Green
a0 a1
star a2a3a4a5a6a7a8a9a10 6
star a11a9 Green a12a13a14a15 (§20.5 a16 §20.6) a17
a18
a6a19a20
1 Green…? { 11
1 Green…? {{
31 /–…?0¥§fi?— >LGreen…?§? ~ '' §Green
…? ‰‰′!??5 9 ?{'
UY? {K§? ' §‰)flKGreen…? Vg!??5 –
9~^ ?{'
G~ '' §Green…? §A k /– …?0@ '
F Green1 ?“(‰{?Green?“)
ZZZ
V
h
u(r)r2v(r)?v(r)r2u(r)
i
dr=
ZZ
§
h
urv ?vru
i
¢d ;
¥f(r) · f(x;y;z); dr= dxdydz; §·V >.?§? 5‰ { '
x20.1 Green…? Vg 12
x20.1 Green…? Vg
k ?>| ~f'
3?. m¥k ‰ > ' §> ‰(r)'? §3 I r0 = (x0;y0;z0)
N dr0S > = ‰(r0)dr0§§3 mr= (x;y;z): >?·
1
4…"0
‰(r0)
jr?r0jdr
0;
>?U\ n§r m¥ > ) >?U\ 5§ 3r: o>?
`(r) = 14…"
0
ZZZ ‰(r0)
jr?r0jdr
0:
? (J‘?§ :> 3 m >?' §@o§ˇL> '
U\§ – ??> ' >>?'
?? { L·|^ '' § 5555 '
FXJ·k. m§ K E, –r mS > ? ' '
Fdu>.^ §3>.? ?k ‰ ( ‰ 4 ) a)?> ' §
I ? ?> ? ' '
F /(‰(k. mS):> >?§ I ‰? >.^ '
3k. m /e§flK · X ˇL(? >.^ e ):> >? U\§ ?
?> ' ??>.^ >?' ? ·‘§ ^‰)flK
r2G(r;r0) = ? 1"
0
–(r?r0); r;r0 2 V
? >.^
)G(r;r0)U\
r2u(r) = ? 1"
0
‰(r); r2 V
uflfl§ = f(§)
)u(r)§=ru(r)^‰(r); f(§)–9G(r;r0)L? 5'
d§? G(r;r0) u(r) v §'O?–u(r) G(r;r0)§ ~§23 mVS
¨'§=
ZZZ
V
£u(r)r2G(r;r0)?G(r;r0)r2u(r)?dr
= ? 1"
0
ZZZ
V
£u(r)–(r?r0)?G(r;r0)‰(r)?dr
= ? 1"
0
"
u(r0)?
ZZZ
V
G(r;r0)‰(r)dr
#
:
x20.1 Green…? Vg 13
Green?“§ – “ N¨'z ?¨'§ZZ
§
£u(r)rG(r;r0)?G(r;r0)ru(r)?¢d :
?L£ ! n§ k
u(r0) =
ZZZ
V
G(r;r0)‰(r)dr
?"0
ZZ
§
£u(r)rG(r;r0)?G(r;r0)ru(r)?¢d :
3 ? ?¨'¥§
F1 u(r)3>.?§ ? d>.^ §·fi ?
G(r;r0) d‰)flK? § § F rG(r;r0)9 3>.? ? ,
??
F1 ¥§ru(r)3>.? ? §
?–§ U ru(r)^‰(r); f(§) –9G(r;r0)L? 5§7L?G(r;r0)\ g>.
^
G(r;r0)flfl§ = 0:
u·§
u(r0) =
ZZZ
V
G(r;r0)‰(r)dr?"0
ZZ
§
f(§)rG(r;r0)flfl§ ¢d ;
‰ rr r0? e§
u(r) =
ZZZ
V0
G(r0;r)‰(r0)dr0 ?"0
ZZ
§0
f(§0)r0G(r0;r)flfl§0 ¢d 0
=
ZZZ
V0
G(r0;r)‰(r0)dr0 ?"0
ZZ
§0
f(§0) @G(r
0;r)
@n0
flfl
flfl
§0
d§0;
¥ r0 @=@n0L??gC r0 ?§V0 §0 · 5 m? § >.?§ L·
r§ IC U? r0'
?
F G(r;r0)3r=r0: oY§ UA^Green?“? ? (J·? (”
F ? " § – G(r;r0)? v §?U
r2Gn(r;r0) = ? 1"
0
–n(r?r0); r;r0 2 V:
m > …?–n(r?r0)·v — oY…?§3r0NC ‰” S?w 0§
o> 1 ' n !1 –n(r?r0) ! –(r?r0)'
? ? –A^Green?“'
? ?E ? {§, 2-n !1'
x20.1 Green…? Vg 14
F \–…? —?TT 3u ??4 L§§TT 3u –r– …? ?oY…?
5?n'
Fˇd§ ? (J· §· ( '
F, ? {·r:> ?3 r0: NC N¨§3? # m
? ¥A^Green?“(7L5?§y3 >.? 5 § § k3r0:? .
?)§, 2-? N¨“u0'
– ˇL?>| ¢~ \ Poisson §31 a>.^ e({?Poisson §
11 > flK) Green…?'
{ §?¢Green…? · ::>> 3 g>.^ e >>?'
?u ?a. >.^ § KK –aq/? '
l?? ‘§ ? m(?‰flK) ' §(Laplace §, Poisson §, Helmholtz
§¢¢¢¢¢¢)3 ‰>.^ e Green…? –‰′ Aˇ ‰)flK )
? § 5‰)flK § § · g U –…?(: )?
? ?a. g>.^ '
·§3, Aˇ /e§? ‰′ Green…? U?)'
~X?u ? Poisson §‰)flK§e>.^ U
@u(r)
@n
flfl
fl
§
= f(§);
KU ? ? §Green…?G(r;r0)3>.? 7L v g 1 a>.^
@G(r;r0)
@n
flfl
fl
§
= 0: (#)
3Green?“¥-u(r) = 1; v(r) = G(r;r0)§ATk
ZZZ
V
r2G(r;r0)dr=
ZZ
§
rG(r;r0)¢d =
ZZ
§
@G(r;r0)
@n d§;
§¨'§ ZZZ
V
r2G(r;r0)dr= ? 1"
0
:
? §Green…?G(r;r0)3>.? ?¨'7L v(Gauss‰n)
ZZ
§
@G(r;r0)
@n d§ = ?
1
"0 6= 0:
w, >.^ (#)g?'?‘?§3 g 1 a>.^ (#)e§ § ‰?)§ ?{
‘§? Green…? ‰ 3'3?? /e§I ?2′ Green…?'
x20.2 ?‰flKGreen…? 5 15
x20.2 ?‰flKGreen…? 5
? ?‰flK Green…?Vg § I ? § 5 Green…?3: N
C 1 –9Green…? ??5'
1. Green…?3: NC 1
E,^?>| 5£aPoisson §1 > flK Green…?'l ! '
–w §3 mV¥ :> §7, 3>.? ) ‰ a)(?)> ' §l ?
>.?? ?' >. / §q? k '> 6 ‰6\§? >.? >?
/ ( 0)'ˇd§?‰Green…? ‰)flKq – d(3VS d)/ ??. m¥
Poisson §
r2G(r;r0) = ? 1"
0
£–(r?r0)+ (§)?;
¥ (§)·>.?§ a)?> ' A/§(‰′3VS )Green…?G(r;r0) AT
·? '> >? U\ :> –(r?r0) >?G0(r;r0) >.? a)> (§)
>?g(r;r0)§
r2G0(r;r0) = ? 1"
0
–(r?r0);
G0(r;r0) = 14…"
0
1
jr?r0j
?–§G0(r;r0)3r=r0 :· oY '
r2g(r;r0) = ? 1"
0
(§):
ˇ a)> (§) ' 3??§ §?–§g(r;r0)9 ?3??§
(AO·§3VS)·????oY '
r? 'n 5§ k
G(r;r0) = 14…"
0
1
jr?r0j +g(r;r
0):
?u1na>.^ § k (J' Lg(r;r0) NL “? k? '
?u ?a. ?‰flK§~XHelmholtz § Green…?§
r2 ?G(r;r0)+k2 ?G(r;r0) = ? 1"
0
–(r?r0); r;r0 2 V;
?G(r;r0)flfl
§ = 0:
y?§ Green…? k Poisson § Green…? oY5 '
r=r0: § ?G(r;r0)3VS·????oY '-
?g(r;r0) = ?G(r;r0)?G(r;r0);
x20.2 ?‰flKGreen…? 5 16
G(r;r0)· APoisson § Green…?'d ?G(r;r0) G(r;r0) ? v ‰)fl
K§ –
r2?g(r;r0)+k2?g(r;r0) = k2G(r;r0); r;r0 2 V;
?g(r;r0)flfl§ = 0:
d u? § m G(r;r0) 3r = r0 :·–1=jr?r0j /“u § ?
–, ?g(r;r0) 3T: ‰oY(?Kr2?g(r;r0) ? y– …?)§? ‘? ?G(r;r0)
G(r;r0) §3r =r0 : ·–1=jr?r0j /“u 'fl¢ §le
! ? §3r=r0 :NC§ ‰k
?G(r;r0) ? 1
4…"0
cos(kjr?r0j)
jr?r0j :
? n m¥Green…?3: ? 1 § m¥Green…? '
? m¥ Green…?·??oY § § ? oY'
? ?·N·n) §ˇ /: 0 5 ? § m¥ : ¢S ·n m
¥ ? '
? J § m¥ Green…? ATLy 1 '
?u m¥ Poisson §1 > flK§§ Green…?G(x;y;x0;y0)§·‰)flK
h @2
@x2 +
@2
@y2
i
G(x;y;x0;y0) = ? 1"
0
–(x?x0)–(y ?y0); (x;y);(x0;y0) 2 S;
G(x;y;x0;y0)flflC = 0
)§ ¥C·??? S >.'N·? §
G(x;y;x0;y0) = ? 12…"
0
ln
p
(x?x0)2 +(y ?y0)2 +g(x;y;x0;y0);
¥1 · :> 3?. m¥ >?( –\ ~?§ ?u>?":
)§3/: 0(¢S ·n m¥ )–(x ? x0)–(y ? y0)?·??u ?1
g(x;y;x0;y0)·>. a)> ) >?§3SS??oY'
2. Green…? ??5
k ec? )“
u(r) =
ZZZ
V0
G(r0;r)‰(r0)dr0 ?"0
ZZ
§0
f(§0)r0G(r0;r)flfl§0 ¢d 0:
? (J3 n?′ k?) ? 3m N¨'¥§G(r0;r) Lr?
:> 3r0? >?§§? 3* :r0? > ‰(r0)dr0§??* :¨'§
% r? >>?
x20.2 ?‰flKGreen…? 5 17
?? flK £ 9 Green…? ??5'ˇ §XJ ?. m
Green…?@ §’X“
G(r0;r) = G(r;r0) (#)
?? {§@o§ “ UU ?
u(r) =
ZZZ
V0
G(r;r0)‰(r0)dr0 ?"0
ZZ
§0
f(§0)r0G(r;r0)flfl§0 ¢d 0;
N¨' n?′ '1 ?¨' , ·5g>.? a)
?> z'
y?(#)“' 1 ¥ { §2 ?G(r;r00)§§ v ‰)flK , ·
r2G(r;r00) = ? 1"
0
–(r?r00); r;r00 2 V;
G(r;r00)flfl§ = 0:
§'O?–G(r;r00) G(r;r0)§ ~§, 3? VS¨'§
ZZZ
V
£G(r;r00)r2G(r;r0)?G(r;r0)r2G(r;r00)?dr
= ? 1"
0
ZZZ
V
£G(r;r00)–(r?r0)?G(r;r0)–(r?r00)?dr
= ? 1"
0
£G(r0;r00)?G(r00;r0)?:
Green?“§ “ N¨'z ?¨'§ k
G(r0;r00)?G(r00;r0)
= ?"0
ZZ
§
£G(r;r00)rG(r;r0)?G(r;r0)rG(r;r00)?¢d :
\>.^ §?= m ?¨' 0'? y?
G(r0;r00) = G(r00;r0);
r00U r§? ·(#)“'
XJ·1na>.^ § ? ( E, ('
?u ?a. ?‰flK§§ Green…?·?E,k??’X(#)§I N?
'l K ‘§? ?G(r;r0) G(r0;r) · § )§‰ ‘§ §3C
r r0e· C '
x20.3 n ?. mHelmholtz § Green…? 18
x20.3 n ?. mHelmholtz § Green…?
?n ?. m¥Helmholtz § Green…?§=3n ?. m¥?) §
r2G(r;r0)+k2G(r;r0) = ? 1"
0
–(r?r0); r;r0 2 V:
’u?? ? >.^ § ?2? '
? §· g §§ˇd§ –U ?) g § IO {§
Fk? § A)§ § gz?
F G(r;r0)U A gflK …?—m'
? ? {§AO·1 ? {§ KK vk o(J§?p N 0 '
F?q· Aˇ g § 3r=r0:§ g 0'
F §du?·3?. m§ –? /S Ie§–?'u Laplace ? C
5§?flK ?' {z'
?k I?£§
? = x?x0; · = y?y0; ? = z ?z0;
= :> ?3: # IX :'-G(r;r0) = g(?;·;?)§u·§g(?;·;?) v §
r2?;·;?g(?;·;?)+k2g(?;·;?) = ? 1"
0
–(?)–(·)–(?);
¥
r2?;·;? · @
2
@?2 +
@2
@·2 +
@2
@?2
·– I?;·;? gC Laplace ?'N·w §C §·^= C ,
g(?;·;?) ·R = p?2 +·2 +?2 …?, g(?;·;?) = f(R). ˇd§XJ IX(?;·;?)
= ¥ IX§K § C R 6= 0:? g §
1
R2
d
dR
h
R2df(R)dR
i
+k2f(R) = 0
( ˇ·33R = 0: 3 ?)–9R = 0:? >.^ (3R = 0:?k :>
)'d §·" ¥Bessel §§§ ˇ)·
f(R) = A(k)e
ikR
R +B(k)
e?ikR
R :
R = 0 ?? ? >.^ ‰ ~?A(k) B(k)'
XJ C f(R) = w(R)=R§K §z
w00(R)+k2w(R) = 0:
N· ˇ)'
x20.3 n ?. mHelmholtz § Green…? 19
?? ^ ‰B(k) ? Helmholtz § ¢S §’X‘§§·dˉ? §?L'
lC ('l m ') ' ~f§b ? )3?? ? u ˉ'
mˇf e?i!t§K)“¥ 1 u ˉ§1 ? ˉ'?–§ATkB(k) = 0'
e ~?A(k) ATdR = 0? >.^ ?‰§=dR = 0?: r ?‰'
R = 0? >.^ ‰A(k) ? ? U )“ \R = 0? >.^ § ˇ
·f(R)‰g(?;·;?)3R = 0? ?? 3', ?§? fi? ‰§ · 9–…?
“ ATl¨'?′e n)'u·§?g,/§A §3R = 0NC N¨S¨'§
ZZZ
r2?;·;?f(R)d?d·d? +k2
ZZZ
f(R)d?d·d? = ? 1"
0
: (z)
1 N¨'A z ?¨'
ZZZ
r2?;·;?f(R)d?d·d? =
ZZ h
r?;·;?f(R)
i
¢d ;
ˇ ? –£;K3R = 0: ? flK' ? N¨ –R = 0: ¥%§‰ ?
¥N§K
ZZZ
r2?;·;?f(R)d?d·d? =
ZZ h
r?;·;?f(R)
i
¢d
=
ZZ df(R)
dR R
2 sin d d`
flfl
fl
R=‰
= ?4…A(k)(1?ik‰)eik‰:
1 N¨' – §
ZZZ
f(R)d?d·d? = 4…A(k)
Z ‰
0
eikRRdR
= 4…A(k)k2
h
(eik‰ ?1)?ik‰eik‰
i
:
? (J £ (z)“§ k
?4…A(k) = ? 1"
0
;
?–, A(k) = 1=4…"0, k ?’'? § ? n ?. mHelmholtz § Green
…?
g(?;·;?) = f(R) = 14…"
0
eikR
R ;
‰
G(r;r0) = 14…"
0
eikjr?r0j
jr?r0j :
k = 0 §? (J £ Poisson § Green…?'
§I ‘?§? (J·3?? ? u ˉ§? mˇf e?i!t ^ e
' – §XJ ??? ? ? ˉ§? E mˇf e?i!t§KGreen…?AT
·
G(r;r0) = 14…"
0
e?ikjr?r0j
jr?r0j :
XJ· ?/“ ?? ^ § , ? ?/“ )'
x20.4 SPoisson §1 > flK Green…? 110
x20.4 SPoisson §1 > flK Green…?
! 8 ·ˇL?u SPoisson §1 > flKGreen…? ? §20
?Green…? ~^ {{'
SPoisson §1 > flKGreen…? ‰′·
r22G(r;r0) = ? 1"
0
–(r?r0); jrj < a; jr0j < a;
G(r;r0)flflr=a = 0;
¥
r2 = x2 +y2; r22 = @
2
@x2 +
@2
@y2:
k0 ?IO {§= ? §· g §§?– Green…?U A g
flK …?—m'
^??4 IX§ I : 3 %§
G(r;r0) = R0(r)+
1X
m=1
£R
m1(r)cosm`+Rm2(r)sinm`
?:
§ –…? UT| …?—m§
–(r?r0) = –(x?x0)–(y?y0) = 1r0–(r?r0)–(`?`0)
= 1r0–(r?r0)
‰1
2…+
1
…
1X
m=1
£cosm`cosm`0 +sinm`sinm`0? :
y3 flK ·X ?)R0(r); Rm1(r) Rm2(r)'
F?‰R0(r) ~ ' §‰)flK·
1
r
d
dr
?
rdR0(r)dr
?
= ? 12…"
0
1
r0–(r?r
0);
R0(0)k.; R0(a) = 0:
r 6= r0 § §· g §3 ? >.^ §k)
R0(r) =
8
<
:
A0; r < r0;
B0 ln ra; r > r0:
2 R0(r)3r = r0: oY5§=R0(r)3r = r0:oY§ R00(r) oY(§ –d
§3r = r0: ¨' )§
dR0(r)
dr
flfl
flfl
r0+0
r0?0
= ? 12…"
0
1
r0;
–‰ A0 B0§
A0 = ? 12…"
0
ln r
0
a ; B0 = ?
1
2…"0:
x20.4 SPoisson §1 > flK Green…? 111
u·
R0(r) =
8
>><
>>:
? 12…"
0
ln r
0
a ; r < r
0;
? 12…"
0
ln ra; r > r0:
F?‰Rm1(r) ~ ' §‰)flK·
h1
r
d
dr
r ddr
?
? m
2
r2
i
Rm1(r) = ?–(r?r
0)
…"0r0 cosm`
0;
Rm1(0)k.; Rm1(a) = 0:
r 6= r0 § §· g §3 ? >.^ §k)
Rm1(r) =
8
<
:
Am1
?r
a
·m
; r < r0;
Bm1
h?r
a
·m
?
?a
r
·mi
; r > r0:
Rm1(r)3r = r0: oY5§=Rm1(r)3r = r0 :oY§ R0m1(r) oY§
dRm1(r)
dr
flfl
flfl
r0+0
r0?0
= ? 1…"
0
1
r0 cosm`
0;
‰ Am1 Bm1§
Am1 = ? 12…"
0
1
m
??r0
a
·m
?
?a
r0
·m?
cosm`0;
Bm1 = ? 12…"
0
1
m
?r0
a
·m
cosm`0:
u·
Rm1(r) =
8
>><
>>:
? 12…"
0
1
m
h?rr0
a2
·m
?
?r
r0
·mi
cosm`0; r < r0;
? 12…"
0
1
m
h?rr0
a2
·m
?
?r0
r
·mi
cosm`0; r > r0:
F?‰Rm2(r) ~ ' §‰)flK·
h1
r
d
dr
r ddr
?
? m
2
r2
i
Rm2(r) = ?–(r?r
0)
…"0r0 sinm`
0;
Rm2(0)k.; Rm2(a) = 0:
§ Rm1(r) v ~ ' §‰)flK /“A § ·r g ¥
cosm`0 ? sinm`0§?–§
Rm2(r) =
8>
><
>>:
? 12…"
0
1
m
h?rr0
a2
·m
?
?r
r0
·mi
sinm`0; r < r0;
? 12…"
0
1
m
h?rr0
a2
·m
?
?r0
r
·mi
sinm`0; r > r0:
x20.4 SPoisson §1 > flK Green…? 112
? § ? SPoisson §1 > flK Green…?§ r < r0 §
G(r;r0) = ? 12…"
0
‰
ln r
0
a +
1X
m=1
1
m
h?rr0
a2
·m
?
?r
r0
·mi
cosm(`?`0)
;
r > r0 §
G(r;r0) = ? 12…"
0
‰
ln ra +
1X
m=1
1
m
h?rr0
a2
·m
?
?r0
r
·mi
cosm(`?`0)
;
??? {§ Green…?U A gflK …?—m§ ‘5§
)“?·????' ,§ 3, Aˇ /e – ??? '~X§
y3 )“ ·Xd' L§?I ’ G??? E|'
e?20 ? {§§ ) k /“'
[ § 3 / ¥ :> §3 – 7, ya)> ' S?? :
>?§ ·:> >? a)> >? U\'c 3:> ?3:·??u §
3 S·??oY 'XJ? U B/? a)> 3 S? ) >?§ , ?
SPoisson §1 > flK Green…?'
y3 0 ?? {(? > {)§ ? g ·
F >. a)> ^ d :> O'
F ?{‘§ r / S :> flK d/=z ?. m¥ :> ( ·
¢ :> §, · d /J0> ) flK'
F? /J0> d5§ Ly3§ S ¢ :> §3 SU
5flK )'
F S > ' C§ ? :> U ) –r = a /(>? 0)
J§> flK) 3 5§ U y? ) 5flK )3 S ‰·
'
F –?(/ §? d> XJ 3 {§§ ‰ u §?K S > '
5 flK § U y d5'‰ ?‘{§dua)> >?3
S·??oY §3 S ? d(:)> U ) J'
FA^> {?} ’ § 3uU?? ? d> > § m '?·?
d> ·? 3 8¥Ny'
F ??5 ?§ –? ‰§XJ? d> 3 {§§ ‰ u
¢> ?? ? '
x20.4 SPoisson §1 > flK Green…? 113
a20.1 > {
? d> r1 = (x1; y1)§> e§u·§§ ¢:> §3 S
>? ·
G(r;r0) = ? 12…"
0
h
lnjr?r0j+elnjr?r1j+C
i
; (z)
¥~?C >?": Jk’'y3 flK · l ? –r = a >? 0§
? 12…"
0
h
lnjr?r0j+elnjr?r1j+C
i
r=a
= 0;
? r1; e C'5?? §AT? – : ??'XJ ^??4 I§=-
x = rcos`; x0 = r0cos`0; x1 = r1 cos`0;
y = rsin`; y0 = r0sin`0; y1 = r1 sin`0;
K §z
ln£a2 + r02 ?2ar0cos(`?`0)?
+ eln
h
a2 +r21 ?2ar1 cos(`?`0)
i
+2C = 0;
§AT? ` ??'|^—m“
ln£1+t2 ?2tcos`? = ln£1?tei`?+ln£1?te?i`?
= ?2
1X
m=1
1
mt
m cosm`; jtj < 1;
–? z
2lna+ln
h
1+
?r0
a
·2
?2r
0
a cos(`?`
0)
i
+2elnr1 +eln
h
1+
a
r1
?2
?2 ar
1
cos(`?`0)
i
+2C
= 2lna+2elnr1
?2
1X
m=1
1
m
h?r0
a
·m
+e
? a
r1
·mi
cosm(`?`0)+2C
= 0;
u·§
lna+elnr1 +C = 0 (#)
x20.4 SPoisson §1 > flK Green…? 114
?
r0
a
·m
+e
? a
r1
·m
= 0; m = 1;2;3;¢¢¢ ;
=
e = ?
?r1r0
a2
·m
; m = 1;2;3;¢¢¢
‰
e = ?
?r1r0
a2
·1
= ?
?r1r0
a2
·2
= ?
?r1r0
a2
·3
= ¢¢¢ :
?–§
e = ?1
r1 = a
2
r0 ‰ r1 =
?a
r0
·2
r0:
? §? (? ? d> §§ u ¢> ?3 ? §? v
r0r1 = a2:
· v? ’X :§ ? ’u r = a :?' a(J‘?§
d> ¢> ??u r = a ::??§§ >> §45 '
e r1 (J \(#)“§q –?
C = ?lna+lnr1 = ln ar0:
2 e; r1 C (J £(z)“§ ? SPoisson §1 > flK Green…?
G(r;r0) = ? 12…"
0
h
lnjr?r0j?ln
flfl
flr?
?a
r0
·2
r0
flfl
fl+ln ar0
i
;
‰ 34 IX¥ L “§
G(r;r0) = ? 14…"
0
(
ln
h
r2 +r02 ?2rr0cos(`?`0)
i
? ln
h
r2 +
?a2
r0
·2
?2ra
2
r0 cos(`?`
0)i+2ln a
r0
)
:
??…? —m§ –w §? ·c ? {{ (J'
3? SPoisson §1 > flK Green…? § , – ‰)flK
r22u(r) = ? 1"
0
‰(r); jrj < a;
u(r)flflr=a = f(`)
)' d§ §¥ gC U ?r0§
r022u(r0) = ? 1"
0
‰(r0); jr0j < a;
u(r0)flflr0=a = f(`0);
x20.4 SPoisson §1 > flK Green…? 115
, ?§ – G(r0;r)?AT v ‰)flK§
r022G(r0;r) = ? 1"
0
–(r?r0); jrj < a; jr0j < a;
G(r0;r)flflr0=a = 0;
2|^Green…? ??5(§ –w?·20.2! Aˇ /§ Ul ?? G(r;r0)
NL “ w )§
G(r;r0) = G(r0;r);
? U ?
r022G(r;r0) = ? 1"
0
–(r?r0); jrj < a; jr0j < a;
G(r;r0)flflr0=a = 0:
§'O?–G(r;r0) u(r0)§ ~§23 S¨'§
ZZ
r0<a
‰(r0)G(r;r0)dr0 ?u(r)
= ?"0
ZZ
r0<a
£G(r;r0)r0
2
2u(r0)?u(r0)r0
2
2G(r;r0)?dr0:
r ? ?¨'z –r = a ¨'§? \>.^ § k
u(r) =
ZZ
r0<a
‰(r0)G(r;r0)dr0
+"0
Z 2…
0
£G(r;r0)r0u(r0)?u(r0)r0G(r;r0)?
r0=aad`
0
=
ZZ
r0<a
‰(r0)G(r;r0)dr0 ?"0
Z 2…
0
f(`0)@G(r;r
0)
@r0
flfl
fl
r0=a
ad`0:
w,§m 1 L? S> ' z?1 K·5g – a)> ) >
?§a)> ' , ‰ >.^ ( – >? ' )k’' /w
– > ' § – 1 ¥ ¨'2U ?
Z 2…
0
f(`0)@G(r;r
0)
@r0
flfl
fl
r0=a
ad`0
= ?
Z 2…
0
f(`0) lim
?r!0
1
?r
h
G(r;r0)flflr0=a??r ?G(r;r0)flflr0=a
i
ad`0
= ?
ZZ
r0<a
f(`0) lim
?r!0
G(r;r0)
?r
h
–(r0 ?a+?r)?–(r0 ?a)
i
r0dr0d`0
= ?
ZZ
r0<a
f(`0)G(r;r0)–0(r0 ?a)r0dr0d`0;
? § –r ? (J ?
u(r) =
ZZ
r0<a
£‰(r0)+"
0f(`0)–0(r0 ?a)
?G(r;r0)dr0:
x20.4 SPoisson §1 > flK Green…? 116
?L?§ – a)> ·"0f(`0)–0(r0 ?a)'…?–0(r0 ?a) y§‘?3 –
a)> 4 '
?p – ? ( ' k, ‰)flK
r22u(r) = ? 1"
0
h
‰(r)+"0f(`)–0(r?a)
i
; jrj < a;
u(r)flflr=a = 0;
w,§§ ?k )'
F?‘?§3 ?–…?9 ? cJe§ g>.^ ‰)flK§ –U
g >.^ § L3 §¥ A/O\ Aˇ g §3? S ??
0§ 3>. 0 (¢S? ??) g ' ? ' J? ??
g {'
F ,§ g>.^ –=z § Aˇ/“ g §j?? ? X –?
g>.^ (£ >.? ' ) § g (? S ' )
?O'=?r g>.^ U ? § g §§£ E,· 3u>.?
'
– 0 Green…? ?){'
1 ?){·U A gflK …?—m'??){?^ 2§":·
) ·????'
1 ?){·> {§ ¥%g ·r>. a)> ^ d :>
(? > ) O'? k3, ~Aˇ A /G(~X¥/§ ?.
m§ )e U¢y'=? ?^A ( · ) > 5 /
O>. a)> §? m A /GE,k '?–‘§>
{ ‘:· – k /“ )§":··??^ k '
x20.5 ˉ? § Green…? 117
x20.5 ˉ? § Green…?
(‰ §–k.u ˉ?flK ~'
‰)flK ·
@2u(x;t)
@t2 ?a
2@
2u(x;t)
@x2 = f(x;t); 0 < x < l; t > 0;
u(x;t)flflx=0 = ?(t);u(x;t)flflx=l = ”(t); t > 0;
u(x;t)flflt=0 = `(x); @u(x;t)@t
flfl
fl
t=0
= ?(x);0 < x < l:
– § A Green…?G(x;t;x0;t0)AT·] (= 3u, ):(= 3u m,
:) flK
h @2
@t2 ?a
2 @2
@x2
i
G(x;t; x0;t0) = –(x?x0)–(t?t0);
0 < x;x0 < l; t;t0 > 0
3 g‰)^
G(x;t;x0;t0)flflx=0 = 0; G(x;t;x0;t0)flflx=l = 0; t;t0 > 0;
G(x;t;x0;t0)flflt<t0 = 0; @G(x;t;x
0;t0)
@t
flfl
fl
t<t0
= 0; 0 < x;x0 < l
e )'?p—'^ n?′·? ˇ r‰ ·3t = t0 y §?–§3
d–c§u , ‰ –? '
flK §y3I ? n flK
Green…?G(x;t;x0;t0) ??5
X ^Green…?9fi ^ f(x;t), ?(t); ”(t) `(x); ?(x) ‰)flK )u(x;t)L?
5
n X ? Green…?
F?k§’uGreen…? ??5§ ( /‘§Green…?3 m ??5 m
·5'
d§2 ’uGreen…?G(x;?t;x00;?t00) ‰)flK
? @2
@t2 ?a
2 @2
@x2
?
G(x;?t;x00;?t00) = –(x?x00)–(t?t00);
0 < x;x00 < l; t;t00 > 0;
G(x;?t;x00;?t00)flflx=0 = 0;
G(x;?t;x00;?t00)flflx=l = 0;
t;t00 > 0;
G(x;?t;x00;?t00)flfl?t<?t00 = 0;
@G(x;?t;x00;?t00)
@t
flfl
fl
?t<?t00
= 0;
0 < x;x00 < l:
x20.5 ˉ? § Green…? 118
§'O?–Green…?G(x;?t;x00;?t00) G(x;t;x0;t0), ~,23?m[0; l] [0; 1)
?x t¨',=
G(x0;?t0;x00;?t00)?G(x00;t00;x0;t0)
=
Z l
0
dx
Z 1
0
?
G(x;?t;x00;?t00)@
2G(x;t;x0;t0)
@t2
?G(x;t;x0;t0)@
2G(x;?t;x00;?t00)
@t2
?
dt
?
Z 1
0
dt
Z l
0
?
G(x;?t;x00;?t00)@
2G(x;t;x0;t0)
@x2
?G(x;t;x0;t0)@
2G(x;?t;x00;?t00)
@x2
?
dx
=
Z l
0
?
G(x;?t;x00;?t00)@G(x;t;x
0;t0)
@t
?G(x;t;x0;t0)@G(x;?t;x
00;?t00)
@t
?1
0
dx
?
Z 1
0
?
G(x;?t;x00;?t00)@G(x;t;x
0;t0)
@x
?G(x;t;x0;t0)@G(x;?t;x
00;?t00)
@x
?l
0
dt;
\k’ >.^ —'^ § –w §m ¨' 0§?– Green…?3 m
??5 m ·5§
G(x00;t00;x0;t0) = G(x0;?t0;x00;?t00);
‰ x00 t00U ?x t§
G(x;t;x0;t0) = G(x0;?t0;x;?t):
3? ’X“¥§ t t0? y K § — y m k gS C§?K ?
k uˇJ? ?'
F^Green…?9fi ^ f(x;t), ?(t); ”(t) `(x); ?(x) ‰)flK )u(x;t)L? 5'
d§ ‰)flK¥ gC U ?x0 t0§
@2u(x0;t0)
@t02 ?a
2@2u(x0;t0)
@x02 = f(x
0;t0); 0 < x0 < l; t0 > 0;
u(x0;t0)flflx0=0 = ?(t0); u(x0;t0)flflx0=l = ”(t0); t0 > 0;
u(x0;t0)flflt0=0 = `(x0); @u(x
0;t0)
@t0
flfl
fl
t0=0
= ?(x0); 0 < x0 < l:
x20.5 ˉ? § Green…? 119
2 Green…? ‰)flK
? @2
@(?t0)2 ?a
2 @2
@x02
?
G(x0;?t0;x;?t) = –(x?x0)–(t?t0);
0 < x;x0 < l; t;t0 > 0;
G(x0;?t0;x;?t)flflx0=0 = 0;
G(x0;?t0;x;?t)flflx0=l = 0;
t;t0 > 0;
G(x0;?t0;x;?t)flfl?t0<?t = 0;
@G(x0;?t0;x;?t)
@t
flfl
fl
?t0<?t
= 0;
0 < x;x0 < l:
|^Green…? ??5 ·5’X§ –U ?
? @2
@t02 ?a
2 @2
@x02
?
G(x;t;x0;t0) = –(x?x0)–(t?t0);
0 < x;x0 < l; t;t0 > 0;
G(x;t;x0;t0)flflx0=0 = 0;
G(x;t;x0;t0)flflx0=l = 0;
t;t0 > 0;
G(x;t;x0;t0)flflt0>t = 0;
@G(x;t;x0;t0)
@t
flfl
fl
t0>t
= 0;
0 < x;x0 < l:
§'O?–G(x;t;x0;t0) u(x0;t0)§ ~§2¨'§
Z l
0
dx0
Z 1
0
G(x;t;x0;t0)f(x0;t0)dt0 ?u(x;t)
=
Z l
0
dx0
Z 1
0
?
G(x;t;x0;t0)@
2u(x0;t0)
@t02 ?u(x
0;t0)@2G(x;t;x0;t0)
@t02
?
dt0
?a2
Z 1
0
dt0
Z l
0
?
G(x;t;x0;t0)@
2u(x0;t0)
@x02 ?u(x
0;t0)@2G(x;t;x0;t0)
@x02
?
dx0:
x20.5 ˉ? § Green…? 120
\>.^ —'^ § –z{
u(x;t) =
Z l
0
dx0
Z 1
0
G(x;t;x0;t0)f(x0;t0)dt0
?
Z l
0
?
G(x;t;x0;t0)@u(x
0;t0)
@t0 ?u(x
0;t0)@G(x;t;x0;t0)
@t0
?1
0
dx0
+ a2
Z 1
0
?
G(x;t;x0;t0)@u(x
0;t0)
@x0 ?u(x
0;t0)@G(x;t;x0;t0)
@x0
?l
0
dt0
=
Z l
0
dx0
Z t
0
G(x;t;x0;t0)f(x0;t0)dt0
?
Z l
0
?
G(x;t;x0;0)?(x0)?`(x0) @G(x;t;x
0;t0)
@t0
flfl
flfl
t0=0
?
dx0
? a2
Z t
0
?
”(t0) @G(x;t;x
0;t0)
@x0
flfl
flfl
x0=l
??(t0) @G(x;t;x
0;t0)
@x0
flfl
flfl
x0=0
?
dt0:
F? Green…? N/“'
? 1 ? {E,·U A gflK …?—m§
G(x;t;x0;t0) =
1X
n=1
Tn(t)sin n…l x;
§ –…? UT| …?—m§
–(x?x0) = 2l
1X
n=1
sin n…l x0sin n…l x;
u·§Tn(t) v~ ' § — flK
T00(t)+
?n…a
l
·2
Tn(t) = 2l sin n…l x0–(t?t0);
Tn(t < t0) = 0; T0n(t < t0) = 0:
) =
Tn(t) = 2n…a sin n…l x0 sin n…l a(t?t0)·(t?t0):
?–§Green…?G(x;t;x0;t0) ·
G(x;t;x0;t0) = 2…a
1X
n=1
1
n sin
n…
l x
0 sin n…
l x sin
n…
l a(t?t
0)·(t?t0):
? 1 ? {· ‰)flK LaplaceC '
-
g(x;p;x0;t0) =
Z 1
0
G(x;t;x0;t0)e?pt dt;
x20.5 ˉ? § Green…? 121
Kg(x;p;x0;t0) v~ ' § > flK
h d2
dx2 ?
?p
a
·2i
g(x;p;x0;t0) = ? 1a2e?pt0 –(x?x0);
g(x;p;x0;t0)flflx=0 = 0; g(x;p;x0;t0)flflx=l = 0:
x 6= x0§
d2g(x;p;x0;t0)
dx2 ?
?p
a
·2
g(x;p;x0;t0) = 0:
? >.^ § k)
g(x;p;x0;t0) =
8>
<
>:
Asinh pax; 0 ? x < x0;
Bsinh pa(l?x); x0 < x ? l:
y3§x = x0? g KNy o ^
g(x;p;x0;t0)
flfl
fl
x=x0+0
x=x0?0
= 0; dg(x;p;x
0;t0)
dx
flfl
fl
x=x0+0
x=x0?0
= ? 1a2e?pt0:
u·
Bsinh pa(l?x0)?Asinh pax0 = 0;
Bcosh pa(l?x0)+Acosh pax0 = 1pae?pt0:
)
A =
sinh pa(l?x0)
pa sinh pal
e?pt0; B =
sinh pax0
pa sinh pal
e?pt0;
? § ? 0 ? x < x0 §
g(x;p;x0;t0) =
sinh pa(l?x0) sinh pax
pa sinh pal
e?pt0;
x0 < x ? l §
g(x;p;x0;t0) =
sinh pax0 sinh pa(l?x)
pa sinh pal
e?pt0:
§? §
G(x;t;x0;t0) = 12…i
Z
L
g(x;p;x0;t0)ept dp;
A^3?‰nO ? ¨'§ – 1 ? { (J'
2? n m ~f'? Green…?G(r;t;r0;t0) v‰)flK
h @2
@t2 ?a
2r2
i
G(r;t;r0;t0) = –(r?r0)–(t?t0); t;t0 > 0;
G(r;t;r0;t0)flflt<t0 = 0; @G(r;t;r
0;t0)
@t
flfl
flfl
t<t0
= 0:
x20.5 ˉ? § Green…? 122
FourierC
g(r;!;r0;t0) = 1p2…
Z 1
?1
G(r;t;r0;t0)ei!t dt;
u· ‰)flKz
h
(?i!)2 ?a2r2
i
g(r;!;r0;t0) = 1p2… ei!t0 –(r?r0)
= h
r2 +
?!
a
·2i
g(r;!;r0;t0) = ? 1p2…a2 ei!t0 –(r?r0);
20.3! (J§ –
g(r;!;r0;t0) = 1p2…a2 ei!t0 14…jr?r0jei(!=a)jr?r0j:
_C § k
G(r;t;r0;t0) = 1p2…
Z 1
?1
g(r;!;r0;t0)e?i!td!
= 14…a2 1jr?r0j 12…
Z 1
?1
e?i!(t?t0) ¢ei(!=a)jr?r0jd!
= 14…a2 1jr?r0j–
jr?r0j
a ?(t?t
0)
?
= 14…a 1jr?r0j–?jr?r0j?a(t?t0)¢:
? )“ n?′??( t0 3r0?u & §t ‰ r0: a(t?t0) ¥
? '
g K1 ? )KL§¥§—'^ ^^uu ?”
g K2 ? )KL§¥§ UAA^^20.3! (J”
? Green…?§ , – n ?. m¥ˉ? § — flK
@2u(r;t)
@t2 ?a
2r2u(r;t) = f(r;t); t > 0;
u(r;t)flflt=0 = `(r); @u(r;t)@t
flfl
fl
t=0
= ?(r)
)§
u(r;t) = 14…a2
ZZZ
jr0?rj<at
f(r0;t?jr0 ?rj=a)
jr0 ?rj dr
0
+ 14…a
"ZZ
§0
?(r0)
jr0 ?rjd§
0 + @
@t
ZZ
§0
`(r0)
jr0 ?rjd§
0
#
;
¥§0·–r: ¥%!at ? ¥?jr0 ?rj = at'
x20.6 9D § Green…? 123
x20.6 9D § Green…?
n k. m¥ 9D flK§
@u(r;t)
@t ??r
2u(r;t) = f(r;t); r2 V; t > 0;
u(r;t)flfl§ = ?(§;t); t > 0;
u(r;t)flflt=0 = `(r); r2 V;
A Green…?G(r;t;r0;t0) ·t0 3r0?k ( r )] :9 ? ) §
' § ?{‘§ ·‰)flK
? @
@t ??r
2
?
G(r;t;r0;t0) = –(r?r0)–(t?t0);
r;r0 2 V; t;t0 > 0;
G(r;t;r0;t0)flfl§ = 0; t;t0 > 0;
G(r;t;r0;t0)flflt=0 = 0; r;r0 2 V
)'N·n)§—'^ – ?G(r;t;r0;t0)flflt<t0 = 0'
ˉ?flK {§ –y?? Green…? k?u m ??5 m ·
5§
G(r;t;r0;t0) = G(r0;?t0;r;?t):
^Green…? {)9D §‰)flK§ A !¥ IO { ?k
‰)flK gC U ?r0 t0§
@u(r0;t0)
@t0 ??r
02u(r0;t0) = f(r0;t0); r0 2 V; t0 > 0;
u(r0;t0)flfl§0 = ?(§0;t0); t0 > 0;
u(r0;t0)flflt0=0 = `(r0); r0 2 V:
, Green…?G(r0;?t0;r;?t) v ‰)flK§
h @
@(?t0) ??r
02iG(r0;?t0;r;?t)
= –(r?r0)–(t?t0); r;r0 2 V; t;t0 > 0;
G(r0;?t0;r;?t)flfl§0 = 0; t;t0 > 0;
G(r0;?t0;r;?t)flfl?t0<?t = 0; r;r0 2 V;
? 2|^Green…??u m ??5 m ·5’X§U ?
?
? @@t0 ??r02
?
G(r;t;r0;t0)
= –(r?r0)–(t?t0); r;r0 2 V; t;t0 > 0;
G(r;t;r0;t0)flfl§0 = 0; t;t0 > 0;
G(r;t;r0;t0)flflt0>t = 0; r;r0 2 V:
x20.6 9D § Green…? 124
§'O?–G(r;t;r0;t0) u(r0;t0)§ ~§?¨'§
Z 1
0
dt0
ZZZ
V
f(r0;t0)G(r;t;r0;t0)dr0 ?u(r;t)
=
ZZZ
V
dr0
Z 1
0
?
G(r;t;r0;t0)@u(r
0;t0)
@t0
+u(r0;t0)@G(r;t;r
0;t0)
@t0
?
dt0
??
Z 1
0
dt0
ZZZ
V
?
G(r;t;r0;t0)r02u(r0;t0)
?u(r0;t0)r02G(r;t;r0;t0)
?
dr0
=
ZZZ
V
G(r;t;r0;t0)u(r0;t0)
flfl
fl
t0=1
t0=0
dr0
??
Z 1
0
dt0
ZZ
§0
£G(r;t;r0;t0)r0u(r0;t0)
?u(r0;t0)r0G(r;t;r0;t0)?¢d 0;
\>.^ —'^ §
u(r;t) =
Z t
0
dt0
ZZZ
V
f(r0;t0)G(r;t;r0;t0)dr0
+
ZZZ
V
`(r0)G(r;t;r0;0)dr0
? ?
Z t
0
dt0
ZZ
§0
?(§0;t0) @G(r;t;r
0;t0)
@n0
flfl
flfl
§0
d§0:
y35?)1 n ¥ ¢3e ‰)flK§=’u ?. m9D §
Green…?flK§
? @
@t ??
@2
@x2
?
G(x;t;x0;t0) = –(x?x0)–(t?t0); t0 > 0;
G(x;t;x0;t0)flflx!§1k.;
G(x;t;x0;t0)flflt=0 = 0:
LaplaceC §=-
g(p;x;x0) =
Z 1
0
G(x;t;x0;t0)e?ptdt;
u·§‰)flKz
pg(p;x;x0)??d
2g(p;x;x0)
dx2 = –(x?x
0)e?pt0;
g(p;x;x0)flflx!§1k.:
x20.6 9D § Green…? 125
x 6= x0 § §· g ' ? >.^ § – § )
g(p;x;x0) =
8>
>><
>>>
:
Aexp
‰rp
?(x?x
0)
; x < x0;
Bexp
‰
?
rp
?(x?x
0)
; x > x0:
2 §¥ g § – o ^
g(p;x;x0)
flfl
fl
x=x0+0
x=x0?0
= 0; ?? dg(p;x;x
0)
dx
flfl
flfl
x=x0+0
x=x0?0
= e?pt0;
=
B ?A = 0; ??
?
?
rp
?B ?
rp
?A
?
= e?pt0;
dd= ‰
A = B = 12p?pe?pt0:
u·
G(p;x;x0) = 12p?pe?pt0 exp
‰
?
rp
?jx?x
0j
:
2|^1 (J§ –?
G(x;t;x0;t0) = 12p?…(t?t0) exp
‰
?(x?x
0)2
4?(t?t0)
·(t?t0):
? ·1 n ¥ (J'
x20.6 9D § Green…? 126
? S K
'? fzHall AflK(1999cNobel n?) O NX¥N >f ! >
(oN –>¥5) m Coulomb p ^U'
>f :> 'N·? § ( ):> ei ej('O uri rj?) m
Coulomb p ^U
U = ?2keiej ln jri ?rjja ;
¥k a ~?§c k’§ · ? ? ~? a ” 'ˇd§>
fNX ‰0 ! > m Coulomb p ^U – ?
U = 2ke‰0
NX
l=1
ZZ
ln jr?rlja d2r+~?:
b NX ?R §‰0 = Ne=…R2§y?
U = k2 Ne
2
…R2
NX
l=1
jrlj2 +~?: