cδ
z2
ez ?1 dz
+
integraldisplay 0
2pi?δ
(iy)2
eiy ?1 idy
=0.
a159a89
lim
R→∞
(R + iy)· (R + iy)
2
eR+iy ?1 = 0,
limz→2pii(z ?2pii)· z
2
ez ?1 = ?4pi
2,
a145a146
lim
R→∞
integraldisplay 2pi
0
(R + iy)2
eR+iy ?1 idy = 0,
lim
δ→0
integraldisplay
Cδ
z2
ez ?1 dz = 2pi
3i.
a59
a159a89
integraldisplay 0
2pi?δ
(iy)2
eiy ?1 idy = ?
i
2
integraldisplay 2pi?δ
0
parenleftBig
1 + icot y2
parenrightBig
y2 dy,
a145a146
a60
a166a64a65 R → ∞, δ → 0
a60a79a143a144a145
a98a146a147a84a143a148
a60
a151
a120
a106
a185
∞summationdisplay
n=0
1
n2 =
integraldisplay ∞
0
t
et ?1 dt =
1
6pi
2.
a172a173a174 Laplace
a175 a38 a3919a40
?§9.6
a42a43a44a45a46a47a149a150a151
a74 a117a152a153a99a100a113a112a154a155a84 f(t)
a184
a83 F(p) a84a107a49a50a92
a68
a118
a153
a60
a99a100a116a117
1
2pii
integraldisplay s+i∞
s?i∞
F(p)ept dp
a156s a114a96
a60
a63
a76
a89a85a91 t a84a49a50
a60
a131a158a158
a65
a84a157a158a159a50
a92
a171 9.5
a89
a137a60
a142a160a161Rep > s
0 a88a60
a50a51
a1709.5
a88
a84a162a165
a167a168
a60a87a163
a140
a89s1?iσ, s2?iσ, s2+iσ, s1+iσa164
s2 > s1 > s0
a60
σ > 0 a92a159a89
a167a168a165
a187a166a142 F(p) a84a167a168a160a161
a88a60
a60
a176a177
Cauchy a124a125contintegraldisplay
F(p)ept dp = 0.
a169a124 s
1,s2 a63a170σ → ∞a60
a80a105a153
a58a46a171 (2)
a60
a158
limσ→∞
integraldisplay s2?iσ
s1?iσ
F(p)ept dp = 0,
limσ→∞
integraldisplay s1+iσ
s2+iσ
F(p)ept dp = 0.
a159
a137 integraldisplay
s1+i∞
s1?i∞
F(p)ept dp =
integraldisplay s2+i∞
s2?i∞
F(p)ept dp.
a105a82 s
1 a53 s2
a84a172
a89
a130
a60
a147
a184
a99a100
a67
a116a117 1
2pii
integraldisplay s+i∞
s?i∞
F(p)ept dp a156 s a114a96
a60
a160
a83a85a91 t
a84a49a50 (
a173
a89 f(t)) a92
a41
a176a177
a153
a58a46a171 3
a60
a158
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
1
2pii
integraldisplay s+i∞
s?i∞
F(p)eptdp
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle ≤
1
2pi
integraldisplay s+i∞
s?i∞
vextendsinglevextendsingleF(p)eptvextendsinglevextendsingle·|dp|
= e
st
2pi
integraldisplay s+i∞
s?i∞
|F(p)|dσ ≤ M2piest,
?§9.6
a174a39a5a6a40a41a175a176a177 a3920a40
a60f(t)a131a158a158
a65
a84a157a158a159a50
a60
a178a179a180a181
a184
a83 s0 a92
a182a113a112a84a183
a145
a98a155a184
a60
a185
a157a107
a120
a99
a185
a116a117a84
a118a186
a178a179a130
a92
a68a187
a153
a60
a99a100a81a82 t < 0, f(t) ≡ 0
a92
a147
a157
a120
a50a51
a170 9.6
a88
a84
a167a168 C
a92
a171 9.6
a105Cauchy a124a125
contintegraldisplay
C
F(p)ept dp = 0.
a120
a83
a60a188a189
Jordan a180
a125
a60a156
R → ∞a157
a60a190
CR a84a116a117a191a82 0
a60
a159
a137
f(t) = 12pii
integraldisplay s+i∞
s?i∞
F(p)ept dp ≡ 0,
t < 0, Rep > s0.
a68
a152a153
a60
a99a100a147a132a116a117a124a94a84 f(t) a84 Laplace
a85a86
integraldisplay ∞
0
f(t)e?pt dt = 12pii
integraldisplay ∞
0
e?pt dt
integraldisplay s+i∞
s?i∞
F(q)eqt dq, Rep > s0
a184
a83 F(p) a92a159a89
a113a98
a44
a147
a57a192
a84a116a117a156s a114a96
a60
a60
a120a166 Rep > s > s0
a60a79a80
a86
a116a117a81a82 (a105a82a116
a117a84
a118a186
a178a179a130
a60
a147
a83
a128a129a84)
a60
a182
a63
a185integraldisplay
∞
0
f(t)e?pt dt = 12pii
integraldisplay s+i∞
s?i∞
F(q)dq
integraldisplay ∞
0
e?(p?q)t dt
= 12pii
integraldisplay s+i∞
s?i∞
F(q)
p?q dq.
a172a173a174 Laplace
a175 a38 a3921a40
a171 9.7
a147a132a116a117
a120
a146a55
a122a123
a50a124a125a126a127a128
a92
a166a167a168a169a1709.7
a92
a176a177
a153
a58a46a171(2)
a60
a105
a180
a1253.1
a120a58
a60a156
R → ∞
a157
a190
CR a84a116a117a191a82 0 a92
a41
a50a51
a186a52
a116a49a50a142
a44a45
a111a112a160a158a193
a118a118
a132a139a140
a60
a118a194a64
a140 q = p
a60a79a195
a116a117
a83
a190a196a197a198a199a200
a47a84
a60
a60
f(t) equaldotleftright
integraldisplay ∞
0
f(t)e?pt dt = F(p).
a159
a63
a99
a185
f(t) a84 Laplace a85a86a151a89 F(p) a92
a201a128a113a112a152a153a84a69a70
a60
a107
a184
a165
a187a99a100
a67
Laplace a85a86
a84a93a94a95a96a97a98
a92 square