a0 a1 I
a2 a3 a4 a5 a6 a7
a8 a9 a10 a11 a12 a13
a14 a15
a16a17
a18a19a20a21a22a23a24
a25a26a27a28a29a30
a19
a31a32a33a34a35
a20a36a37
a38a39a40a41a42a43
a44a45a46a47a48(20
a49)
1. a50a51a52a51w = ln(1 + z)a53a54a55a52a51a27a56a57a58a53a59
(1) argz a36a60a61a62a63 (2) arg(1 + z)a36a60a61a62a63
(3) z a36a64a61a65a66a67a63 (4) 1 + z a36a64a61a65a66a67a68
2. a69a52a51f(z)a70a71a72a73a74a75G a76
a77a78a27C
a79G a76
a80
a49a81a82a83a84
a85a27a86a87
a79Aa88Ba27a89a90a49
integraldisplay
C
f(z)dz
(1)a91a92a93a94a95a96
a37
a27a97
a91a98a99a100a101a102
a37
a63
(2)a91a92a93a94a95a102
a37
a27a97
a91a98a99a100a101a96
a37
a63
(3)a91a92a93a94a95
a41
a98a99a100a101
a31
a96
a37
a63
(4)a91a92a93a94a95
a41
a98a99a100a101
a31
a102
a37
a68
3. a103a52a51f(z)a70z = aa87a77a78a27
f(a) = fprime(a) = ··· = f(n?1)(a) = 0, f(n)(a) negationslash= 0,
a89
a52a51f
prime(z)/f(z)
a70z = aa87a80a104a51a79
(1) 1?na63 (2) n?1a63
(3) ?na63 (4) na68
4. z = ∞a53f(z) = 1sinz a80
(1)a18a105a106a99
a63 (2)
a107
a62a108
a99
a63
(3)a109a110a99
a63 (4)
a111
a112a113a108
a99
a68
5. Γ(z)Γ(1?z) = pisinpiz a80a114a115a74a75a79a59
(1)a116a117a118
a63 (2)
a119a120a121
a122 0 < Rez < 1a63
(3)a123a124a117a118Rez > 0a63 (4)a125a124a117a118Rez < 1a68
a126
a45(10
a49) a127
a128a77a78
a52a51f(z)a70a129a130a131a132
a80
a51a55a79a133a134a51
a27a135
a134a136 v(x,y) = xx2 + y2 a27a137a138f(z)a68
2
a139
a45(20
a49)a140a52a51ln z ?1z + 1 a70z = ∞a80a141a75a76a142a143a79a144a145a51a27a146a147 ln z ?1z + 1
vextendsinglevextendsingle
vextendsinglevextendsingle
z=∞
= 0a68
a148
a45(40
a49)a149a150a151a152
a90
a49a59
(1)
integraldisplay ∞
?∞
dx
(x2 + 1)(x2 ?2xcosθ + 1), 0 < θ < pi,
a135θ negationslash= pi/2.
(2)
integraldisplay ∞
?∞
sinx
x(x2 + 4)dx.
a153
a45(10
a49) a127
a128f(t) = 1
pi
integraldisplay pi
0
cos(tcosθ)dθ a27a137a138a56a154a155a154a156a157a158a80a159a52a51 F(p)a68
a160a161a162a163a164a165a166a167a168
a44a45(20
a49)
1. (2) (4
a49)
2. (4) (4
a49)
3. (4) (4
a49)
4. (4) (4
a49)
5. (1) (4
a49)
a126
a45(10
a49)
a169a1701 a138a171u(x,y)a80a172a173
a49
du(x,y) = ?u?xdx + ?u?ydy = ?v?ydx? ?v?xdy
= ? 2xy(x2 + y2)2 dx + x
2 ?y2
(x2 + y2)2dy,
a90
a49
a27
u(x,y) = yx2 + y2 + C.
a127
a128f(z)
a70a129a130a131a132
a80
a51a55a79a133a134a51
a27a174a175a176 y = 0
a177
a27
u(x,y) = 0,
a178a179a180a181a147a171
C = 0.
a182a183a27
f(z) = y + ixx2 + y2
= iz
?
zz? =
i
z.
?u
?x (2a49)
?u
?y (2a49)
a138a171u(x,y) (2
a49)
a90
a49a184a51C = 0 (2a49)
a185a186a27a138a171f(z) (2
a49)
a169a1702
a187a188
a185a186a189a171f(z):
v(x,y) = xx2 + y2 = 12 z + z
?
zz?
= 12
bracketleftbigg 1
z? +
1
z
bracketrightbigg
4
= 12i
bracketleftbigg i
z? +
i
z
bracketrightbigg
= 12i
bracketleftbigg i
z ?
parenleftbiggi
z
parenrightbigg?bracketrightbigg
= f(z)?f
?(z)
2i
a178a179a180a181
a187a188a190a191
f(z) = iz. (a132a1925a193
a27a194
a193 2a49)
a139
a45(20
a49)
ln z?1z + 1 = ln
1? 1z
1 + 1z
=
∞summationdisplay
n=1
(?)n?1
n
bracketleftbiggparenleftbigg
?1z
parenrightbiggn
?
parenleftbigg1
z
parenrightbiggnbracketrightbigg
=
∞summationdisplay
n=1
(?)n?1
n [(?)
n ?1]
parenleftbigg1
z
parenrightbiggn
= ?2
∞summationdisplay
n=0
1
2n + 1
parenleftbigg1
z
parenrightbigg2n+1
, |z| > 1.
a129a195a196
a171a197a85 (3
a49)
a198
a55a49a199a200a201 (3a49)
ln
parenleftbigg
1? 1z
parenrightbigg
a142a143 (4
a49)
ln
parenleftbigg
1 + 1z
parenrightbigg
a142a143 (4
a49)
a185a186 (4
a49)
a202a203a204a205 (2
a49)
a148
a45(1) (20
a49)
a206a205a207
a79a132a208a209
a27a210a211
a71
a157a90
a49 contintegraldisplay
1
(z2 + 1)(z2 ?2zcosθ + 1)dz.
a212a213a104
a51
a147a214a215
contintegraldisplay 1
(z2 + 1)(z2 ?2zcosθ + 1)dz
=
integraldisplay R
?R
1
(x2 + 1)(x2 ?2xcosθ + 1)dx
+
integraldisplay
CR
contintegraldisplay 1
(z2 + 1)(z2 ?2zcosθ + 1)dz
= 2pii
summationdisplay
a216a217a218a219
res 1(z2 + 1)(z2 ?2zcosθ + 1)
5
= 2pii
bracketleftbigg 1
(z2 + 1)(z2 ?2zcosθ + 1)a70z = i
a80a104
a51
+ 1(z2 + 1)(z2 ?2zcosθ + 1)a70z = eiθ a80a104a51
bracketrightbigg
.
a181a183
a149a150 a220
a90
a52a51a70z = ia80a104a51 = 12i(?2icosθ)
= 14cosθ,
a220
a90
a52a51a70z = eiθ a80a104a51 = 1(ei2θ + 1)2isinθ
= 12cosθ(cosθ + isinθ)2isinθ
= ?icosθ?isinθ4cosθsinθ
= ?i 14sinθ ? 14cosθ.
a221
a177
a27a58
a79
limz→∞z · 1(z2 + 1)(z2 ?2zcosθ + 1) = 0,
a212a213a222
a209
a223a224a214a27a215
lim
R→∞
1
(z2 + 1)(z2 ?2zcosθ + 1)dz = 0.
a225a226
a132a192a227a228
a27a206a229a230 R →∞a27a231
a190a191integraldisplay
∞
?∞
1
(x2 + 1)(x2 ?2xcosθ + 1)dx =
pi
2sinθ.
a90
a49
a205a207 (2
a49)
a220
a90
a52a51 (2a49)
a104
a51
a147a214 (3
a49)
a232a87 i
a233
a104
a51a149a150 (4a49)
a232a87 eiθ
a233
a104
a51a149a150 (4a49)
a222
a209
a223a224a214 (2
a49)
a227a228 (3a49)
a148
a45(2) (20
a49)
a206a205a207a234a2358.7a27a210a211
a71
a157a90
a49 contintegraldisplay
eiz
z(z2 + 4)dz.
a212a213a104
a51
a147a214a215
contintegraldisplay eiz
z(z2 + 4)dz =
integraldisplay ?δ
?R
eix
x(x2 + 4)dx +
integraldisplay
Cδ
eiz
z(z2 + 4)dz
=
integraldisplay R
δ
eix
x(x2 + 4)dx +
integraldisplay
CR
eiz
z(z2 + 4)dz
6
= 2piie
?2
?8
= ?pii4 e?2.
a58
a79
limz→∞ 1z(z2 + 4) = 0,
a212a213Jordana224a214a27a215
lim
R→∞
integraldisplay
CR
eiz
z(z2 + 4)dz = 0.
a236a58
a79
limz→0z · e
iz
z(z2 + 4) =
1
4,
a212a213a237
a209
a223a224a214a27a215
lim
δ→0
integraldisplay
Cδ
eiz
z(z2 + 4)dz = ?
pii
4 .
a225a226
a132a192a227a228
a27a206a229a230 R →∞, δ → 0a27a231
a190a191integraldisplay
∞
?∞
eix
x(x2 + 4)dx =
pii
4
parenleftbig1?e?2parenrightbig.
a238a239
a134a136
a27a231
a190a191a240a241a227a228 integraldisplay
∞
?∞
sinx
x(x2 + 4)dx =
pi
4
parenleftbig1?e?2parenrightbig.
a90
a49
a205a207 (2
a49)
a220
a90
a52a51 (2a49)
a104
a51
a147a214 (3
a49)
a232a87z = 2i
a233
a104
a51a149a150 (4a49)
a237
a209
a223a224a214a27
a149a150 (4a49)
a222
a209
a223a27 Jordana224a214 (2
a49)
a227a228 (3a49)
a153
a45(10
a49)
F(p) = 1pi
integraldisplay pi
0
p
p2 + cos2θdθ
= 12pi
integraldisplay 2pi
0
p
p2 + cos2θdθ
= 12pi
contintegraldisplay
|z|=1
p
p2 + 14 (z + z?1)2
dz
iz
= 4p2pii
contintegraldisplay
|z|=1
z
z4 + 2(2p2 + 1)z2 + 1dz.
a196
a157a158ζ = z2 a27a14a15z
a242a243a132
a80|z| = 1
a44a244
a157
a79ζ a242a243a132
a80|ζ| = 1
a245
a244
a27a182a183
F(p) = 4p2pii
contintegraldisplay
|ζ|=1
1
ζ2 + 2(2p2 + 1)ζ + 1dζ
= 4p× 1ζ2 + 2(2p2 + 1)ζ + 1a70
a198a246
a209a76
a80a104
a51a88.
7
1
ζ2 + 2(2p2 + 1)ζ + 1
a80a232a87
a53
ζ = ?2(2p
2 + 1)±radicalbig4(2p2 + 1)2 ?4
2
= ?(2p2 + 1)±2p
radicalbig
p2 + 1,
a182a183 1
ζ2 + 2(2p2 + 1)ζ + 1 a70
a198a246
a209a76
a247a215
a44a248
a232a87a27
ζ = ?(2p2 + 1) + 2p
radicalbig
p2 + 1,
a249a135
a53
a44a250
a229a87a27a104
a51a79
1
2ζ + 2(2p2 + 1)
vextendsinglevextendsingle
vextendsinglevextendsingle
ζ=?(2p2+1)+2p
√
p2+1
= 14pradicalbigp2 + 1.
a240a241
a231
a190a191
F(p) = 1radicalbigp2 + 1.
cosωta80Laplacea157a158 (2a49)
a157
a79a251
a198a246
a209|z| = 1a80a90a49 (2a49)
a196
a157a158ζ = z2 (1
a49)
a232a87
a233
a104
a51a149a150 (2a49)
a227 a228 (2a49)
a114a115a252a253
a59 (Rep > 0) (1a49)
8
a0 a1 II
a5 a254 a255 a0 a1 a2 a6 a7
a3 a4 a5 a6 a7 a8 a160 a161
a9 a10 a11
Pl(x) =
lsummationdisplay
n=0
1
(n!)2
(l + n)!
(l?n)!
parenleftbiggx?1
2
parenrightbiggn
(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl?1(x)
Pprimel+1(x) = xPprimel(x) + (l + 1)Pl(x)
Pprimel+1(x) = (2l + 1)Pl(x) + Pprimel?1(x)
Pl(x) = Pprimel+1(x)?2xPprimel(x) + Pprimel?1(x)
Jν(x) =
∞summationdisplay
k=0
(?)k
k!Γ(k + ν + 1)
parenleftBigx
2
parenrightBig2k+ν
Laplacea157a158a11
a57
a52a51f(t) a159a52a51F(p)
1 1p
erfc α2√t 1pe?α√p
1√
piα sin2
√αt 1
p√pe
?α/p
1√
pit cos2
√αt 1√
pe
?α/p
1√
pite
?α2/4t 1√
pe
?α√p
1√
pite
?2α√t 1√
pe
?α2/perfc α√
p
a12a13
a59
a16a17
a18a19a14a15a22a23
a33a34a25a16a26a27
a28a29a30
a19
a31a17a33a34a35
a20a36a37
a38a39a40a68
a44a45(20
a49)a18
a171
a151a152a19a20a21a55a22
a48
a80a77
a59
(1)
??
?
??
yprimeprime(x) + λy(x) = 0,
y(0) = 0, y(l) = 0;
(2)
?
??
??
yprimeprime(x) + λy(x) = 0,
yprime(0) = 0, yprime(l) = 0;
(3)
??
?
??
yprimeprime(x) + λy(x) = 0,
y(x) = y(x + 2pi) = 0;
10
(4)
??
?
??
d
dx
bracketleftbigg
(1?x2)dy(x)dx
bracketrightbigg
+ λy(x) = 0,
y(±1)a215a23.
a126
a45(25
a49)a138a77a151a152
a147a77
a22
a48
a59?
???
???
??
???
???
??
?ua
?xt?y?
2 ?u0
?xx?y=, 0 < x < l, t > 0,
?u
?x
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
= 0, ?u?x
vextendsinglevextendsingle
vextendsinglevextendsingle
x=l
= 0, t > 0,
uvextendsinglevextendsinglet=0 = Acos2 pixl , ?u?t
vextendsinglevextendsingle
vextendsingle
t=0
= 0, 0 < x < l,
a56a24a
a88Aa25a79a127
a128
a184a51
a68
a139
a45(20
a49)a138a77a26a76
a80a147a77
a22
a48
a59?
??
??
?2u = ?4pir cosθ, r < a,
uvextendsinglevextendsingler=a = 0.
a148
a45(15
a49)a149a150
a90
a49a59 integraldisplay
∞
0
e?αx2 J0(x)xdx,
a56a24α > 0a27J
0(x)a79a27a250 Bessela52a51
a68
a153
a45(20
a49)a28Laplacea157a158a169a170a138a208a29a23a30a31a32a33a22a48a80 Greena52a51a59
?
???
???
?
???
???
?
?G(x,t;xprime,tprime)
?t ?κ
?G(x,t;xprime,tprime)δ
?xx?y= (x?x
prime)δ(t?tprime), 0 < x < ∞, t > 0,
G(x,t;xprime,tprime)vextendsinglevextendsinglex=0 = 0, t > 0,
G(x,t;xprime,tprime)vextendsinglevextendsinglet=0 = 0, 0 < x < ∞,
a56a240 < xprime < ∞,tprime > 0a68
a20
a137
a48
a28 a34
a202 a35
11
a12a13a36a37a38a39a40a41a42
a43a44(20
a45)
(1) λ
n =
parenleftBignpi
l
parenrightBig2
(2a45)
yn(x) = sin npil x (2a45)
n = 1,2,3,··· (1a45)
(2) λ
n =
parenleftbigg2n + 1
l pi
parenrightbigg2
(2a45)
yn(x) = sin 2n + 1l pix (2a45)
n = 0,1,2,3,··· (1a45)
(3) λ
n = n2 (2a45)
yn(x) = sinnx, cosnx (2a45)
n = 0,1,2,3,··· (1a45)
(4) λ
l = l(l + 1) (2a45)
yl(x) = Pl(x) (2a45)
l = 0,1,2,3,··· (1a45)
12
a46
a44(25
a45)
u(x,t) = C0t + D0 +
∞summationdisplay
n=1
bracketleftBig
Cn sin npil at+ Dn cos npil at
bracketrightBig
sin npil x
u
vextendsinglevextendsingle
vextendsingle
t=0
= D0 +
∞summationdisplay
n=1
Dn sin npil x = u0cos2pil x = u02
bracketleftbigg
1 + cos 2pil x
bracketrightbigg
? D0 = u02 , Dn = u02 δn2
?u
?t
vextendsinglevextendsingle
vextendsingle
t=0
= C0 +
∞summationdisplay
n=1
Cnnl pia·sin nl pix ? C0 = Cn = 0
u(x,t) = u02 + u02 cos 2pil x cos 2pil at
a45a47a48a49 X(x)a50a51a52 (2a45)
a53a54a55a56 (2
a45)
T(t)a50a51a52 (2a45)
a57a58a59a60a61 λ
n (2a45)
Xn(x) (2a45)
na50a62
a59 (1
a45)
a63 a64 T
n(t),T0(t) (2a45)
a43a65
a64 (2
a45)
a66a67a68 C
0 (2a45)
Cn (2a45)
D0,D2 (2a45)
Dn (nnegationslash= 0,2) (2a45)
a64 a69 (2
a45)
13
a70
a44(20
a45)a71a72a73a74a75
a60a61
a50
a57a58a76a68a77a78
u(r,θ) =
∞summationdisplay
l=0
Rl(r)Pl(cosθ)
1
r2
d
dr
parenleftbigg
r2dRldr
parenrightbigg
? l(l + 1)r2 Rl = ?4pirδl1
Rl(0)a79
a54 R
l(a) = 0
a80l = 1
a81a82R1(r) = A1r + B1r?2 ? 25pir3 a82
R1(0)a79
a54 ? B
1 = 0
R1(a) = 0 ? A1 = 25pia2
R1(r) = 25piparenleftbiga2 ?r2parenrightbig
a80l negationslash= 1
a81a82Rl(r) = Alrl + Blr?l?1 a82
Rl(0)a79
a54 ? B
l = 0
Rl(a) = 0 ? Al = 0
Rl(r) = 0, l negationslash= 1
a83a84
u(r,θ) = 25piparenleftbiga2 ?r2parenrightbigrcosθ
a68a85a86a87a88a89 (2
a45)
a64a61
a51a90
a88a89 (2
a45)
a91a92a93φ
a94a95 (2a45)
a57a58a76a68 (2
a45)
Rl(r)a96a97a50a98a45a51a52 (2a45)
Rl(r)a96a97a50
a53a54a55a56 (2
a45)
l = 1a81a50
a64 (3
a45)
l negationslash= 1a81a50
a64 (3
a45)
a64 a69 (2
a45)
14
a99
a44(15
a45)a51a90
a43 a100a101Bessel
a76a68
a50a102
a68a86a103a69a104a105a106
a45
integraldisplay ∞
0
e?αx2J0(x)xdx =
∞summationdisplay
n=0
(?)n
n!n!
parenleftbigg1
2
parenrightbigg2n integraldisplay ∞
0
e?αx2 x2n+1 dx
=
∞summationdisplay
n=0
(?)n
n!n!
parenleftbigg1
2
parenrightbigg2n 1
2
integraldisplay ∞
0
e?αt tn dt
=
∞summationdisplay
n=0
(?)n
n!n!
parenleftbigg1
2
parenrightbigg2n+1 n!
αn+1
= 12α
∞summationdisplay
n=0
(?)n
n!
parenleftbigg 1
4α
parenrightbiggn
= 12αe?1/4α
a51a90a50
a88a89a107a108 (3
a45)
a109a110a106
a45 (2a45)
a111a112Γa76a68a113a114a106
a45 (5a45)
a115 a116 (5
a45)
a51a90
a46 a117a118
a49
a106
a45a90a119a120
I(b) =
integraldisplay ∞
0
e?αx2J0(bx)xdx
a121
Iprime(b) = ?
integraldisplay ∞
0
e?αx2J1(bx)x2 dx
= 12αe?αx2 xJ1(bx)
vextendsinglevextendsingle
vextendsingle
∞
0
? b2α
integraldisplay ∞
0
e?αx2J0(bx)xdx
= ? b2αI(b)
a83a84
I(b) = Aexp
braceleftbigg
?b
2
4α
bracerightbigg
,
a122a123A = I(0) = 1/2α
a119a124 integraldisplay
∞
0
e?αx2J0(x)xdx = I(1) = 12α exp
braceleftbigg
? 14α
bracerightbigg
.
a51a90a50
a88a89a107a108 (3
a45)
a125a126I(b)
a50a98a45a51a52 (4a45)
a64
a98a45a51a52 (4a45)
a111a112a63a127a59a66a106
a45a128
a68 (2
a45)
a115a126a83a115a106
a45 (2a45)
15
a129
a44(20
a45)a130
G(x,t;xprime,tprime) equaldotleftright G(x,p;xprime,tprime),
a121a66a64a60a61
a48a131 ?
??
??
pG(x,p;xprime,tprime)?κd2d xG(x,p;xprime,tprime) = e?ptprimeδ(x?xprime),
G(x,p;xprime,tprime)vextendsinglevextendsinglex=0 = 0, G(x,p;xprime,tprime)vextendsinglevextendsinglex→∞ → 0.
a64a132a133
G(x,p;xprime,tprime) =
?
??
??
Asinh
radicalbiggp
κx, x < x
prime,
B exp
braceleftbigg
?
radicalbiggp
κx
bracerightbigg
, x > xprime.
a134a135a105a55a56
G(x,p;xprime,tprime)
vextendsinglevextendsingle
vextendsingle
x=xprime+0
x=xprime?0
= 0, ?κ ddxG(x,p;xprime,tprime)
vextendsinglevextendsingle
vextendsingle
x=xprime+0
x=xprime?0
= e?ptprime
a136
B exp
braceleftbigg
?
radicalbiggp
κx
prime
bracerightbigg
?Asinh
radicalbiggp
κx
prime = 0,
Bexp
braceleftbigg
?
radicalbiggp
κx
prime
bracerightbigg
+ Acosh
radicalbiggp
κx
prime = 1√
κp e
?ptprime,
a137a84a66a126
a128
a68
A = 1√κpe?ptprime exp
braceleftbigg
?
radicalbiggp
κx
prime
bracerightbigg
, B = 1√κpe?ptprime sinh
radicalbiggp
κx
prime.
a138a139
a82
G(x,p;xprime,tprime) =
?
??
??
1√
κpe
?ptprime exp
braceleftbigg
?
radicalbiggp
κx
prime
bracerightbigg
sinh
radicalbiggp
κx, x < x
prime,
1√
κpe
?ptprime exp
braceleftbigg
?
radicalbiggp
κx
bracerightbigg
sinh
radicalbiggp
κx
prime. x > xprime,
a140a86
a82
a136a133a141a142
G(x,t;xprime,tprime) = 12radicalbigκpi(t?tprime)
braceleftbigg
exp
bracketleftbigg
?(x?x
prime)2
4κ(t?tprime)
bracketrightbigg
?exp
bracketleftbigg
?(x+ x
prime)2
4κ(t?tprime)
bracketrightbiggbracerightbigg
η(t?tprime).
Laplacea48a143a82a128a98a45a51a52
a66a64a60a61 (4
a45)
a64
a51a52a144 x < xprime (2a45)
x > xprime (2a45)
a135a105a55a56
a144a145
a69 (4
a45)
a146a147 (2
a45)
a141 a142
a144 η(t?tprime) (2a45)
a140a86
a82
a133a148a149a146a147 (4
a45)
16
a0 a1 III
a5 a254 a255 a0 a1 a150 (B)
a6 a7
a151
a152a153a154a155a156a157a158a159a160a161a162a162a163
a44a45 a16430
a49a165
a186a166
a48
1. a167a168a52a51
x
x2 + y2 ?i
y
x2 + y2 a70a169a170
a181a33
a164
a249a138a171a56a33
a51a165
a45
a70a169a170
a77a78
2. a149a150
a90
a49
contintegraldisplay
|z|=2
cosz
z3 dz
3. a18a171a52a51f(z) = cos zz ?1 a70a56a182a215a171a115a232a87a164a172a173∞a87a165a170a80a104a51
4. a18
a171
a52a51f(z) = lnzsinpiz a70
a56a182a215a171a115a232a87
a164
a172a173∞a87
a165a170
a80a104
a51
5. a18
a171a169a174zd
2w
dz2 +
dw
dz ?w = 0a70
a56a182a215
a129
a89a232a87
a170
a80a175a176
a126
a45 a16425
a49a165
a138a77
a151a152
a147a77
a22
a48
?2u
?t2 ?a
2?2u
?x2 = 0, 0 < x < l,t > 0
?u
?x
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
= ?u?x
vextendsinglevextendsingle
vextendsinglevextendsingle
x=l
= 0, t ≥ 0
uvextendsinglevextendsinglet=0 = x, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤ x ≤ l
a56a24a
a53a127
a128a80a177x
a88ta178a29a179
a80
a184a51a180
a139
a45 a16415
a49a165
a138a77a221a181a26a182
a76
a80a147a77
a22
a48
?2u = 0, a < r < b, 0 < θ < pi, 0 < ? < 2pi
uvextendsinglevextendsingler=a = 0, u|r=b = cos2 θ, 0 ≤ θ ≤ pi, 0 ≤ ? ≤ 2pi
a148
a45 a16415
a49a165
a138a77
a209a76
a147a77
a22
a48
?u
?t ?κ?
2u = 0, 0 < r < a,0 < ? < 2pi,t > 0
uvextendsinglevextendsingler=0a215a23, uvextendsinglevextendsingler=a = sin?, 0 ≤ ? ≤ 2pi,t ≥ 0
uvextendsinglevextendsinglet=0 = 0, 0 ≤ r ≤ a,0 ≤ ? ≤ 2pi
a56a24κ
a53a127
a128a80a177ra27?
a88ta178a29a179
a80
a184a51a180
a153
a45 a16415
a49a165
a138
a44a183
a208a29
a23 Helmholtza169a174a184a185a80 Green
a52a51G(x, xprime). a186a187a188
?
??
??
d2G(x,xprime)
dx2 + k
2G(x,xprime) = ?δ(x?xprime) 0 < x,xprime < ∞
Gvextendsinglevextendsinglex=0 = 0, Ga70x →∞a247a215a171a189a190a164a206a177a191a58a192a79 e?iωt a165
a56a24k
a53a127
a128a80a177x
a88xprime a178a29a179
a80
a184a51a180
18
a193a194a195a196a197a198a199
a44a45 a16430
a49a165
1. xx2 + y2 ?i yx2 + y2 = 1z a70a200z = 0a201
a80a202a203a80a172
a242a243
a164
a172a173∞a87
a165a132
a181a33
a45
a77a78a27
parenleftbigg1
z
parenrightbiggprime
= ? 1z2
a181a33
a74a75 (2a49)
a77a78
a74a75 (2a49)
a33
a51
a9a10 (2
a49)
2.
contintegraldisplay
|z|=2
cosz
z3 dz = ?pii (6a49)
3. z = 1a53f(z) = cos zz ?1 a80a20a204
a232a87a27 resf(1) = ?sin1a63 (3
a49)
z = ∞a53f(z) = cos zz ?1 a80a77a78a87a27 resf(∞) = sin1 (3a49)
4. z = 0a88z = ∞a53lnz a80a199
a87a27
a251a205a129a134a131a206 z = 0a191z = ∞a196
a197a85a27
a146a147lnz
vextendsinglevextendsingle
z=1 = 0
a27a89
a196
a197a85
a45
a146a147a198
a55a49a199 (1a49)
z = 1a53
a181a207a232a87a27 resf(1) = 0a27 (2
a49)
z = k, k = ?1, ±2, ±3, ··· a53
a44a250
a229a87a27 (1
a49)
resf(k) =
?
???
??
???
??
(?1)k
pi lnk, k = 2, 3, 4, ···
i k = ?1
(?1)k
pi ln|k|?(?1)
ki, k = ?2, ?3, ?4, ···
(1a49)
(1a49)
a146a147lnzvextendsinglevextendsingle
z=1 = 2npii, n = ±1, ±2, ±3, ···
a27a89
z = k, k = ±1, ±2, ±3, ··· a178a53
a44a250
a229a87a27
resf(k) =
??
???
???
?
???
???
??
?2ni k = 1
(?1)k
pi lnk + (?1)
k2ni, k = 2, 3, 4, ···
?(2n?1)i k = ?1
(?1)k
pi ln|k|+ (?1)
k(2n?1)i, k = ?2, ?3, ?4, ···
5. z = 0a53
a169a174zd
2w
dz2 +
dw
dz ?w = 0
a80a208
a44
a129
a89a232a87a27 (3
a49)
a169a174zd
2w
dz2 +
dw
dz ?w = 0a70z = 0
a87a80a175a176
a79ρ1 = ρ2 = 0 (3a49)
a126
a45 a16425
a49a165
a209
a44a210
a77
a79
u(x, t) = C0t + D0 +
∞summationdisplay
n=1
parenleftBig
Cn sin npil at + Dn cos npil at
parenrightBig
cos npil x,
uvextendsinglevextendsinglet=0 = D0 +
∞summationdisplay
n=1
Dn cos npil atcos npil x = x,
19
?u
?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= C0 +
∞summationdisplay
n=1
Cnnpil acos npil x = 0,
=?
?
???
???
?
???
????
Cn = 0 n = 0, 1, 2, ···
D0 = 1l
integraldisplay l
0
xdx = l2
Dn = 2l
integraldisplay l
0
xcos npil xdx = 2ln2pi2 [(?1)n ?1] n = 1, 2, 3, ···
a211a57
a22
a48
a80a77
a79
u(x, t) = l2 ? 4lpi2
∞summationdisplay
n=0
1
(2n + 1)2 cos
2n + 1
l piatcos
2n + 1
l pix
λ = 0a50a185a80a212a77 (4a49)
a20a21a52a51 (4a49)
Tn (4a49)
a213a246a214 (2
a49)
a213a215a216 (2
a49)
Cn = 0 (1a49)
D0 (3a49)
Dn (3a49)
a77a10 (2
a49)
a139
a45
a209 a217
a28
a26a218a176a219a68a178a169a174a183
a233a220
a252a253a128 ua177?
a29a179
a27a211a169a174
a79
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
= 0
a44a210
a77
a79
u(r, θ) =
∞summationdisplay
l=0
parenleftbigA
lrl + Blr?l?1
parenrightbigP
l(cosθ)
a221a222
a220
a23a252a253a27
uvextendsinglevextendsingler=a =
∞summationdisplay
l=0
parenleftbigA
lal + Bla?l?1
parenrightbigP
l(cosθ) = 0
uvextendsinglevextendsingler=b =
∞summationdisplay
l=0
parenleftbigA
lbl + Blb?l?1
parenrightbigP
l(cosθ) = cos2 θ
a180
a190
Alal + Bla?l?1 = 0
Albl + Blb?l?1 = 2l + 12
integraldisplay pi
0
cos2 θPl(cosθ)sinθdθ = 2l + 12
parenleftbigg1
3δl,0 +
2
15δl,2
parenrightbigg
20
=?
?
???
???
???
???
???
???
A0 = b3(b?a)
B0 = ? ab3(b?a)
A2 = 2b
3
3(b5 ?a5)
B2 = ? 2a
5b3
3(b5 ?a5)
a211a57
a22
a48
a80a77
a79
u(r, θ) = b3(b?a)
parenleftBig
1? ar
parenrightBig
+ 2a
2b3
3(b5 ?a5)
parenleftbiggr2
a2 ?
a3
r3
parenrightbigg
P2(cosθ)
ua177?a29a179 (1a49)
a26a218a176a219
a151 Laplacea169a174 (2a49)
a44a210
a77
a59a20a21a52a51 (2a49)
Rl(r) (1a49)
a223a169 (2
a49)
Al a177Bl a80a169a174a224 (1a49)
Al a177Bl a80a169a174a225 (1a49)
A0 (1a49)
B0 (1a49)
A2 (1a49)
B2 (1a49)
a77a10 (1
a49)
a148
a45
a209
a69u(r, ?, t) = v(r, t)sin?a27a89v(r, t)a187a188
a147a77
a22
a48
?v
?t ?κ
bracketleftbigg1
r
?
?r
parenleftbigg
r?v?r
parenrightbigg
? vr2
bracketrightbigg
= 0, 0 < r < a,t > 0
vvextendsinglevextendsingler=0a215a23, vvextendsinglevextendsingler=a = 1, t > 0
vvextendsinglevextendsinglet=0 = 0, 0 < r < a
a69v(r, t) = ra + w(r, t)a27a89w(r, t)a187a188
a147a77
a22
a48
?w
?t ?κ
bracketleftbigg1
r
?
?r
parenleftbigg
r?w?r
parenrightbigg
? wr2
bracketrightbigg
= 0, 0 < r < a,t > 0
wvextendsinglevextendsingler=0a215a23, wvextendsinglevextendsingler=a = 0, t > 0
wvextendsinglevextendsinglet=0 = ?ra, 0 < r < a
a20a21a55a22
a48
1
r
d
dr
parenleftbigg
rdR(r)dr
parenrightbigg
+
parenleftbigg
λ? 1r2
parenrightbigg
R(r) = 0
21
R(0)a215a23, R(a) = 0
a80a77
a79
λi =
parenleftBigμ1i
a
parenrightBig2
, Ri(r) = J1
parenleftBigμ1i
a r
parenrightBig
, i = 1, 2, 3, ···
a56a24μ
1i a53J1(x)
a80a226i
a248
a129a27
a87
a180
a58a179w(r, t)a80
a44a210
a77
a79
w(r, t) =
∞summationdisplay
i=1
CiJ1
parenleftBigμ1i
a r
parenrightBig
e?κ(μ1i/a)2t
a221a222a213a252a253
wvextendsinglevextendsinglet=0 =
∞summationdisplay
i=1
CiJ1
parenleftBigμ1i
a r
parenrightBig
= ?ra
a178a179
a190
Ci =
integraldisplay a
0
?raJ1
parenleftBigμ1i
a r
parenrightBig
rdr
integraldisplay a
0
J21
parenleftBigμ1i
a r
parenrightBig
rdr
=
? 1a
parenleftbigg a
μ1i
parenrightbigg3
x2J2(x)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
x=μ1i
x=0
a2
2 J
prime12 (μ1i)
= 2μ
1iJ0(μ1i)
a182a183a57
a22
a48
a80a77
a79
u(r, ?, t) = ra sin? + 2
∞summationdisplay
i=1
1
μ1iJ0(μ1i)J1
parenleftBigμ1i
a r
parenrightBig
e?κ(μ1i/a)2t sin?.
a242a243
a229a218a176
a151?
2 a80a11a227a10 (2
a49)
a228a229a185
a52a51 (2a49)
w(r, t)a80a147a77a22a48 (2a49)
a20a21a55
a177
a20a21a52a51 (2a49)
Ti(t) (1a49)
Ci a80a11a227a10 (2a49)
a223a169 (1
a49)
a49
a192 (2
a49)
a77a10 (1
a49)
a153
a45
a209
a59a230a231a232 x negationslash= xprime a177a233
a169a174a234
d2G(x,xprime)
dx2 + k
2G(x,xprime) = 0
22
G(x, xprime) =
?
??
??
Asinkx + B coskx x < xprime
Ceikx + De?ikx x > xprime
(2a235)
(2a235)
G(x, xprime)vextendsinglevextendsinglex=0 = 0 =? B = 0 (2a235)
Ga236x →∞a247a215a171a189a190a164a206a177a191a237
a192a234 e?iωt
a165 =? D = 0 (2a235)
G(x, xprime)vextendsinglevextendsinglex=xprime? = G(x, xprime)vextendsinglevextendsinglex=xprime+ =? Asinkxprime = Ceikxprime (2a235)
dG(x, xprime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=xprime+
? dG(x, x
prime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=xprime?
= ?1 =? ikCeikxprime ?Akcoskxprime = ?1 (2a235)
=?
?
??
??
A = 1keikxprime x < xprime
C = 1k sinkxprime x > xprime
G(x, xprime) =
?
??
??
1
ke
ikxprime sinkx x < xprime
1
k sinkx
primeeikx x > xprime
(1a235)
(3a235)
(3a235)
a230a231a238 a239xa196Laplacea240a241a233a242
G(x, xprime) equaldotleftright g(p, xprime)
a243
dG(x, xprime)
dx equaldotleftright pg(p, x
prime) (2
a235)
d2G(x, xprime)
dx2 equaldotleftright p
2g(p, xprime)? dG(x, xprime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
(2a235)
a244a245a246a247a174
a240
a234
p2g(p, xprime)? dG(x, x
prime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
+ k2g(p, xprime) = ?e?pxprime (2a235)
g(p, xprime) = 1p2 + k2
braceleftbiggdG(x, xprime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
?e?pxprime
bracerightbigg
(2a235)
a248a249a250
G(x, xprime) = dG(x, x
prime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
1
k sinkxη(x)?
1
k sink(x?x
prime)η(x?xprime) (2
a235)
Ga236x →∞a251a252a253
a189a190
a164
a254a255
a191a237
a192a234 e?iωt
a165
=? dG(x, x
prime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
1
k sinkx?
1
k sink(x?x
prime) ∝ eikx (2
a235)
=? dG(x, x
prime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
?coskxprime = isinkxprime (1a235)
=? dG(x, x
prime)
dx
vextendsinglevextendsingle
vextendsinglevextendsingle
x=0
= coskxprime + isinkxprime = eikxprime (1a235)
a244a245
G(x, xprime) =
??
?
??
1
ke
ikxprime sinkx x < xprime
1
k sinkx
primeeikx x > xprime
(1a235)
23