a0 a1
star a2a3a4a5a6a7a8a9a10 4
a0a1a2 a3 a4 a5 a6 a71
a8
a9a10a11 a12 a13 a14 a15
§3.1 a16 a17 a18 a19
a20a21a22a23a24a20a25a26a27a28a29a30a22a23a31a32C a24a20a26a27a28a29a33a30a34a35a25f(z)
a36C a28a37a38a39a31a40a33a30
C a41a42
a23a43a44n
a45
a34a23a46a44
z0 = A,z1,z2,···,zn = B,
ζk a24zk?1→zk a45
a28a29
a41a42a47
a46a34a48a49a25
nsummationdisplay
k=1
f(ζk)(zk ?zk?1) =
nsummationdisplay
k=1
f(ζk)?zk,
a50a51n→∞a34a52a53max|?z
k| → 0a54
a34a55a49a25a29a56a57a58
a36
a34a59a60ζ
k
a29a61a62
a63a64a34a65a66a55a56a57a67a44a35a25 f(z)
a68
a33a30C a29a22a23a34a69a44
integraldisplay
C
f(z)dz = lim
max|?zk|→0
nsummationdisplay
k=1
f(ζk)?zk. a703.1
a47a71
a20a21a22a23a72a73a28a24a74
a71
a72a21a30a22a23a29a37a75a76a77
integraldisplay
C
f(z)dz =
integraldisplay
C
(u + iv)(dx + idy)
=
integraldisplay
C
(udx?vdy) + i
integraldisplay
C
(vdx + udy).
a78a55a34a79a80C a24a23
a45a81a82
a33a30a34 f(z)a24C a28a29a83a84a35a25a34a65a20a21a22a23
a47
a38a58
a36
a31
a20a21a22a23a29a85a86a87a88a89
1. a79a80a22a23
integraldisplay
C
f1(z)dz,
integraldisplay
C
f2(z)dz, ···,
integraldisplay
C
fn(z)dz a90a58a36a34a65
integraldisplay
C
bracketleftBig
f1(z) + f2(z) +···+ fn(z)
bracketrightBig
dz =
integraldisplay
C
f1(z)dz +
integraldisplay
C
f2(z)dz +··· +
integraldisplay
C
fn(z)dz;
2. a50C = C1 + C2 +···+ Cn a34a65integraldisplay
C1
f(z)dz +
integraldisplay
C2
f(z)dz +··· +
integraldisplay
Cn
f(z)dz =
integraldisplay
C
f(z)dz;
3.
integraldisplay
C?
f(z)dz = ?
integraldisplay
C
f(z)dz a34a91a92C? a93a94C a29a95a96a97
4.
integraldisplay
C
af(z)dz = a
integraldisplay
C
f(z)dz a34a91a92aa44a98a25a97
5.
vextendsinglevextendsingle
vextendsingle
integraldisplay
C
f(z)dz
vextendsinglevextendsingle
vextendsingle ≤
integraldisplay
C
|f(z)||dz|a97
6.
vextendsinglevextendsingle
vextendsingle
integraldisplay
C
f(z)dz
vextendsinglevextendsingle
vextendsingle ≤ Mla34a91a92M a44
vextendsinglevextendsinglef(z)vextendsinglevextendsingle
a36C a28a29a28a99a34la44C a29a100a101a31
a102a103a34a20a21a22a23a29a25a67a104a105a106
§3.1 a3 a4 a5 a6 a72a8
? a107
a22a35a25a34
? a108
a46a109a110a34a111a22a23a29 a112a28a113a57a114a34
? a22a23a115a116a31
a117a106a118a38a29
a47a71a107
a22a35a25a34a51
a108
a46a119a38
a54
a34a117a106a120a121a29a22a23a115a116a34a22a23a67
a47a122
a24a120a121a29a31
a123 3.1
a124
integraldisplay
C
Rezdz a34 C a44 (i) a68
a72a125a1260 → 1 a34a127a26a128a106a129a125 1 → 1 + i a97 (ii)
a68
a129a125a126
0 → ia34a127a26a128a106a72a125 i → 1 + ia97(iii)a68a130
a30 0 → 1 + ia31
a131 a117a106(i)a34
integraldisplay
C
Rezdz =
integraldisplay 1
0
xdx +
integraldisplay 1
0
idy = 12 + i;
a117a106(ii)a34
integraldisplay
C
Rezdz =
integraldisplay 1
0
xdx = 12;
a117a106(iii)a34
integraldisplay
C
Rezdz =
integraldisplay 1
0
(1 + i)tdt = 12(1 + i).
a0a1a2 a3 a4 a5 a6 a73
a8
§3.2 a132a133a134a135a136a137 Cauchy a138a139
Cauchya38a140a141a142a29a24a22a23a67a60a22a23a115a116a143a144a29a64a145a31a60a146a147a29a148a149a37a64a31
a148a150a74a151a148a149a89
?a152a153a154a155a156
a89a157a158a159a160a161a162a163a164a165a166a167a168a169a34a168a169a170a171a172a173a174a175a176a158a159a97
?a177a153a154a155a156
a34a178a179a180a181a182a158a159a31
a703.2 a183a184a185a186a187a188a189a184a185a186a187
a152a153a154a155a156a190 Cauchy a191a192
a79a80a35a25f(z)
a36a193
a83a194a148a149 G a92a195a196a34a65
a68G
a92
a41a197a47a71
a23
a45a81a82
a29a198a77a199a200 C(
a201a202 3.3)a37 contintegraldisplay
C
f(z)dz = 0,
a203a204a29C
a205a206a207
a24Ga29a208a99a31
a703.3 a183a184a185a186a187a209Cauchya210a211
a212 a44a213
a193a214a201
a34a113a27
a36a215a216
a29a217a218a113a219a220a203
a71
a38a140a31a221a222a29a217a218a24 fprime(z)
a36G a92a83a84a223a31
a36
a55a217a218a113
a206a207a224a225 Greena226a227contintegraldisplay
C
bracketleftbigP(x,y)dx + Q(x,y)dybracketrightbig = integraldisplayintegraldisplay
S
parenleftbigg?Q
?x ?
?P
?y
parenrightbigg
dxdy
a106
contintegraldisplay
C
f(z)dz =
contintegraldisplay
C
bracketleftbigudx?vdybracketrightbig+ icontintegraldisplay
C
bracketleftbigvdx + udybracketrightbig,
a223 a228a229f(z)
a230Ga231a232a233a234
a235fprime(z)
a236a230a234
a237fprimeprime(z)
a238a236a230a234z ∈ Ga234
a239a240fprime(z)
a184a241a234
a235a242a243a244a245a246?u/?x,?u/?y,?v/?x
a247?v/?y
a184a241a248 a249a250a2513.5a252
§3.2 a253a254a255a0a1a2 Cauchya3a4
a74
a8
a5a6a28a27a29a198a77a199a200a22a23a7a44a27a22a23
contintegraldisplay
C
parenleftbigudx?vdyparenrightbig = ?integraldisplayintegraldisplay
S
parenleftbigg?v
?x +
?u
?y
parenrightbigg
dxdy,
contintegraldisplay
C
parenleftbigvdx + udyparenrightbig = integraldisplayintegraldisplay
S
parenleftbigg?u
?x ?
?v
?y
parenrightbigg
dxdy.
a8a9Cauchy-Riemann
a10a11
a34a12
a108
a74
a71
a22a23a92a29
a107
a22a35a25a13a44 0a34a14a37
contintegraldisplay
C
f(z)dz = 0. square
a126a106Green
a226a227
a29a15
a124
a34a203a204a16a17a29
a193
a83a194a148a149a34a18a19a24
a47a71
a37a99a148a149a34a111a120a19a24a20a21 ∞a46
a36a22
a29 (a63a99) a148a149a31 a23a24f(z)a157∞a172a25a26a34a27a28∞a172a29a30a171a31a32a33a34a35a36a37a38 0a31
Cauchy a38a140a39a47a71a40a27a41a42a43a195a196a35a25a29a47a71a85a86a44a87a89 a25a26a45a46a157a27a171a25a26a158a159a170a34a47
a172a171a45a46a48a49a50a51a52a53a171a31
? Cauchy-Riemanna10a11
a24a203a151a64a54a29a55a23a56
a227
a34
? Cauchya38a140a65a24a57a29a22a23a56a227a31
a126Cauchya38a140a58a111
a206a207
a53a59a113a27a29a60a142a89
a61a62 a50f(z)
a36a193
a83a194a148a149G a92a195a196a34a65a20a21a22a23
integraldisplay
C
f(z)dz a60a115a116a63a64a31
(a131a63a64a65a190) a66a191a67a68 a69
a103
a36a193
a83a194a148a149a92a195a196a35a25a29a22a23a60a115a116a63a64a34a78a55a34a79a80a119a38
a214
a46z
0
a34a5a70a71a46z a44a21a46a34a65a48a44a22a23a28a57a29a35a25a34
integraldisplay z
z0
f(z)dz = F(z)
a24
a193
a83a194a148a149G
a22
a29
a193
a67a35a25a34a66a44 f(z)a29a120a38a22a23a31
a191a192 3.1 a79a80a35a25f(z)a36a193
a83a194a148a149G
a22
a195a196a34a65
F(z) =
integraldisplay z
z0
f(z)dz
a205a36G a22
a195a196a34a72a59
Fprime(z) = ddz
integraldisplay z
z0
f(z)dz = f(z).
a212 a18a15
a130a73a124a74F(z)a29a75a25a111a206
a31
a703.5
a76a77a78 a79 a80 a81 a82 a835
a84
a44a55a34a32z a24G
a22a47
a46a34z +?z a24a57a29a85a46a34a79
a202 3.5a34a65
F(z) =
integraldisplay z
z0
f(ζ)dζ, F(z +?z) =
integraldisplay z+?z
z0
f(ζ)dζ.
a78a44a22a23a60a115a116a63a64a34a16
a207
?F
?z =
F(z +?z)?F(z)
?z =
1
?z
integraldisplay z+?z
z
f(ζ)dζ.
a126a55
a206
a53
vextendsinglevextendsingle
vextendsinglevextendsingle?F
?z ?f(z)
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
1
?z
integraldisplay z+?z
z
f(ζ)dζ ?f(z)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
=
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
1
?z
integraldisplay z+?z
z
bracketleftbigf(ζ)?f(z)bracketrightbigdζ
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
≤ 1|?z|
integraldisplay z+?z
z
vextendsinglevextendsinglef(ζ)?f(z)vextendsinglevextendsingle·vextendsinglevextendsingledζvextendsinglevextendsingle.
a126a106f(z)a24a83a84a29a34a14a117a106
a41
a118a29 ε > 0a34a58
a36δ > 0a34a52a51|ζ?z| < δa54
a34|f(ζ)?f(z)| < εa34a16
a207vextendsingle
vextendsinglevextendsingle
vextendsingle
?F
?z ?f(z)
vextendsinglevextendsingle
vextendsinglevextendsingle ≤ 1
|?z| ·ε·|?z| = ε,
a111a53
Fprime(z) = lim
?z→0
?F
?z = f(z).
a203a86a219a220a43F(z)
a36G a22a206
a75a34a72a59Fprime(z) = f(z)a31 square
a87a64a65 a79a80a35a25 Φ(z) a29a75a25 Φprime(z) = f(z) a34a65 Φ(z) a66a44 f(z) a29a88a35a25a31a28a27a38a39a29 f(z)
a29a120a38a22a23a86a24f(z)a29
a47a71
a88a35a25a31a117a106a118a38a29
a47a71
a35a25f(z)
a89
a17a34a88a35a25a120a24a90
a47
a29a31
a41a42
a74
a71
a88a35a25a143a144a18a91a92
a47a71
a98a25a31a203a24a78a44a34a79a80 Φ
1(z)
a60Φ
2(z)a90
a24f(z)a29a88a35a25a34a65
Φprime1(z) = f(z), Φprime2(z) = f(z).
a16
a207
a34bracketleftbigΦ
1(z)?Φ2(z)
bracketrightbigprime = 0a34
Φ1(z)?Φ2(z) = C.
a93a200a43
a107
a22a35a25a29a88a35a25a34
a206
a52a20a21a22a23a29a94a95a96a44a213a7a31a32 Φ(z)a44f(z)a29
a47a71
a88a35a25a34a65
f(z)a29a120a38a22a23
F(z) =
integraldisplay z
z0
f(z)dz = Φ(z) + C.
a97a24a34a102a103a37
F(z0) = Φ(z0) + C = 0, C = ?Φ(z0).
a16
a207 integraldisplay
z
z0
f(z)dz = Φ(z)?Φ(z0).
§3.2 a253a254a255a0a1a2 Cauchya3a4
a76
a8
a123 3.2 a94a95a22a23
integraldisplay b
a
zndz a34na44a98a25a31
a131 a51na44a99a103a25
a54
a34zn
a36a100
a26a27a195a196a34 1
n + 1z
n+1 a24a57a29
a47a71
a88a35a25a31a78a55a34a117a106 z a26a27
a28a29
a41a42a47
a217a22a23a115a30a34a13a37
integraldisplay b
a
zndz = 1n + 1bracketleftbigbn+1 ?an+1bracketrightbig.
a51n = ?2,?3,?4,···
a54
a34zn
a36
a120a20a21z = 0a46
a36a22
a29
a41a42a47a71a193
a83a194a148a149
a22
a195a196a34a91a88a35a25
a101
a206
a62a44 1
n + 1z
n+1 a31a78a55a34a101a37
integraldisplay b
a
zndz = 1n + 1bracketleftbigbn+1 ?an+1bracketrightbig.
a97a126a106a113
a47a102a103 3a29a88a78a34a55a104a80a117a106a120a20a21 z = 0a46a36a22
a29
a41a42
a148a149a13a105a58a31
a51n = ?1
a54
a34z?1
a205
a24
a36
a120a20a21z = 0
a36a22
a29
a41a47
a148a149
a22
a195a196a34a97a91a88a35a25
a224
a44 lnza31a78a55a34
a36
a120a20a21z = 0a29
a41a47a193
a83a194a148a149
a22
a34
integraldisplay b
a
dz
z = lnb?lna.
a106a15a44a150a107
a42
a34
a36a47a71a193
a83a194a148a149
a22
a34a28a27a29a22a23a51a103a60a115a116a63a64a31a97a24 a108a175a37a109a171a165a181a182
a158a159a34a109a110a171a111a172a112a113a172a33a114a115a116a117a37a109a171a31a32a48a31a39a94a95a29a118
a11a119
a34a203a204a29a88a35a25a24a120a67a35a25a34
a78a55a22a23a67a60a126aa21a7a59ba29
a10a227
a37a64a31a51a57a121
a36
a120a21z = 0a29
a47a71a193
a83a194a148a149
a22a54
a34a86a24a40 lnz
a57a121
a36a122a47a71a193
a67a23a123
a22
a34a14a22a23a67 lnb?lnaa24a90
a47a124
a38a29a31a5a117a106a120a121a29
a193
a83a194a148a149a34a86
a206
a19
a117
a224
a106 lnz a29a120a121
a193
a67a23a123a34a78a5a22a23a67
a205
a86
a206
a19a120a121a31
a0a1a2 a3 a4 a5 a6 a77
a8
§3.3 a16a133a134a135a136a137 Cauchy a138a139
a177a153a154a155a156a190 Cauchy a191a192
a79a80f(z)a24a20a83a194a148a149 G a92a29
a193
a67a195a196a35a25a34a65
contintegraldisplay
C0
f(z)dz =
nsummationdisplay
i=1
contintegraldisplay
Ci
f(z)dz,
a91a92C
0,C1,C2,···,Cn
a24a125a105a20a83a194a148a149Ga29a208a99a29a126
a71
a23
a45a81a82
a198a77a33a30a34C
1,C2,···,Cn a90
a20
a21
a36C0 a29a22a127
a34a5a59a16a37a29a22a23a115a116a128a96a91a121a31
a703.6 a189a184a185a186a187a209Cauchya210a211
a212 a79
a2023.6a34a120a129a62C0, C1, C2, ···, Cn a13a44a95a54a130a10
a96a31a48a131a51a29a43a30a40C
1, C2, ···, Cn
a49
C0 a83a104a214a89
a34a39a5a53a59
a47a71a193
a83a194a148a149Gprime a34f(z)
a36a193
a83a194a148a149Gprime
a22
a24a195a196a29a34a78a5
a206a207a224a225a193
a83a194a148a149a29 Cauchya38a140a34
contintegraldisplay
C0
f(z)dz +
integraldisplay b1
a1
f(z)dz +
contintegraldisplay
C?1
f(z)dz +
integraldisplay a1
b1
f(z)dz
+
integraldisplay b2
a2
f(z)dz +
contintegraldisplay
C?2
f(z)dz +
integraldisplay a2
b2
f(z)dz +···
+
integraldisplay bn
an
f(z)dz +
contintegraldisplay
C?n
f(z)dz +
integraldisplay an
bn
f(z)dz = 0.
a126a106f(z)
a36Gprime a22a193
a67a34a14
a68
a121
a47
a43a30a74a132a29a22a23a67a133a91a134a135a34
integraldisplay bi
ai
f(z)dz +
integraldisplay ai
bi
f(z)dz = 0.
a16
a207 contintegraldisplay
C0
f(z)dz +
nsummationdisplay
i=1
contintegraldisplay
C?i
f(z)dz = 0, (3.1)
contintegraldisplay
C0
f(z)dz = ?
nsummationdisplay
i=1
contintegraldisplay
C?i
f(z)dz =
nsummationdisplay
i=1
contintegraldisplay
Ci
f(z)dz. square (3.2)
a123 3.3 a94a95
contintegraldisplay
C
zndz a67a34na44a98a25a34C a29a128a96a44a95a54a130a10
a96a31
§3.3 a3a254a255a0a1a2 Cauchya3a4
a78
a8
a131 a51na44a99a103a25
a54
a34a102a103a34a136a137
a193
a83a194a148a149a29 Cauchya38a140
contintegraldisplay
C
zndz = 0.
a51na44a138a98a25
a54
a34a79a80 C
a22
a120a21z = 0a34a65
a205
a37
contintegraldisplay
C
zndz = 0.
a79a80C
a22
a21a37z = 0a34a65a136a20a83a194a148a149a29 Cauchya38a140a34a37
contintegraldisplay
C
zndz =
contintegraldisplay
|z|=1
zndz
=
integraldisplay 2pi
0
parenleftbigeiθparenrightbign eiθidθ = integraldisplay 2pi
0
ei(n+1)θidθ
=
?
?
?
2pii, n = ?1;
0, n = ?2,?3,?4,···.
a139a104a28a27a29a104a80a34a86a37
contintegraldisplay
C
zndz =
?
?
?
2pii, n = ?1, a59Ca22
a21a37z = 0;
0, a91a140a141a56.
a142a143a34
a215a47a122a144
a34
contintegraldisplay
C
(z ?a)ndz =
?
?
?
2pii, n = ?1, a59Ca22
a21a37z = a;
0, a91a140a141a56.
a0a1a2 a3 a4 a5 a6 a79
a8
§3.4 a145a146a147a148a137a149a139
a150
a192 3.1 a79a80a35a25f(z)a36z = aa46a29a85a149a22
a83a84a34a72a59a51 θ
1≤ arg(z?a)≤ θ2, |z?a| → 0
a54
a34(z ?a)f(z)
a47a151a144a152a153
a106 ka34a65
lim
δ→0
integraldisplay
Cδ
f(z)dz = ik(θ2 ?θ1),
a91a92C
δ
a24
a207z = aa44a154a155a34δ a44a156a116a34a157a158a44θ2 ?θ1 a29a154a159a34|z ?a| = δ, θ1 ≤ arg(z ?a) ≤ θ2 a34
a201a2023.7
a31
a703.7
a212 a78a44
integraldisplay
Cδ
dz
z ?a = i(θ2 ?θ1),
a16
a207 vextendsingle
vextendsinglevextendsingle
vextendsingle
integraldisplay
Cδ
f(z)dz ?ik(θ2 ?θ1)
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
Cδ
bracketleftbigg
f(z)? kz ?a
bracketrightbigg
dz
vextendsinglevextendsingle
vextendsinglevextendsingle
≤
integraldisplay
Cδ
|(z ?a)f(z)?k| |dz||z ?a|.
a126a106a51θ
1 ≤ arg(z ?a) ≤ θ2
a34z ?a → 0
a54
a34(z ?a)f(z)
a47a151a144a152a153
a106ka34a203
a42a160a161?ε > 0a34?(a60
arg(z ?a)a63a64a29) r(ε) > 0a34a52a51|(z ?a)| = δ < ra54
a34|(z ?a)f(z)?k| < εa31a16
a207vextendsingle
vextendsinglevextendsingle
vextendsingle
integraldisplay
Cδ
f(z)dz ?ik(θ2 ?θ1)
vextendsinglevextendsingle
vextendsinglevextendsingle ≤ ε(θ2 ?θ1),
a111
lim
δ→0
integraldisplay
Cδ
f(z)dz = ik(θ2 ?θ1). square
a150
a192 3.2 a32f(z)a36∞a46a29a85a149a22
a83a84a34a51θ
1 ≤ argz ≤ θ2
a34z → ∞
a54
a34zf(z)
a47a151a144a152
a153
a106K a34a65
lim
R→∞
integraldisplay
CR
f(z)dz = iK(θ2 ?θ1),
a91a92C
R
a24
a207
a88a46a44a154a155a34Ra44a156a116a162a157a158a44θ
2?θ1
a29a154a159a34|z| = R, θ
1 ≤ argz ≤ θ2 (a201a2023.8)
a31
§3.4 a163a164a165a166a2a167a4
a710
a8
a703.8
a212 a55a168a140a29a219a220a49a150
a192 3.1 a29a219a220a91a169a31a78a44
integraldisplay
CR
dz
z = i
parenleftbigθ
2 ?θ1
parenrightbiga34a16
a207
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
CR
f(z)dz ?iK(θ2 ?θ1)
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
CR
bracketleftbigg
f(z)? Kz
bracketrightbigg
dz
vextendsinglevextendsingle
vextendsinglevextendsingle
=
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
CR
bracketleftbigzf(z)?Kbracketrightbigdz
z
vextendsinglevextendsingle
vextendsinglevextendsingle ≤
integraldisplay
CR
vextendsinglevextendsinglezf(z)?Kvextendsinglevextendsingle· |dz|
|z| .
a126a106a51θ
1 ≤ argz ≤ θ2
a34z → ∞
a54
a34zf(z)
a47a151a144a152a153
a106K a34a203
a42a160a161?ε > 0
a34?(a60 argz a63a64
a29)M(ε) > 0a34a52a51|z| = R > M
a54
a34|zf(z)?K| < εa31a16
a207vextendsingle
vextendsinglevextendsingle
vextendsingle
integraldisplay
CR
f(z)dz ?iKparenleftbigθ2 ?θ1parenrightbig
vextendsinglevextendsingle
vextendsinglevextendsingle ≤ ε(θ2 ?θ1),
a111
lim
R→∞
integraldisplay
CR
f(z)dz = iKparenleftbigθ2 ?θ1parenrightbig. square
a0a1a2 a3 a4 a5 a6 a711
a8
§3.5 Cauchy a18a19a170a171
a172a173
a155a156a190 Cauchy a67a68a174a175
a32f(z) a24a148a149 G a92a29
a193
a67a195a196a35a25a34 Ga29a208a99C a24a23
a45
a81a82
a33a30a34aa44G
a22a47
a46a34a65
f(a) = 12pii
contintegraldisplay
C
f(z)
z ?adz,
a91a92a22a23a115a30
a68C a29a176a96a31
a703.9 a177a178a186a187a209Cauchya179a180a181a182
a212
a36 G a22
a48a154|z ? a| < r(
a201a202 3.9 a34a183a184a154a185 |z ? a| = r a36 G a22) a34a65a8a9a20a83a194a148a149a29
Cauchya38a140a34a37 contintegraldisplay
C
f(z)
z ?adz =
contintegraldisplay
|z?a|=r
f(z)
z ?adz,
a55a104a80
a224
a60ra29a96a186a63a64a34a14
a206
a70 r → 0a31a78a44
limz→a(z ?a) f(z)z ?a = f(a),
a126a28
a102
a29a150
a192 3.1 a34a86a219a53
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a). square
a63a99a148a149a29 Cauchya22a23
a226a227
a117a106a63a99a148a149a34a106a15a187a32 f(z)
a36
a213
a193
a198a77a199a200 C a28a147C
a188 (a20a189a63a190a191a46) a193
a67a195a196a31a192a193
a144
a34a194
a36
a94a95
1
2pii
contintegraldisplay
C
f(z)
z ?adz,
a91a92aa44C
a188a47
a46a34a22a23a115a30C a29a128a96a24a195
a54a130a10
a96a34a111a196a63a190a191a46a29a176a96a34a79
a202 3.10a31
a703.10 a197a178a186a187a209Cauchya179a180a181a182
§3.5 Cauchya5a6a198a199 a712a8
a36C a188
a127a48
a47a71a207
a88a46a44a154a155a34Ra44a156a116a29a96a154C
R
a34a203a200a34a117a106C a49C
R
a16a20a199a29a20a83a194
a148a149a34a8a9a37a99a148a149a29 Cauchya22a23
a226a227
a34a37
1
2pii
contintegraldisplay
CR
f(z)
z ?adz +
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a),
a203a204a22a23a115a30C
R
a29a128a96a24a95
a54a130a10
a96a31a18a15R
a201a202
a96a34a203
a71
a104a80a51a103a86a60Ra29a203a204a96a186a63a64a34
a106a24a34
a206
a70R → ∞a34a5a53a59
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a)? limR→∞
bracketleftbigg 1
2pii
contintegraldisplay
CR
f(z)
z ?adz
bracketrightbigg
.
a44a43a94a95
a68
a96a154C
R
a29a22a23a29a56a57a67a34a106a15
a225
a59 3.4
a102
a92a29a150
a192 3.2 a34
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a)?K,
K = limz→∞z · f(z)z ?a = f(∞).
a44a150a51K = 0
a54
a34a86a53a59a89
a205a173
a155a156a190 Cauchy a67a68a174a175
a89a79a80 f(z)
a36
a213
a193
a198a77a199a200 C a28a147 C
a188
a195a196a34a59a51 z → ∞
a54
a34f(z)
a47a151a144a152
a106 0a34a65 Cauchya22a23
a226a227
f(a) = 12pii
contintegraldisplay
C
f(z)
z ?adz
a101a103a105a58a34a55a206aa44C
a188a47
a46a34a22a23a115a30C a44a195
a54a130a10
a96a31
a0a1a2 a3 a4 a5 a6 a713
a8
§3.6 a207a208a209a210a137a211a212a213a210
a39Cauchya22a23
a226a227
a34
a206a207
a60a214
a74a47a71a215
a15a104a142a89a79a80f(z)
a36G a92a195a196a34a65a36G a22f(z)a29a41
a197a216
a75a25f(n)(z)a13a58
a36
a34a72a59
f(n)(z) = n!2pii
contintegraldisplay
C
f(ζ)
(ζ ?z)n+1dζ,
a91a92C a24Ga29a176a96a208a99a34z a44G
a22a41a42a47
a46a34a79
a202 3.11a31
a703.11 a217a218
a245a246
a181a182
a212 a219a220
a124f
prime(z)a31a78a44
f(z + h)?f(z)
h =
1
2pii
1
h
contintegraldisplay
C
bracketleftbigg f(ζ)
ζ ?z ?h ?
f(ζ)
ζ ?z
bracketrightbigg
dζ
= 12pii
contintegraldisplay
C
f(ζ)
(ζ ?z ?h)(ζ ?z)dζ,
a62a56a57h → 0a34a221
a108
a111a44fprime(z)a34a5a12
a108a107
a22a35a25a29a56a57a44f(ζ)/(ζ ?z)2 a31a44a43a219a220
a36
a22a23a222a113
a124
a56a57a77a223a34a120a129a224a225
contintegraldisplay
C
f(ζ)dζ
(ζ ?z ?h)(ζ ?z) ?
contintegraldisplay
C
f(ζ)dζ
(ζ ?z)2 = h
contintegraldisplay
C
f(ζ)dζ
(ζ ?z ?h)(ζ ?z)2.
a126a106f(ζ)
a36C a28a83a84a34a14a36C a28a37|f(ζ)| ≤ M a34a32za59C a29a226a227a228a229a44δa34la44C a29a100a101a34a65a37vextendsingle
vextendsinglevextendsingle
vextendsingle
contintegraldisplay
C
f(ζ)
(ζ ?z ?h)(ζ ?z)dζ ?
contintegraldisplay
C
f(ζ)
(ζ ?z)2dζ
vextendsinglevextendsingle
vextendsinglevextendsingle ≤ |h|· Ml
δ2(δ ?|h|) → 0,
a78a55a34a22a23a222a113
a124
a56a57a77a223a34
fprime(z) = 12pii
contintegraldisplay
C
f(ζ)
(ζ ?z)2dζ.
a121a200a34
a206a207a124a74
fprimeprime(z) = lim
h→0
fprime(z + h)?fprime(z)
h = limh→0
1
2pii
1
h
contintegraldisplay
C
bracketleftbigg f(ζ)
(ζ ?z ?h)2 ?
f(ζ)
(ζ ?z)2
bracketrightbigg
dζ
= lim
h→0
1
2pii
contintegraldisplay
C
2ζ ?2z ?h
(ζ ?z ?h)2(ζ ?z)2f(ζ)dζ =
2!
2pii
contintegraldisplay
C
f(ζ)
(ζ ?z)3dζ.
a79a55a230a84a34a111
a206a124a74 f(n)(z)a31 square
star a203a71
a104a80a17a220a34
a47a71
a20a21a35a25a34a18a15
a36a47a71
a148a149a92
a47a216
a75a25a206a206a58
a36 (a231a232
a49a158a159a170a171a25a26
a45a46) a34a65a57a29
a41a197a216
a75a25
a90
a58
a36
a34a72a59
a90
a24a203
a71
a148a149
a22
a29a195a196a35a25a31
§3.5 Cauchya5a6a198a199 §3.6 a233a234a235a236a2a237a238a239a236
a714
a8
star a36
a72a21a35a25a92a72a240a79a55a31a241a242a72a120a19a126fprime(x) a29a58
a36
a60a214
a74fprimeprime(x) a29a58a36
a31
star a20a21a35a25a92f(z) a36a47
a148a149a92a206a206
a206
a75 (a111a195a196) a24
a47a71a243a244
a29a15
a124
a31a72a21a35a25a92fprime(x) a29a58
a36
a18a20a21a51 x
a36
a25a125a28 (
a47
a38a148a144
a22) a21a7a54
a117f(x) a29a15
a124
a34a5a20a21a35a25a92fprime(z) a29a58
a36
a65
a20a21a43
a36a245a246
a26a27a148a149a28a117 f(z)a29a15
a124
a31
a0a1a2 a3 a4 a5 a6 a715
a8
§3.7 Cauchy a247a18a19a248a249a250a251a18a19a137a207a208a252
a36
a28
a47a102
a64a106a195a196a35a25
a244a216
a75a25
a226a227
a29a219a220a118
a11
a92a34f(z)a29a195a196a87a18a24a204a194
a36
a89 (1) f(z)
a206
a225 Cauchya22a23a226a227
a93a94
a97 (2)f(z)
a36C a28a83a84a31a78a55a34a215
a20a28a27a29a253a254a34a86
a206a207
a219a220a89
a36a47
a217a23
a45a81a82
a29 (a198a77a142a120a198a77) a33a30C a28a83a84a29a35a25φ(ζ) a16a125a105a29a22a23
f(z) = 12pii
integraldisplay
C
φ(ζ)
ζ ?zdζ
(a66a44Cauchya255a67a68) a24a33a30a188
a46z a29a195a196a35a25a34fprime(z)
a206
a194a118a22a23a222a113
a124
a75a5a53a59a34
f(p)(z) = p!2pii
integraldisplay
C
φ(ζ)
(ζ ?z)p+1dζ.
a123 3.4 a94a95a22a23
f(z) = 12pii
contintegraldisplay
|ζ|=1
ζ?
ζ ?zdζ, |z| negationslash= 1.
a131 a203a24
a47a71 Cauchya0
a22a23a31a78a44
a36|ζ| = 1a28ζ? = 1/ζ a34a14
f(z) = 12pii
contintegraldisplay
|ζ|=1
1
ζ(ζ ?z)dζ.
a51|z| > 1
a54
a34a55a22a23
a206a207a225 Cauchya22a23a226a227
a94a95a34
f(z) = 12pii
contintegraldisplay
|ζ|=1
1
ζ
bracketleftbigg 1
ζ ?z
bracketrightbigg
dζ = ?1z.
a510 < |z| < 1
a54
a34
f(z) = 12pii
contintegraldisplay
|ζ|=1
1
z
bracketleftbigg 1
ζ ?z ?
1
ζ
bracketrightbigg
dζ = 0.
a1a2
a119a74
a34a55a104a80a117a106 z = 0a101a105a58a31a3a77
a207
a28a104a80a34a86a37
f(z) = 12pii
contintegraldisplay
|ζ|=1
ζ?
ζ ?zdζ =
?
?
?
?1z, |z| > 1,
0, |z| < 1.
a126a55
a206a201
a34f(z)
a36|z| negationslash= 1a206a195a196a34a4a5ζ? a36a100
a26a27a120a195a196a31
a6
a225Cauchya0
a22a23a34a86
a206a207
a60
a74a7a8a9a67a68a190
a131a63a10a31
a191a192 3.2 a32
1. f(t,z)a49ta11z a171a181a12a45a46a34t ∈ [a,b]a34z ∈ Ga34
2. a108a175[a,b]a13
a171a162a163ta48a34f(t,z)a49G
a13
a171a165a48a25a26a45a46a34
a65F(z) =
integraldisplay b
a
f(t,z)dta36G a22
a24a195a196a29a34a59
Fprime(z) =
integraldisplay b
a
?f(t,z)
?z dt.
a212 a78a44f(t,z)
a36Ga28a195a196a34a14a117a106G a22
a29
a41a197a47
a46z a34Cauchya22a23
a226a227
a105a58a34
f(t,z) = 12pii
contintegraldisplay
C
f(t,ζ)
ζ ?z dζ.
§3.7 Cauchya14
a5a6a15a16a17a18a19a20
a2a233a234a21§3.6 a233a234a235a236a2a237a238a239a236 a2216a23
a24a25F(z)
a26a27a28a29a30a31a32a33a34a35a36 (a37a38f(t,z)a39a40) a29a41
F(z) =
integraldisplay b
a
dt
2pii
contintegraldisplay
C
f(t,ζ)
ζ ?z dζ =
1
2pii
contintegraldisplay
C
1
ζ ?z
bracketleftBiggintegraldisplay b
a
f(t,ζ)dt
bracketrightBigg
dζ.
a42a43a44a45 Cauchy
a46a33a34a29
integraldisplay b
a
f(t,z)dta39a40a29a47F(z)a38G a48a26a49a50a51a52a29a53
Fprime(z) = 12pii
contintegraldisplay
C
1
(ζ ?z)2
bracketleftBiggintegraldisplay b
a
f(t,ζ)dt
bracketrightBigg
dζ
=
integraldisplay b
a
bracketleftbigg 1
2pii
contintegraldisplay
C
f(t,ζ)
(ζ ?z)2dζ
bracketrightbigg
dt =
integraldisplay b
a
?f(t,z)
?z dt. square
a54a55
a29
a42a45a56a57a58a59a60a61
integraldisplay
C
f(t,z)dta62
a42a63a64a65a66a67C a43
a34a68a69a70a71a72a29
a65 t
a73C a74a75a76a29
z ∈ Ga63a29f(t,z)a43 ta77z a26a39a40a51a52a62a78a79a26a80a81a82a74a83a84a85a62