a0 a1
star a2a3a4a5a6a7a8a9a10 4
13.1 5 ' §) U\5 12
13.1 5 ' §) U\5
r 5 '' § ? ?/“
L[u] = f;
¥
u …?
L 5 ?
f fi …?§? § g
k g ' §? g ' §'XJf · 0§ § · g
'
L 13.1
§a. § 5 ?L
ˉ? § @
2u
@t2 ?a
2r2u = f L · @
2
@t2 ?a
2r2
9D § @u@t ??r2u = f L · @@t ??r2
Poisson § r2u = f L ·r2
– ? ‰‰)^ § · 5 ' –r‰)^ ?aq ?/“'
‰′ XJ…?u? §L[u] = f ??§K?u· §L[u] = f )'
5 1 eu1 u2 · g §L[u] = 0 )§
L[u1] = 0; L[u2] = 0;
K§ 5| c1u1 +c2u2 · g § )§
L[c1u1 +c2u2] = 0;
¥c1 c2·??~?'
5 2 eu1 u2 · g §L[u] = f )§
L[u1] = f; L[u2] = f;
K§ u1 ?u2 ‰· A g § )§
L[u1 ?u2] = 0:
§ g § A)\ A g § )E· g § )'
5 3 eu1 u2'O v g §
L[u1] = f1; L[u2] = f2;
13.1 5 ' §) U\5 13
K§ 5| c1u1 +c2u2 v g §
L[c1u1 +c2u2] = c1f1 +c2f2:
gC 5 ' § ?H/“
A0@
nu
@xn +A1
@nu
@xn?1@y +¢¢¢+An
@nu
@yn
+B0@
n?1u
@xn?1 +¢¢¢+M
@u
@x +N
@u
@y +Pu = f(x;y);
‰
L(Dx;Dy)u ·
h
A0Dnx +A1Dn?1x Dy +¢¢¢+AnDny
+ B0Dn?1x +¢¢¢+MDx +NDy +P
i
u
=f(x;y);
¥Dx · @=@x§Dy · @=@y?A0;A1;¢¢¢ ;An;B0;¢¢¢ ;M;N;P ·x;y fi …?§?
§ X?'
13.2 ~X? 5 g ' § ˇ) 14
13.2 ~X? 5 g ' § ˇ)
~X? 5 g ' § ?H/“·
A0@
nu
@xn +A1
@nu
@xn?1@y +¢¢¢+An
@nu
@yn
+B0@
n?1u
@xn?1 +¢¢¢+M
@u
@x +N
@u
@y +Pu = 0;
‰
L(Dx;Dy)u ·
h
A0Dnx +A1Dn?1x Dy +¢¢¢+AnDny
+ B0Dn?1x +¢¢¢+MDx +NDy +P
i
u
=0;
§ X?A0;A1;¢¢¢ ;An;B0;¢¢¢ ;M;N;P ·~?'
1. L(Dx;Dy)·Dx;Dy g“
§ h
A0Dnx +A1Dn?1x Dy +A2Dn?2x D2y +¢¢¢+AnDny
i
u = 0:
– 5 ?L(Dx;Dy)')? n 5 ? ?¨
L(Dx;Dy) = A0(Dx ?fi1Dy)(Dx ?fi2Dy)¢¢¢(Dx ?finDy);
¥fi1;fi2;¢¢¢ ;fin ·~?§ˇd?n ˇf gS –??N '
`&) u = `(y +fix),ˇ
Dkxu = fik`(k)(y +fix);
Dkyu = `(k)(y +fix);
DrxDsyu = fir`(r+s)(y +fix);
\ §= h
A0fin +A1fin?1 +¢¢¢+An
i
`(n)(y +fix) = 0:
? §(? N\ §§auxiliary equation)
A0fin +A1fin?1 +¢¢¢+An = 0
)·fi1;fi2;¢¢¢ ;fin§ p §K? ~X? 5 g ' § ˇ)
u = `1(y +fi1x)+`2(y +fi2x)+¢¢¢+`n(y +finx);
¥`i; i = 1;2;¢¢¢ ;n·(p ? )??(ng )…?'
~1 ? §@
2u
@x2 ?a
2@
2u
@y2 = 0 ˇ)§a ~?'
) -u = `(y +fix)§KN\ § fi2 ?a2 = 0§ )fi = §a§ § ˇ)
u = `1(y +ax)+`2(y ?ax):
13.2 ~X? 5 g ' § ˇ) 15
Fefi·? §~X· ? §
(Dx ?fiDy)2u = 0;
Kˇ)
u = x`1(y +fix)+`2(y +fix):
Fefi n? §=
(Dx ?fiDy)nu = 0;
K § ˇ)
u = xn?1`1(y +fix)+xn?2`2(y +fix)+¢¢¢
+x`n?1(y +fix)+`n(y +fix):
~2 §(D2x ?2DxDy +D2y)u = 0 ˇ)
u = x`(x+y)+?(x+y):
2. L(Dx;Dy) ·Dx;Dy g“
k ? ' §
(Dx ?fiDy ?fl)z = 0: ( )
XJf(x;y;z) = 0· § )§K7k
@f
@xdx+
@f
@ydy +
@f
@zdz = 0: (z)
, ?§
Dxz = ?@f=@x@f=@z; Dyz = ?@f=@y@f=@z:
\ §( )§qATk
@f
@x ?fi
@f
@y +flz
@f
@z = 0: (>)
’ (z) (>) “§
dx
1 =
dy
?fi =
dz
flz:
? §|? Lagrange9ˇ §|'N·)
y +fix = C; flx = lnz ?lnC0:
?–
z = C0eflx = eflx`(y +fix):
ˇd§ L(Dx;Dy) ·Dx Dy g“ §XJU L(Dx;Dy) ') n ˇf(z
ˇf ·Dx Dy 5…?) ?¨§K –? § ˇ)'
~3 ? §@
2u
@x2 ?
@2u
@x@y ?2
@2u
@y2 +2
@u
@x +2
@u
@y = 0 ˇ)'
13.2 ~X? 5 g ' § ˇ) 16
) N·w §
(D2x ?DxDy ?2D2y +2Dx +2Dy)u
= (Dx +Dy)(Dx ?2Dy +2)u = 0:
§ ˇ)
u = `(x?y)+e?2x?(y +2x):
Fek?E5ˇf§X(Dx ?fiDy ?fl)2z = 0§Kˇ)
z = xeflx`(y +fix)+eflx?(y +fix):
13.3 ~X? 5 g ' § ˇ) 17
13.3 ~X? 5 g ' § ˇ)
g § ˇ) = g § ? A)
+ A g § ˇ)'
§
L(Dx;Dy)u = f(x;y)
A)/“/L?
u0 = 1L(D
x;Dy)
f(x;y);
Ue {K? u0(x;y)
1. ef(x;y) = eax+by§ L(a;b) 6= 0§K
1
L(Dx;Dy)e
ax+by = 1
L(a;b)e
ax+by:
F L(a;b) = 0 /'
L(Dx;Dy) = bDx ?aDy§
(bDx ?aDy)u = eax+by:
13.2!¥ {§ Lagrange9ˇ §|
dx
b =
dy
?a =
du
eax+by;
=
adx+bdy = 0; adu+eax+bydy = 0:
d1 §
ax+by = c:
\1 §§
adu+ecdy = 0:
?–
u = ?1ayec = ?1ayeax+by;
=
1
bDx ?aDye
ax+by = ?1
aye
ax+by:
13.3 ~X? 5 g ' § ˇ) 18
a?)L§¥5? :'1 §3? 1 § )(?k¨'~?c)
I \1 §§– x§ d· \ ¨'~?c?3? 1 §
) §qI L5 ¨'~?'1 §3?)1 § § 72 ?1
¨'~?'
2. ef(x;y) = ei(ax+by)§w,k
1
L(Dx;Dy)e
i(ax+by) = 1
F(ia;ib)e
i(ax+by):
ˇd§ a b ¢?§ L(Dx;Dy)¥ X? ¢? §
1
L(Dx;Dy) sin(ax+by) = Im
? 1
L(ia;ib)e
i(ax+by)
?
;
1
L(Dx;Dy) cos(ax+by) = Re
? 1
L(ia;ib)e
i(ax+by)
?
:
FXJL(Dx;Dy)·D2x;DxDy D2y { E …?§
L(Dx;Dy) = G(D2x;DxDy;D2y);
K
1
G(D2x;DxDy;D2y) sin(ax+by)
= 1G(?a2;?ab;?b2) sin(ax+by);
1
G(D2x;DxDy;D2y) cos(ax+by)
= 1G(?a2;?ab;?b2) cos(ax+by):
3. ef(x;y) = eax+byg(x;y)§K
1
L(Dx;Dy)e
ax+byg(x;y)
= eax+by 1L(D
x +a;Dy +b)
g(x;y):
y 5?
Dx£eax+byg(x;y)? = eax+by(Dx +a)g(x;y);
Dy£eax+byg(x;y)? = eax+by(Dy +b)g(x;y);
ˇd
L(Dx;Dy)eax+byg(x;y) = eax+byL(Dx +a;Dy +b)g(x;y):
? § k
L(Dx;Dy)
‰
eax+by 1L(D
x +a;Dy +b)
g(x;y)
= eax+byL(Dx +a;Dy +b)
‰ 1
L(Dx +a;Dy +b)g(x;y)
= eax+byg(x;y):
13.3 ~X? 5 g ' § ˇ) 19
?“ y'
4. ef(x;y) = xmyn§K 1=L(Dx;Dy)—m Dx; Dy ??§ ? A)'
~4 ? g §(D2x ?2DxDy +D2y)u = 12xy ˇ)'
) § A)
u0 = 12D2
x ?2DxDy +D2y
xy = 12(D
x ?Dy)2
xy
= 12D2
x
1? DyD
x
??2
xy = 12D2
x
?
1+2DyD
x
+¢¢¢
?
xy
= 12D2
x
?
xy + 2D
x
x
?
= 12
?
y 1D2
x
x+ 2D3
x
x
?
= 12
?1
6x
3y + 1
12x
4
?
= x4 +2x3y;
¥|^
1
Dxx =
1
2x
2
?
* ddx x
2
2 = x
·
;
1
D2xx =
1
6x
3
?
* d
2
dx2
x3
6 = x
·
;
1
D3xx =
1
24x
4
?
* d
3
dx3
x4
24 = x
·
:
A g § ˇ)fi3~2¥? § g § ˇ)
u = x`(x+y)+?(x+y)+x4 +2x3y:
1=L(Dx;Dy)—m –k {§ˇ (J'~X§3 ?
~K¥§ –
1
(Dx ?Dy)2 =
1
D2y
?
1? DxD
y
·?2
= 1D2
y
h
1?2DxD
y
+¢¢¢
i
:
ˇd§ g § A) –
u0 = 12(D
x ?Dy)2
xy = 2xy3 +y4:
? ? { A)
x4 +2x3y ?2xy3 ?y4 = (x?y)(x+y)3 = 2x(x+y)3 ?(x+y)4
· A g § )'
1 e g f(ax+by)§ L(Dx;Dy)·Dx;Dy (n)g“§K
Drxg(ax+by) = arg(r)(ax+by);
Dsyg(ax+by) = bsg(s)(ax+by):
13.3 ~X? 5 g ' § ˇ) 110
?–
L(Dx;Dy)g(ax+by) = L(a;b)g(n)(ax+by):
ˇd§ L(a;b) 6= 0 § k
1
L(Dx;Dy)g
(n)(ax+by) = 1
L(a;b)g(ax+by):
~5 ?) §@
2v
@x2 +
@2v
@y2 = 12(x+y)'
) k?A)' §w,? 1 ^ '?–A)
v0 = 12D2
x +D2y
(x+y) = 12?12 +12¢¢3!(x+y)3 = (x+y)3:
N·? A g § ˇ)§l g § ˇ)
v = (x+y)3 +`(x+iy)+?(x?iy):
F L(a;b) = 0 /'
k ? Aˇ g ' §
(Dx ?fiDy)u = xr?(y +fix);
A Lagrange9ˇ §|
dx
1 =
dy
?fi =
du
xr?(y +fix):
u·y +fix = c§l ?
u = 1r +1xr+1?(c) = 1r +1xr+1?(y +fix):
?–§k
1
Dx ?fiDyx
r?(y +fix) = 1
r +1x
r+1?(y +fix):
E|^? (J§ –?
1
(Dx ?fiDy)kx
r?(y +fix) = r!
(r +k)!x
r+k?(y +fix):
~6 ?)(D2x ?6DxDy +9D2y)u = 6x+2y§=
(Dx ?3Dy)2u = 6x+2y:
) ~3fi? A g § ˇ)x`(y +3x)+?(y +3x)'
g § A)
u0 = 1(D
x ?3Dy)2
(6x+2y)
= 2(D
x ?3Dy)2
(3x+y) = x2(y +3x):
13.3 ~X? 5 g ' § ˇ) 111
ˇd§ g § ˇ)
u = x2(y +3x)+x`(y +3x)+?(y +3x):
2 ?u g f(x;y)§ –ˇL?) A Lagrange9ˇ § {)
?'
~X§ ? §
(Dx ?fiDy)u = f(x;y);
Lagrange9ˇ §
dx
1 =
dy
?fi =
du
f(x;y):
ddx = dy=(?fi)§ y +fix = c' \dx = du=f(x;y)§
du = f(x;y)dx = f(x;c?fix)dx;
u =
Z
f(x;c?fix)dx:
O ¨' §2 c^y +fix £§= A)
u0 = 1D
x ?fiDy
f(x;y) =
?Z
f(x;c?fix)dx
?
c=y+fix
:
~7 ?) §(2Dx ?3Dy)(Dx +Dy)u = 5ex?y'
) A g § ˇ) `(y?x)+?(2y +3x)'
g § A)
u0 = 5(2D
x ?3Dy)(Dx +Dy)
ex?y
= 1D
x +Dy
h 5
2?3(?1)e
x?y
i
= 1D
x +Dy
ex?y =
Z
ex?(c+x)dx
flfl
flfl
c=y?x
= xe?c
flfl
fl
c=y?x
= xex?y:
?–§ g § ˇ)
u = xex?y +`(y ?x)+?(2y +3x):
13.4 Aˇ CX? 5 g ' § 112
13.4 Aˇ CX? 5 g ' §
k?
xmyn @
m+nu
@xm@yn
/“ '-
x = et; y = es;
=t = lnx; s = lny§Kk
Dt · @@t = x @@x; Ds · @@s = y @@y:
u·§
x2 @
2
@x2 = Dt(Dt ?1); y
2 @
2
@y2 = Ds(Ds ?1);
x3 @
3
@x3 = Dt(Dt ?1)(Dt ?2); y
3 @
3
@y3 = Ds(Ds ?1)(Ds ?2);
... ...
/§
xmyn @
m+n
@xm@yn = Dt(Dt ?1)¢¢¢(Dt ?m+1)
£Ds(Ds ?1)¢¢¢(Ds ?n+1):
?–§?uL(Dx;Dy) d
xmyn @
m+nu
@xm@yn
/“ |? §ˇLC
x = et; y = es;
= z ~X? ' §'
~8 ? §x2@
2u
@x2 ?y
2@
2u
@y2 +x
@u
@x ?y
@u
@y = 0 ˇ)'
) X C §K §z
[Dt(Dt ?1)?Ds(Ds ?1)+Dt ?Ds]u = 0;
=£D2t ?D2s?u = 0'?–§ § ˇ)
u = `1(t+s)+?1(t?s) = `1(lnx+lny)+?1(lnx?lny)
= `1(ln(xy))+?1
?
ln xy
·
= `(xy)+?
?x
y
·
:
13.5 ˉ? § 1ˉ) 113
13.5 ˉ? § 1ˉ)
3~1¥§Q?? Lˉ? §
@2u
@t2 ?a
2@2u
@x2 = 0
ˇ)§?p ?
u(x;t) = f(x?at)+g(x+at);
¥f g·??…?'
? )“L?§ˉ? § ˇ)§d ˉ|?'
F f(x;t) L x? D′ ˉ§ t = 0 §ˉ/ f(x)§ – ‰ ˙a D′§
–ˉ/ C?
F g(x;t)K L x? mD′ ˉ§ t = 0 §ˉ/ g(x)§ – ‰
˙a mD′§ –ˉ/ C'
§ ?D′§p Z6'? ·ˇ ˉ? §· 5 g §§ k) U\5'
l K ‘5§…?f gATd‰)^ (‰'XJrflK{z ?.u
ˉ D′flK§@o§f g ,B d—'^ ?‰'
~9 ?‰)flK
@2u
@t2 ?a
2@2u
@x2 = 0; ?1 < x < 1; t > 0;
u(x;t)flflt=0 = `(x); ?1 < x < 1;
@u
@t
flfl
fl
t=0
= ?(x); ?1 < x < 1
)'
) ?fi § ˇ)
u(x;t) = f(x?at)+g(x+at):
y3 —'^ (‰…?f g'
)“ \—'^ §
f(x)+g(x) = `(x);
a£f0(x)?g0(x)? = ??(x):
1 “¨'§ –
f(x)?g(x) = ?1a
Z x
0
?(?)d? +C;
13.5 ˉ? § 1ˉ) 114
¥C·¨'~?' ? (J ? 1 “??§= ?
f(x) = 12`(x)? 12a
Z x
0
?(?)d? + C2 ;
g(x) = 12`(x)+ 12a
Z x
0
?(?)d? ? C2 :
2 £ )“¥§ ? ?.?m ˉ? §‰)flK )
u(x;t) = f(x?at)+g(x+at)
= 12`(x?at)? 12a
Z x?at
0
?(?)d? + C2
+ 12`(x+at)+ 12a
Z x+at
0
?(?)d? ? C2
= 12£`(x?at)+`(x+at)?+ 12a
Z x+at
x?at
?(?)d?:
? )? ˉ? §‰)flK 1ˉ)§‰d’Alembert)'
) n?′
F1 L?d— £-u 1ˉt = 0 ˉ/ `(x)§– '? '§ ?/
mD′§ ˙ a?
F1 L?d— -u 1ˉ§t = 0 3x? ?(x)§3t §§ m??
/*— [x?at; x+at] §D′ ˙ ·a'
?.ugd ? ??D′A5§ – A */Ly 5'‰)flK
@2u
@t2 ?a
2@2u
@x2 = 0; ?1 < x < 1; t > 0;
u(x;t)flflt=0 = `(x); ?1 < x < 1;
@u
@t
flfl
fl
t=0
= ?(x); ?1 < x < 1
‰′ ·(x;t)?? ??'XJu :x03t = 0 (=?Au(x;t) ??x?
:(x0;0)) -u§Kd ‰ ˉ9? x0 ?at ? x ? x0 +atS'? ? ·u x0:
K ? §ˇ ? S?? : ‰£ —'-u K § ? ? : ‰ ?
—'-u K '
u x0: K ?
13.5 ˉ? § 1ˉ) 115
?p x = x0 ?at x = x0 +at? ˉ? § (Lx0: )A 'aq/§dA
x = x1 ?at x = x2 +at ? ???
x1 ?at ? x ? x2 +at; x2 > x1; t ? 0
·(x? )?m[x1;x2] K ? '
?m[x1;x2] K ?
–l J flK ?? :(x;t)(=u x:3t ) £ . x?
= : —'-uk’”)“
u(x;t) = 12£`(x?at)+`(x+at)?+ 12a
Z x+at
x?at
?(?)d?:
w ? §?u(x;t)?? ?? :(x;t)§ £= 6ux? [x?at; x + at]¥u —
'-u§ ?m ? : —'-u?’'ˇd§x? ?m[x?at; x + at] ·(x;t):
6?m' §dx? x = x1 + at9x = x2 ? at? ? n /? § ·x? ?
m[x1; x2] ?‰? ? S?? : £§ ‰d?m[x1; x2] —'-u ?‰'
(x;t): 6?m
?p ?‰)flK § o" >.^ ' O(/‘§ ovk?(
?? ^
u(x;t)flflx!§1 ! 0 ‰ u(x;t)flflx!§1k.:
‘5§ (AT?( ?? ^ ' NflK §? ^
–d`(x) ?(x) N/“5 y'`(x) ?(x)o·? 3 k
S' jxjO §`(x) ?(x) ?v fl/“u0'ˇd§3k m
S§u(x;t)o ·3 k S 0'
lVg ‘§?¢?? u , · n z ? '§TT ·L? 3
? ? m m S§ ::: K – O'
13.6 ˉ 116
13.6 ˉ
ˉ? §£ ·– ‰ ˙aD′ P~ˉ'?·3 ?ˉ? § ? X {z
b N'
F¢S b‰3ˉ?L§¥ 3 §=u oU ˉ '
3? t§u o?U·
1
2
Z l
0
‰
@u
@t
?2
dx:
u o?UV(t) –' ? ? 'E3u dx§3
T @u@x
flfl
fl
x+dx
?T @u@x
flfl
fl
x
= T @
2u
@x2dx
^e§u3dt mS£? (@u=@t)dt§ ? ?
T @
2u
@x2
@u
@tdxdt:
? u¨'§ dt mS ? u? ?
dW =
?Z l
0
T @
2u
@x2
@u
@tdx
?
dt
=
?
T @u@x @u@t
flfl
fl
l
0
?
Z l
0
T @u@x @
2u
@x@tdx
?
dt:
ˇ u ‰§uflflx=0 = 0; uflflx=l = 0§?–k
@u
@t
flfl
fl
x=0
= 0; @u@t
flfl
fl
x=l
= 0:
\=
dW =
"
?12 ddt
Z l
0
T
@u
@x
?2
dx
#
dt:
d? = uu ?UV(t) ~ §dV(t) = ?dW'e5‰t = 0 u ?
U 0§Ku3t ?U=
V(t) = 12
Z l
0
T
@u
@x
?2
dx:
?U ?U \§ u oU
E(t) = 12
Z 1
?1
?
‰
@u
@t
?2
+T
@u
@x
?2?
dx
= 12
Z 1
?1
? @u
@t
?2
+a2
@u
@x
?2?
‰dx;
?–
dE(t)
dt =
Z 1
?1
?@u
@t
@2u
@t2 +a
2@u
@x
@2u
@x@t
?
‰dx
= a2‰@u@x @u@t
flfl
flfl
1
?1
+
Z 1
?1
@u
@t
?@2u
@t2 ?a
2@2u
@x2
?
‰dx
= 0;
13.6 ˉ 117
NX oU ˉ '
A/§ N3 § §§3 m t !?te· CC '
F? ? b §ˇd§ 9 ? £u(x;t) 5 ' d A ·§
D′ ˙ ~?§ 6u“˙ ˉ '
?k? {zb § § /“ 0 N5 ?’'0 N5 ==Ny3
D′ ˙a '
!¥ w §ˉ? § ) –') !m ?D′
ˉ' – § ? ˉ' 3k ?m §3?Lv m
§§ ? 'm ? ?U'u·§? – l ¥ ˉ§
, ˉ 3'
y3§ mD′ ˉu(x;t) = f(x?at)§§· ˉ? §
@u
@t +a
@u
@x = 0 (z)
)'ˇL? “? )?( § ?L§¥? ) p? §l Ly ˉ
'
F3 §(z)¥\ @2u=@x2 §~X§
@u
@t +a
@u
@x ?fi
@2u
@x2 = 0; (>)
a fiE ~?'XJE, ˇ? ˉ/“ ) §
u(x;t) =
Z 1
?1
A(k)ei(kx?!t)dk;
@o§ \ §(>)§b‰ – ¨' gS§@o – ˉ?k / “˙0!?7L
v ’X“
! = ka?ifik2;
ˇd§ §(>) ) ·
u(x;t) =
Z 1
?1
A(k)e?fik2teik(x?at)dk:
?‘?§ §(>)?£ ˉ?L§§E,·– ‰ ˙a D′ ˉ§, % m
?/P~(b ~?fi > 0)'du P~ˇf ˉ?kk’§ ˉ? ' P~
§ˇd§ˉ CX?m – C§ ˉ/% X m Cz'
F3 §(z)¥\ @3u=@x3 §~X§
?p? ·E?/“ )' £·§ ¢ ‰J 'k7L·¢?§ˇ 3t = 0 ) 7L·x
…?'
13.6 ˉ 118
@u
@t +a
@u
@x +fl
@3u
@x3 = 0; (~)
a flE ~?'XJE, ˇ?
u(x;t) =
Z 1
?1
A(k)ei(kx?!t)dk;
/“ )§Kˉ?k “˙!7L v ’X“ ·
! = k?a?flk2¢;
?–§
kx?!t = k£x??a?flk2¢t?;
§(~) ) ·
u(x;t) =
Z 1
?1
A(k)eik[x?(a?flk2)t]dk:
Fˉ D′ ˙(O(‘§· D′ ˙§= )
vp = !k = a?flk2
·k …?'?‘?§ˉ? §D′ ˙ '$ ?uk2 < a=fl k2 > a=fl '
§D′ ˇd§3 m : §ˉ ?'( ˉ? ' ? ’~)
X m Cz'
? y §? ˉ '
F‰′, ?D′ ˙§
vg = d!dk = a?3flk2;
? + §§·ˉ D′ ˙§ ·U D′ ˙'
+ §· ˉ q A:'
+ vg vp
F 5 A'XJ3 ‰^ e§I 3ˉ? §¥ ? 5 §~X
13.6 ˉ 119
@u
@t +a(1+ u)
@u
@x = 0;
? n) D′ ˙ · 0 n5 k’§ £ k’' – y§?
§ ) – ? …? /“
u(x;t) = f?x?a(1+ u)t¢;
¥fE·??…?§§ ·u(x;t)3t = 0 /Gf(x)§
u(x;t)flflt=0 = f(x):
du §¥ y 5
u@u@x = 12 @(u
2)
@x ;
ˇd§) 2 k U\5'? §7,? ) J
F § \J–?)
F § )7,Ly # A:( n Ly # 5?5)
? 5 § ?)–9) A5§· 5 ? K'
13.7 9D § ‰5? 120
13.7 9D § ‰5?
9D § A:· 3 '
9D §?u . §§3 §¥?k …?? mC ?
? mC ?§ˇd§ § k m C5' ?{‘§9D
L§· _ '
?? 0 9D flK§
@u
@t ??
@2u
@x2 = 0:
/“ ! §(>) §?–9D § ) – ?
u(x;t) =
Z 1
?1
A(k)e??k2teikxdk:
?x? /Ly § u(x;t) mt P~
D9 flK ? y3 9D §§ k, A:§? ·D9
??'
? ?.?m Aˇ g9D §
@g
@t ??
@2g
@x2 = –(x?x
0)–(t?t0); t0 > 0:
? §£a ] ( 3ut0 ):(8¥3 mx0 :) 9 ? ) § |'b t =
0 0 § 0'? §39 y c(=t < t0 )§0 § w,E ‰ – 0'
t > t0 § –?
g(x;t) = 12p?…(t?t0) exp
?
?(x?x
0)2
4?(t?t0)
?
:
? (JL?§ t > t0§K?u0 ? :x§g(x;t)o 0'? ·
‘§ 9 y§K l? ?§o?=a § K '
???? D9 § ,· ¢ 'ˇd§ k39 y v m §9
D § Uv —/£ ¢S 9D L§'
?– y?? D9 §·du3 ?9D § §L'{z 9D
L§ *ˉn'3oY0 ¥ y ? !5§~X 9D L§ 9
$? !5§ * L§ !5§o?du * f('
f! f!>f¢¢¢¢¢¢) $? -E –k ˉ D′m5'? §9D
§BAT?U
@2u
@x2 =
1
?
@u
@t +
1
a2
@2u
@t2 :
§m k '
FXJ1 ^§ § ) Ly ˉ?L§ ? A § 1 –w?
· '? ?u !? SN'
13.7 9D § ‰5? 121
FXJ1 ^§1 · ? § § )–9D ? A ' 1
y§ ( – D9 k '?l‰)flK
@2x47
@x2 ?
1
?
@x47
@t ?
1
a2
@2x47
@t2 = ?–(x?x
0)–(t?t0)
(t;t0 > 0;?1 < x;x0 < 1);
x47flflt=0 = 0; @x47@t
flfl
fl
t=0
= 0 (?1 < x;x0 < 1)
)
x47 (x;t) = a2J0
? a
2?
p
(x?x0)2 ?a2(t?t0)2
·
£exp
h
? a
2
2?(t?t
0)i·?t?t0 ? jx?x0j
a
·
–w ' a !1 §qkx47 (x;t) ! g(x;t)'
13.8 Laplace § ‰5? 122
13.8 Laplace § ‰5?
Laplace § )§
r2u(x;y) = 0;
? N …?'§·) …?
f(z) = f(x+iy) = u(x;y)+iv(x;y)
¢ u(x;y)(‰J v(x;y))'
3) …? ) ? S?? :a …? § ‰ u–T: % –
:…? ?
f(a) = 12…
I
jz?aj=R
f(z)d :
‰n?) …? ¢ (‰J ) ??§
u(x0;y0) = 12…R
I
C
u(x;y)dl;
C :(x?x0)2 +(y?y0)2 = R2:
ˇd§ u(x;y) 6= ~?§u(x;y) § ‰ U y33 – '
‰n 4 n · N …? ? A5'
– ?n N …? Vg'XJ3? VS…? ? 3§ vn
Laplace §§K?T…? VS n N …?'
‰n?un N …? E,??§ˇd§4 n E,??'
n N …? ¢~ n Laplace §(3 IX¥) ? “)'
ˇ Laplace §¥§? gC ? ? §?–§? ? “ ?) ‰·
gC g…?'
F~?(0g g“)
F g…?( g g“)x; y; z
F g…?§ ?)k? §
2z2 ?x2 ?y2; xz; yz; xy x2 ?y2:
Fng…? ?)k §
(4z2 ?x2 ?y2)x; (4z2 ?x2 ?y2)y; (2z2 ?3x2 ?3y2)z;
xyz; (x2 ?y2)z; (y2 ?3x2)y (x2 ?3y2)x:
F /§lg…? ?)k2l +1 '