a0 a1
star a2a3a4a5a6a7a8a9a10 7
1 8 ¥ … ? 11
1 8 ¥ … ?
Helmholtz §3¥ IXXee'lC § o Legendre §
1
sin
d
d
sin d£d
?
+
h
?? ?sin2
i
£ = 0
–9§ Aˇ /§Legendre §
1
sin
d
d
sin d£d
?
+?£ = 0;
C x = cos ; y(x) = £( )§Kq § U ?
d
dx
??
1?x2
· dy
dx
?
+
?
?? ?1?x2
?
y = 0
d
dx
??
1?x2
· dy
dx
?
+?y = 0:
? ? § )§§ 5 9 3'lC {¥ AA^^'
16.1 Legendre § ) 12
16.1 Legendre § )
3? Legendre § ) N/“ c§ ~ ' § ) n ( 18
)§flk –?Legendre § ) ) 5 '
F Legendre §(?p x·EC )
d
dx
??
1?x2
· dy
dx
?
+?y = 0:
kn :§x = §1 x = 1§? · K :'ˇd§ ?n : U· :
§Legendre § )3 ??) '
F x = 0:·Legendre § ~:§ˇd§ § )3–x = 0: % jxj < 1S
) § –—m Taylor??'18 ¥fi?? 5?’ A)§§ ·
y1(x) =
1X
n=0
22n
(2n)!
Γ
?
n? ”2
·
Γ
n+ ” +12
?
Γ
?
?”2
·
Γ
” +1
2
? x2n;
y2(x) =
1X
n=0
22n
(2n+1)!
Γ
n? ” ?12
?
Γ
?
n+1+ ”2
·
Γ
?” ?12
?
Γ
?
1+ ”2
· x2n+1;
¥
”(” +1) = ?:
r? A) ) § – Legendre § )3 ?? S L “' ·§? X
§3??)′? – §( ‘§3x = §1 ? :§ § ??)o ‰ ) '?
l ? ) N/“ –w '
?uy1(x)§ nv § X?
c2n = 2
2n
(2n)!
Γ
?
n? ”2
·
Γ
n+ ” +12
?
Γ
?
?”2
·
Γ
” +1
2
?
? 2
2n
(2n+1)2n+1=2e?(2n+1)p2…
?
n? ”2
·n?(”+1)=2
e?n+”=2p2…
Γ
?
?”2
·
£
n+ ” +12
?n+”=2
e?n?(”+1)=2p2…
Γ
” +1
2
?
=~?£ 1n:
16.1 Legendre § ) 13
?‘?§ ~? §y1(x)3x = §1NC 1 §
ln 11?x2 =
1X
n=1
1
nx
2n
'ˇd§y1(x)3x = §1??u 'x = §1·y1(x) {:'XJrLegendre §
3x = 0 1 )y1(x)) ?? §§ ‰· ? …?'
?uy2(x)§ nv § k
c2n+1 = 2
2n
(2n+1)!
Γ
n? ” ?12
?
Γ
?
n+1+ ”2
·
Γ
?” ?12
?
Γ
?
1+ ”2
·
? 2
2n
(2n+2)2n+3=2e?(2n+2)p2…
£
n? ” ?12
?n?”=2
e?n+(”?1)=2p2…
Γ
?” ?12
?
£
?
n+1+ ”2
·n+(”+1)=2
e?n?1?”=2p2…
Γ
?
1+ ”2
·
=~?£ 12n+1:
?–§ ~? §y2(x)3x = §1NC 1 §
ln 1+x1?x =
1X
n=1
2
2n+1x
2n+1
'ˇd§y2(x)3x = §1 ??u 'x = §1 ·y2(x) {:'rLegendre §
3x = 0 1 )y2(x)) ?? §§ · ? …?'
F –3x = 1(‰x = ?1): S?)Legendre §'
dux = §1· § K :§ §3 0 < jx?1j < 2Sk K)§
y(x) = (x?1)‰
1X
n=0
cn(x?1)n;
\Legendre §§ – 3x = 1: I §
‰(‰?1)+‰ = 0:
?–§‰1 = ‰2 = 0'?‘?Legendre §3x = 1: S 1 )¢S ·3 jx?1j <
2S) § 1 )K ‰?k?? §–x = 1( x = ?1) {:'
U ~ ' §??){ IO ‰§ –? Legendre §3x = 1: S 1 )
P”(x) =
1X
n=0
1
(n!)2
Γ(” +n+1)
Γ(” ?n+1)
x?1
2
?n
;
16.1 Legendre § ) 14
? ”g1 aLegendre…??1 )
Q”(x) = 12P”(x)
?
ln x+1x?1 ?2 ?2?(” +1)
?
+
1X
n=0
1
(n!)2
Γ(” +n+1)
Γ(” ?n+1)
1+ 12 +¢¢¢+ 1n
? x?1
2
?n
;
? ”g1 aLegendre…?§ ¥ ·Euler?§?(z)·Γ…? ?? ?'
d u…?P”(x)( ?? § §·–x = ?1 x = 1 {: ? …
?) Q”(x) ?? 5fik ‰5 5‰§?^ I AO5?'
16.2 Legendre? “ 15
16.2 Legendre? “
¥/? Sx2 +y2 +z2 < a2 Laplace §> flK
r2u = 0;
uflfl§ = f(§);
¥§ L¥?x2 +y2 +z2 = a2 C:'
? y3?? m? N/G§g,? ^¥ IX5?)? ‰)flK§
?r I : 3¥%'XJ>.^ k7, (ˇL¥% ) ‰?^= C ?
?5§@o§ , A r? ??? 4? '
? J IX §? ? …?u , `?’§
u = u(r; ):
N· ‰)flK3¥ IXe N/“' ·§I 5?
F Laplace §3 = 0 = … ??§3? : ? 3u(r; )?
?'
rLaplace §U ¥ IX § –‰)flK d5§7L ? u(r; )3 =
0 = … k.^ '
F Laplace §3 I :r = 0 ??§3T:? 3u(r; )?r ?'
rLaplace §U ¥ IX § –‰)flK d5§ 7L ? u(r; )3
I :r = 0? k.^ '
‰)flK3¥ IXe L /“AT·
1
r2
@
@r
r2@u@r
?
+ 1r2 sin @@
sin @u@
?
= 0;
uflfl =0k.§ uflfl =…k.§
uflflr=0k.§ uflflr=a = f( ).
'lC '-
u(r; ) = R(r)£( );
\ § k.^ § U 'lC
1
sin
d
d
sin d£( )d
?
+?£( ) = 0;
£(0)k.§ £(…)k.;
d
dr
r2dR(r)dr
?
??R(r) = 0;
16.2 Legendre? “ 16
¥?·'lC ? ‰o?'
Legendre §§ k.^ § ? flK'ˇ~ C x = cos ; y(x) = £( )§?
r ‰o?? ?”(” +1)§ flK C
d
dx
??
1?x2
· dy
dx
?
+”(” +1)y = 0;
y(§1)k.:
? …?
F –lLegendre §3x = 0: S 5?’) u5?)'
!fi? ? 5?’) /“§ y ?u ?(‰”) §? )
3x = §1 ·??u '
? § )3x = §1 k.§ ??(‰”) , Aˇ '
FlLegendre §3x = 1: S 5?’)P”(x) Q”(x) u5? '
P”(x) =
1X
n=0
1
(n!)2
Γ(” +n+1)
Γ(” ?n+1)
x?1
2
?n
;
P”(x)3x = 1:·) § , ·k. ?
Q”(x) = 12P”(x)
?
ln x+1x?1 ?2 ?2?(” +1)
?
+
1X
n=0
1
(n!)2
Γ(” +n+1)
Γ(” ?n+1)
1+ 12 +¢¢¢+ 1n
? x?1
2
?n
;
Q”(x)3x = 1:·??u '
rLegendre § ˇ) ?
y(x) = c1P”(x)+c2Q”(x);
du ?)3x = 1k.§7Lkc2 = 0§ c1 = 1'
?)3x = ?1: k.§ –‰ ? = ”(” +1)§l ? A …?'
3x = ?1:§P”(x) ?
P”(?1) =
1X
n=0
(?)n
(n!)2
Γ(” +n+1)
Γ(” ?n+1):
16.2 Legendre? “ 17
N·w § n > ”– §?? ? §ˇd? ??· ?? '§
’
un
un+1 = ?
h(n+1)!
n!
i2Γ(” +n+1)
Γ(” +n+2)
Γ(” ?n)
Γ(” ?n+1)
= (n+1)
2
(n+” +1)(n?”) = 1+
1
n +O
1
n2
?
;
Gauss O{ § –w
F?u ” §P”(x)3x = ?1:u '
F P”(x)·????§§ U3x = ?1:k.?
F ? flKk( "))§7L ?P”(x) ·????§= ? “'
lP”(x) N/“w§? Uu)3” K ? '?–§ flK ) ·
?l = l(l +1), l = 0;1;2;3;¢¢¢ ;
…? yl(x) = Pl(x):
Pl(x)· lg? “§? lgLegendre? “§
Pl(x) =
lX
n=0
1
(n!)2
(l +n)!
(l?n)!
x?1
2
?n
:
N· Legendre? “3x = 1: ?
Pl(1) = 1:
Legendre? “· flK ) y §· Legendre §3k.^
e …? y '
$ A Legendre? “ L “
P0(x) = 1;
P1(x) = x;
P2(x) = 12
?
3x2 ?1
·
;
P3(x) = 12
?
5x3 ?3x
·
;
P4(x) = 18
?
35x4 ?30x2 +3
·
:
?k y?”(” +1) ? 0§ˇ ” ? 0'
Gauss O{ e?? 1P
n=0
un¥ ’ – ?
un
un+1 = 1+
?
n +O
?
n??
·
; ? = fi+ifl; ? > 1;
K fi > 1 §?? ?′?? fi ? 1 §?? U ?′?'
16.2 Legendre? “ 18
§ a/ a16.1'
a16.1 Legendre? “
16.3 Legendre? “ 'L? 19
16.3 Legendre? “ 'L?
Legendre? “ 'L?·
Pl(x) = 12ll! d
l
dxl
?
x2 ?1
·l
:
? L “ ? Rodrigues?“'
y ˇ
?
x2 ?1
·l
= (x?1)l[2+(x?1)]l
=
lX
n=0
l!
n!(l?n)!2
l?n(x?1)l+n;
?–
1
2ll!
dl
dxl
?
x2 ?1
·l
= d
l
dxl
lX
n=0
1
n!(l?n)!2
?n(x?1)l+n
=
lX
n=0
1
n!(l?n)!
(l +n)!
n!
x?1
2
?n
:
? y? Legendre? “ 'L?'
lLegendre? “ 'L?§?= –w Legendre? “ 5 l ?
Pl(x)· …??l ? Pl(x)· …?§=
Pl(?x) = (?)lPl(x):
2( Pl(x)3x = 1: ? §q – Pl(x)3x = ?1: ? §
Pl(?1) = (?1)l:
lLegendre? “ 'L? – ? Legendre? “¥?k X?§l
Legendre? “ , w?L “' d§ ?x2 ?1¢l—m§
?
x2 ?1
·l
=
lX
r=0
(?)r l!r!(l?r)!x2l?2r;
, ˉ ?lg§
dl
dxl
?
x2 ?1
·l
= d
l
dxl
lX
r=0
(?)r l!r!(l?r)!x2l?2r
=
[l=2]X
r=0
(?)r l!r!(l?r)! (2l?2r)!(l?2r)! xl?2r;
du ?lg §? “ g? $lg§?–?p “ d ?c lC ?
[l=2]'?’ eLegendre? “ 'L?§
Pl(x) =
[l=2]X
r=0
(?)r (2l?2r)!2lr!(l?r)!(l?2r)!xl?2r:
16.3 Legendre? “ 'L? 110
l? L “?N·? Legendre? “Pl(x)3x = 0: ?
P2l(0) = (?)l (2l)!22ll!l!; P2l+1(0) = 0:
lLegendre? “ 'L?, – N?k?′ (J, ~X, rLegendre
? “ 'L? Rolle n( 5, Uy?l gLegendre ? “ l "
: ‰‰ ··¢¢¢??,? u?m(?1; 1)S'
16.4 Legendre? “ 5 111
16.4 Legendre? “ 5
Legendre? “· flK …? y §ˇd§l flK
u§ –y?Legendre? “ 5§= g? Legendre? “3?
m[?1; 1] § Z
1
?1
Pl(x)Pk(x)dx = 0; k 6= l:
–l § u5y?'
y3^, ? {y?? (J'
kO ¨' Z
1
?1
xkPl(x)dx;
¥k l · K ?'
F?u? ¨'§l ¨…? 5 –
Z 1
?1
xkPl(x)dx = 0; k§l = ?:
F k§l ? § Pl(x)^§ 'L? \§u·k
Z 1
?1
xkPl(x)dx = 12ll!
Z 1
?1
xk d
l
dxl
?
x2 ?1
·l
dx
= 12ll!
?
xk d
l?1
dxl?1
?
x2 ?1
·lflfl
fl
1
?1
?
Z 1
?1
dxk
dx
dl?1
dxl?1
?
x2 ?1
·l
dx
?
:
du d
l?1
dxl?1
?x2 ?1¢l¥ ‰?kˇf?x2 ?1¢§?–3 \ e x = §1 §'
¨' 5 ‰ 0§u· k
Z 1
?1
xkPl(x)dx = 12ll!
Z 1
?1
(?)1dx
k
dx
dl?1
dxl?1
?
x2 ?1
·l
dx:
? §' ¨' g§ J Ly3n ?
(1) UC g K ?
(2) ?…??x2 ?1¢l ?~ g?
(3) ?…?xk ?O\ g'
? §' ¨'lg § ?$ =£ …?xk §(J C
Z 1
?1
xkPl(x)dx = 12ll!
Z 1
?1
(?)ld
lxk
dxl
?
x2 ?1
·l
dx:
? k ? U§ ·k < l§…?xk ?lg ‰ 0§u·
Z 1
?1
xkPl(x)dx = 0; k < l:
16.4 Legendre? “ 5 112
, ? U·k > l§ -k = l +2n§u·
Z 1
?1
xl+2nPl(x)dx = 12ll!
Z 1
?1
(?)ld
lxl+2n
dxl
?
x2 ?1
·l
dx
= 12ll! (l +2n)!(2n)!
Z 1
?1
x2n
?
1?x2
·l
dx:
C x2 = t§?|^B…? – ¨'
Z 1
?1
xl+2nPl(x)dx = 12ll! (l +2n)!(2n)!
Z 1
0
tn?1=2 (1?t)l dt
= 12ll! (l +2n)!(2n)!
Γ
n+ 12
?
Γ(l +1)
Γ
n+l + 32
?
= (l +2n)!2l+2nn!
p…
Γ
n+l + 32
?
= 2l+1(l +2n)!(l +n)!n!(2l +2n+1)!:
AO·k = l§=n = 0 §
Z 1
?1
xlPl(x)dx = l!2l
p…
Γ
l + 32
? = 2l+1 l!l!(2l +1)!:
? (J‘?§XJ …?xk gk uLegendre? “ g?l§@o§ …
?xk lgLegendre? “ ?¨3?m[?1; 1] ¨' ‰ 0'
y3r ? (JA^u¨'
Z 1
?1
Pl(x)Pk(x)dx:
F k 6= l § b k < l' ? Pk(x)·kg? “§ l ?k = ?‰ ?§?
? “¥ ?–Pl(x) ¨' ·0§?– y? g? Legendre? “3?
m[?1; 1] '
Fe?? k = l /'? E, – Pl(x) §, ˉ ¨'§
Z 1
?1
Pl(x)Pl(x)dx =
Z 1
?1
h
clxl +cl?2xl?2 +cl?4xl?4 +¢¢¢
i
Pl(x)dx:
@o, 1 lgLegendre? “ ?¨ ¨' 0 , { lgLegendre?
“ ?¨ ¨' 0. u·, k
Z 1
?1
Pl(x)Pl(x)dx = cl
Z 1
?1
xlPl(x)dx = cl £2l+1 l!l!(2l +1)!;
16.4 Legendre? “ 5 113
cl·lgLegendre? “¥xl X?§
cl = (2l)!2l(l!)2;
?–§Legendre? “ ·
Z 1
?1
Pl(x)Pl(x)dx = 22l +1:
FrLegendre? “ 5 ? 5§ – ?
Z 1
?1
Pk(x)Pl(x)dx = 22l +1–kl:
F’uLegendre? “ 5 ? § –^ gC La'
Z …
0
Pk(cos )Pl(cos )sin d = 22l +1–kl:
? ·‘§kgLegendre? “Pk(cos ) lgLegendre? “Pl(cos )3?m[0; …] –
…?sin '?p …?sin — · ' §
d
d
?
sin d£d
?
+?sin £ = 0
¥ ? …?sin '
…? Legendre? “§ k 5 ?? 3?m[?1; 1]¥'aoY …
?f(x)§(3? ′? ?′e) –—m ??
f(x) =
1X
l=0
clPl(x);
¥ —mX?cl – Legendre? “ 5? §
cl = 2l +12
Z 1
?1
f(x)Pl(x)dx:
~1 …?f(x) = x3ULegendre? “—m'
){1 x3 =
1P
l=0
clPl(x)§K
cl = 2l +12
Z 1
?1
x3Pl(x)dx:
XJ
lim
N!1
Z 1
?1
flfl
flf(x)?
NP
l=0
clPl(x)
flfl
fl2dx = 0;
K???
1P
l=0
clPl(x)? ′? f(x)'
16.4 Legendre? “ 5 114
? ? § – § l = 1 3 §cl 0'
x3 = c1P1(x)+c3P3(x):
—mX?c1 c3'O
c1 = 32
Z 1
?1
x4dx = 35; c3 = 72
Z 1
?1
x3P3(x)dx = 25:
(J ·
x3 = 35P1(x)+ 25P3(x):
fl¢ §3? c1 § – { /? c3§?·ˇ 3—m“¥ \x =
1§ATkc1 +c3 = 1'
){2 ˇ
x3 = c1P1(x)+c3P3(x)
= c1x+c3
5
2x
3 ? 3
2x
?
= 52c3x3 +
c1 ? 32c3
?
x;
?–
5
2c3 = 1; c1 ?
3
2c3 = 0:
dd –
c3 = 25; c1 = 32c3 = 35:
){3 ˇ
x3 = c1P1(x)+c3P3(x);
\P3(x) "":
x =
r
3
5;
k
c1 = x
3
P1(x)
flfl
flfl
x=
p
3=5
= x2flflx=p3=5
= 35;
c3 = 1?c1 = 25:
’uLegendre? “ 5§ –U^– gC La'? §XJ …
?f( )ULegendre? “Pl(cos )—m§
f( ) =
1X
l=0
clPl(cos );
16.4 Legendre? “ 5 115
K—mX?
cl = 2l +12
Z …
0
f( )Pl(cos )sin d :
16.5 Legendre? “ )?…? 116
16.5 Legendre? “ )?…?
Legendre? “·?k3? ?¥ ? ' 3 :r? k :> §
:> ?3: z? §? :> 3(r0; ; `): >?(w, `?’)=
1p
r2 +r02 ?2rr0cos =
8>
>><
>>>:
1
r
1p
1?2xt+t2; t =
r0
r ;
1
r0
1p
1?2xt+t2; t =
r
r0;
¥x = cos §?5‰? …?1=p?2xt+t2 '{
1p
1?2xt+t2
flfl
flfl
t=0
= 1:
3? 5‰e§…?1=p1?2xt+t23t = 0:9 S·) §ˇ – Taylor—m
1p
1?2xt+t2 =
1X
l=0
cltl; jtj < jx§
p
x2 ?1j:
e?y?—mX?cl ·Legendre? “Pl(x)§=
1p
1?2xt+t2 =
1X
l=0
Pl(x)tl; jtj < jx§
p
x2 ?1j:
…?1=p1?2xt+t2=? Legendre? “ )?…?'
y …?1=p1?2xt+t23t = 0: Taylor—m
1p
1?2xt+t2 =
1p
1?2t+t2 ?2(x?1)t
= 11?t
?
1? 2(x?1)t(1?t)2
??1=2
= 11?t
1X
k=0
1
k!
?12
?
?32
?
¢¢¢
1
2 ?k
??
?2(x?1)t(1?t)2
?k
=
1X
k=0
(2k?1)!!
k! (x?1)
ktk(1?t)?(2k+1)
=
1X
k=0
(2k?1)!!
k! (x?1)
ktk
1X
n=0
(2k +n)!
n!(2k)! t
n
=
1X
l=0
" lX
k=0
(l +k)!
k!k!(l?k)!
x?1
2
?k#
tl:
–w §?p —mX? ·lgLegendre? “'? ? ’uLegendre? “)?
…? y?'?? ′? § –d)?…?1=p1?2xt+t2 :(‰'
|^Legendre? “ )?…?§ – N?k^ (J'~X§-x = 1§
1p
1?2t+t2 =
1
1?t =
1X
l=0
tl =
1X
l=0
Pl(1)tl;
16.5 Legendre? “ )?…? 117
?–§Pl(1) = 1'
qX§
1p
1?2xt+t2 =
1p
1?2(?x)(?t)+(?t)2;
1X
l=0
Pl(x)tl =
1X
l=0
Pl(?x)(?t)l;
–y?Legendre? “ 5Pl(?x) = (?)lPl(x)'
16.6 Legendre? “ 4 ’X 118
16.6 Legendre? “ 4 ’X
lLegendre? “ )?…? u§?N· gLegendre? “ m ’X§
=Legendre? “ 4 ’X'
Legendre? “ )?…?
1p
1?2xt+t2 =
1X
l=0
Pl(x)tl;
?t ?§k
?12 ?2x+2t(1?2xt+t2)3=2 =
1X
l=0
lPl(x)tl?1;
=
x?t
(1?2xt+t2)1=2 =
?
1?2xt+t2
· 1X
l=0
lPl(x)tl?1
= (x?t)
1X
l=0
Pl(x)tl:
’ tl X?§k
xPl(x)?Pl?1(x) = (l +1)Pl+1(x)?2xlPl(x)+(l?1)Pl?1(x);
n=
(2l +1)xPl(x) = (l +1)Pl+1(x)+lPl?1(x): (z)
? Legendre? “ 4 ’X§§ n gLegendre? “ m
?X' E|^? 4 ’X§ –r??g Legendre? “^"gLegendre?
“P0(x) = 1 gLegendre? “P1(x) = xL? 5'
Legendre? “ )?…?
1p
1?2xt+t2 =
1X
l=0
Pl(x)tl;
?x? §qU
?12 ?2t(1?2xt+t2)3=2 =
1X
l=0
P0l(x)tl;
u·
t
1X
l=0
Pl(x)tl =
?
1?2xt+t2
· 1X
l=0
P0l(x)tl:
’ tl+1 X?§
Pl(x) = P0l+1(x)?2xP0l(x)+P0l?1(x): (#)
? 4 ’X¥§ y ·n gLegendre? “9 ?'
16.6 Legendre? “ 4 ’X 119
r(z)“?x? § –
(2l +1)Pl(x)+(2l +1)xP0l(x) = (l +1)P0l+1(x)+lP0l?1(x);
(#)“??§ P0l?1(x)‰P0l+1(x)§q – 4 ’X
P0l+1(x) = xP0l(x)+(l +1)Pl(x);
P0l?1(x) = xP0l(x)?lPl(x):
? 4 ’X§K·rP0l§1(x)^Pl(x)9 ?L? 5'
r? 4 ’X?#| § –? ?/“ 4 ’X'
4 ’X ^ ·O , a. ¨'§~X
Z 1
?1
xPk(x)Pl(x)dx:
4 ’X(z)§ U O
Z 1
?1
xPk(x)Pl(x)dx
= l +12l +1
Z 1
?1
Pk(x)Pl+1(x)dx+ l2l +1
Z 1
?1
PkPl?1(x)dx
= l +12l +1 22l +3–l+1;k + l2l +1 22l?1–l?1;k:
16.7 Legendre? “A^ ~ 120
16.7 Legendre? “A^ ~
~2 !>|¥ N¥'
3>|r E0 !>|¥ ? / N¥§¥ ? a'?¥ ?? :
>?'
) ? N¥ §du?>aA§3 N¥ ¥? ?/? ‰ a)?> ' §
?¥N? ?N'
F¥ ?? : o>? · k !>| >? a)> >? U\'
F¥N /§? X¥N >? 0'
Fˇ 3¥ ??vk> §?–3¥ >? vLaplace §'
F ^¥ IX§ I : ¥%? §4? 5>| '
F ? !>|–9¥N ??5§3¥? a)> ‰·74?^= C §ˇ
§?u¥ ?? :§? ·a)> ) >?§‰·o>?§ ·74?^
= C '
u(r; )·¥ :(r; ;`) o>?§u1(r; ) u2(r; )'O· !>| a)> >?§
u1(r; ) = ?E0z +u0 = ?E0rcos +u0;
~?u0= I :? >?'u2(r; )Kd‰)flK
1
r2
@
@r
r2@u2@r
?
+ 1r2 sin @@
sin @u2@
?
= 0;
u2flfl =0k.§ u2flfl =…k.;
u2flflr=a = E0acos ?u0, u2flflr!1 ! 0:
?‰'
u2(r; ) ?– vLaplace §§l n ‘§·dua)> ·' 3¥
? § ¥ ?? ?a)> 3'l?? ‘§ˇ u(r; ) = u1(r; ) +
u2(r; ) u1(r; ) vLaplace §' dua)> ·' 3¥?
§?– r !1 u2(r; )A “u0'
?)‰)flK' § k.^ 'lC § –
1
sin
d
d
h
sin d£( )d
i
+?£( ) = 0;
£(0)k.§ £(…)k.;
d
dr
h
r2dR(r)dr
i
??R(r) = 0;
16.7 Legendre? “A^ ~ 121
¥?·'lC ? ‰o?'316.2!¥fi?? L? flK§ )·
?l = l(l +1), l = 0;1;2;3;¢¢¢ ;
…? £l( ) = Pl(cos ):
?)’uR(r) §§E, – C t = lnr§ §C
d2Rl
dt2 +
dRl
dt ?l(l +1)Rl = 0:
u·
Rl(r) = Alelt +Ble?(l+1)t = Alrl +Blr?l?1:
ˇd§ vLaplace § k.^ ) ·
u2(r; ) =
1X
l=0
?
Alrl +Blr?l?1
·
Pl(cos ):
? ?? ^ u2flflr!1 ! 0§ATk
Al = 0:
2 \¥?r = a >.^ §
u2(r; )flflr=a =
1X
l=0
Bla?l?1Pl(cos )
= E0acos ?u0 = E0aP1(cos )?u0P0(cos );
?–k
B0 = ?u0a; B1 = E0a3; Bl = 0; l ? 2:
? ?
u2(r; ) = ?u0ar + E0a
3
r2 cos :
?p? u2(r; ) , N ¥? a)> ' ?'3 !>| ^
e§ /¥? a)> u u I : :> > 4f U\':
> > ?4…"0u0a ?> 4f 4 4…"0E0a3§ !>|
'
u1(r; ) u2(r; )U\§ ¥ ?? : o>?
u(r; ) = u0
?
1? ar
·
?E0
?
1? a
3
r3
·
rcos :
a16.2 L4? ?? ? >| ' a'
16.7 Legendre? “A^ ~ 122
a16.2 !>|¥ N¥
~3 :> K e !0 ¥ >?'
Xa16.3??§ k ? a !0 ¥(>N˙ ")§ ¥%b (b > a)? :>
q§?0 ¥S ?? : >?'
x
y
z
a
q(0; 0; b)
(x; y; z)
a16.3 :> K e 0 ¥
) 3:> ^e§0 ¥u)4z' du0 ¥· ! §? 4z> 8¥3
¥ L?'ˇd§0 ¥S! ?? : >?§ ·:> >? 4z?> >? U
\'
F ¥ IX§ I : 3¥%§4? :> §w,§? ·:> >?§‰·
4z> >?§ ·74?^= C § ·‘§ `?’'
F (r; ;`): o>? u(r; )§4z> ) >? v(r; )§Kk
u(r; ) = 14…"
0
qp
r2 +b2 ?2rbcos +v(r; ):
m 1 :> q ) >?§"0 >N˙'
Fdu¥S >N˙ §?–§3?v(r; )‰u(r; ) §I ?'r < a(¥S) r >
a(¥ )'
F^v<(r; ) v>(r; )'OL?¥S(r < a) ¥ (r > a) v(r; ) §
F^u<(r; ) u>(r; )'OL?¥S(r < a) ¥ (r > a) u(r; ) '
16.7 Legendre? “A^ ~ 123
y3 5?v<(r; ) v>(r; )'du4z> ' 3¥? §?–§ ¥? :
§v<(r; ) v>(r; )?? vLaplace §'2 ? k.^ ?? ^ § ATk
1
r2
@
@r
r2@v<@r
?
+ 1r2 sin @@
sin @v<@
?
= 0;
v<flfl =0k.§ v<flfl =…k.;
v<flflr=0k.;
1
r2
@
@r
r2@v>@r
?
+ 1r2 sin @@
sin @v>@
?
= 0;
v>flfl =0k.§ v>flfl =…k.;
v>flflr!1 ! 0:
~2¥ {§ –?
v<(r; ) =
1X
l=0
AlrlPl(cos );
v>(r; ) =
1X
l=0
Blr?l?1Pl(cos );
¥X?Al Bl ‰'
/‰ v<(r; ) v>(r; )§ A § 3¥? 7L v o ^ ¥
S! o>?u<(r; ) u>(r; )§3¥? ‰ v>?oY > £¥ { ' o
Y§
u<flflr=a = u>flflr=a;
"@u<@r
flfl
fl
r=a
= @u>@r
flfl
fl
r=a
:
?–§?uv<(r; ) v>(r; )§k
v<flflr=a = v>flflr=a;
"
?@v
<
@r +
1
4…"0
@
@r
qp
r2 +b2 ?2rbcos
?
r=a
=
?@v
>
@r +
1
4…"0
@
@r
qp
r2 +b2 ?2rbcos
?
r=a
:
d1 Ҥ
Alal = Bla?l?1:
2 —m“
1p
a2 +b2 ?2abcos =
1
b
1X
l=0
?a
b
·l
Pl(cos );
16.7 Legendre? “A^ ~ 124
–?
@
@r
1p
r2 +b2 ?2rbcos
flfl
fl
r=a
= 1b2
1X
l=0
?a
b
·l?1
lPl(cos );
q
"Allal?1 + ("?1)q4…"
0
lal?1
bl+1 = ?Bl(l +1)a
?l?2:
)’uAl Bl?? §§ U ?
Al = ?("?1)q4…"
0
l
l +1+"l
1
bl+1;
Bl = ?("?1)q4…"
0
l
l +1+"l
a2l+1
bl+1 :
£ 5 ??¥§ )v<(r; ) v>(r; ). ¥S o>?u<(r; )
u>(r; )'
~4 ![ ?'
k ![ § ? a§ M§?§3 m?? : ?'
: m k :> m ?> § lCoulomb‰?§ˇd§
? ?>? § vPoisson §'? §3 flK¥§ —33
: § ?AT???? vLaplace §'
) E ¥ IX§ I : 3 %§ K?3? ? '? § m??
:(r; ;`) ?AT `?’§u = u(r; )' – u? v § '‰)^
1
r2
@
@r
r2@u@r
?
+ 1r2 sin @@
sin @u@
?
= 0; (r; )6=
?
a; …2
·
;
uflfl =0k.; uflfl =…k.;
uflflr=0k.; uflflr!1 ! 0:
? · ‰)flK(‰ ‘§? ‰)flK ·?‰ )§ˇ ?vk
N ) ? ( ' ) ?'
![ ' N §?7 ^ –…?' § C
1
r2
@
@r
r2@u@r
?
+ 1r2 sin @@
sin @u@
?
= ?4…GMf(r)–(r?a)–
?
? …2
·
; (#)
¥G· ~?§…?f(r) –d
ZZZ
f(r)–(r?a)–
?
? …2
·
r2 sin drd d` = 1
‰ § duf(r)–(r?a) = f(a)–(r?a)§?–k
f(r) = f(a) = 12…a2:
16.7 Legendre? “A^ ~ 125
?)‰)flK'd–…? 5 – § r 6= a § §(#) z Laplace §'?
§2( k.^ ?? ^ §
u(r; ) =
8>
>>><
>>>
>:
1X
l=0
AlrlPl(cos ); r < a;
1X
l=0
Blr?l?1Pl(cos ); r > a:
, AT|^ ' (= §(#)m g )‰ X?Al Bl'
F ? –…?AT·m …? ?§?–u(r; )3¥?r = a ‰·oY §
u(r; )flflr=a+0r=a?0 = 0;
F @u(r; )=@r3¥?r = a ‰· oY §§3¥?r = a C –d
§(#)?r¨'
r2@u@r
flfl
fl
r=a+0
r=a?0
= ?2GM–
?
? …2
·
;
=
@u
@r
flfl
fl
r=a+0
r=a?0
= ?2GMa2 –
?
? …2
·
:
–( ?…=2) ULegendre? “—m
–
?
? …2
·
=
1P
l=0
clPl(cos );
cl = 2l +12
Z …
0
–
?
? …2
·
Pl(cos )sin d = 2l +12 Pl(0):
ˇd
Alal = Bla?l?1;
Allal+1 +Bl(l +1)a?l = (2l +1)GMPl(0):
) =
Al = GMa?l?1Pl(0); Bl = GMalPl(0):
?–
u(r; ) =
8>
>>><
>>>
>:
GM
a
1X
l=0
?r
a
·l
Pl(0)Pl(cos ); r < a;
GM
a
1X
l=0
?a
r
·l+1
Pl(0)Pl(cos ); r > a:
\Pl(0) §=
u(r; ) =
8
>>>>
<
>>>>
:
GM
a
1X
l=0
(?)l (2l)!22ll!l!
?r
a
·2l
P2l(cos ); r < a;
GM
a
1X
l=0
(?)l (2l)!22ll!l!
?a
r
·2l+1
P2l(cos ); r > a:
16.7 Legendre? “A^ ~ 126
– 0 ·dflK IO){ l ‰)flK u§ )§,
…? 5‰ U\X?'
3? flK¥§ § g kAˇ5 3 r = a; = …=2 0§
§ g 33 ? 1(? U yo k )'
A/§3?) ^ Aˇ {§= g §(#)=z g §
¥?r = a o ^ '
?p¢S ·0 ? o ^ {{'
K k ? IO ){§= g § ‰)^ (k.^ ?? ^ )§?
)§, ? |^o ^ ! Legendre? “ 5‰X?§ ·r )w?
·u(r; )3r = 0‰r = 1: S Taylor—m§ {? u(r; )3, Aˇ ?
§ Taylor—m 5‰ U\X?'
du ??5§ ?? : ? (r; ) = (r;0)‰(r;…) : l §ˇ
–dCoulomb‰? U\ ? ?? :(r;0)‰(r;…) ?§
u(r; )flfl =0;… =
I GM
2…a
dlp
a2 +r2 =
GMp
a2 +r2:
Taylor—m
u(r; )flfl =0;… =
8
>>>>
<
>>>>
:
GM
a
1X
l=0
(?)l (2l)!22l (l!)2
?r
a
·2l
; r < a;
GM
r
1X
l=0
(?)l (2l)!22l (l!)2
?a
r
·2l
; r > a:
, ?§d )q –
u(r; )
flfl
fl
=0
=
8>
>>>
<
>>>
>:
1X
l=0
Alrl; r < a;
1X
l=0
Blr?l?1; r > a
‰
u(r; )
flfl
fl
=…
=
8>
>>><
>>>>
:
1X
l=0
(?)lAlrl; r < a;
1X
l=0
(?)lBlr?l?1; r > a:
’ ( ·Taylor—m 5)§ –?
A2l = (?)lGMa (2l)!22ll!l!a?2l; A2l+1 = 0;
B2l = (?)lGMa (2l)!22ll!l!a2l+1; B2l+1 = 0:
–w §? )“ c? '
16.8 o Legendre…? 127
16.8 o Legendre…?
!? o Legendre §
d
dx
??
1?x2
· dy
dx
?
+
?
?? m
2
1?x2
·
y = 0
3k.^
y(§1)k.
e )'
{{··``a? o Legendre § Legendre § m ’X'
?k' o Legendre §3 :? 5 'o Legendre § : Legendre §
§ ·x = §1 x = 1§ · K :'3x = §1? I §·
‰(‰?1)+‰? m
2
4 = 0;
?–§ I
‰ = §m2 :
?‘?§o Legendre § ) – ?y(x) = ?1?x2¢§m=2 v(x) /“'?–§b
y(x) =
?
1?x2
·m=2
v(x);
\ §§ – v(x)? v §
?
1?x2
·
v00 ?2(m+1)xv0 +[??m(m+1)]v = 0: (z)
? v(x)3x = §1 I 0 ?m' I ?m )3x = §1: ‰·u '
^??8B{ –y?§ §(z) –ˇLLegendre § ?mg '
F m = 0 w, ('
F m = k ??§
?
1?x2
·?
v(k)
·00
?2(k +1)x
?
v(k)
·0
+[??k(k +1)]
?
v(k)
·
= 0:
2 ? g§
?
1?x2
·?
v(k)
·000
?2x
?
v(k)
·00
?2(k +1)x
?
v(k)
·00
?2(k +1)
?
v(k)
·0
+[??k(k +1)]
?
v(k)
·0
= 0;
?
?
1?x2
·?
v(k+1)
·00
?2(k +2)x
?
v(k+1)
·0
+[??(k +1)(k +2)]v(k+1) = 0:
?K y'
16.8 o Legendre…? 128
u·§o Legendre §3 0 < jx?1j < 2S ) ·
y(x) = c1
?
1?x2
·m=2
P(m)” (x)+c2
?
1?x2
·m=2
Q(m)” (x);
¥? = ”(” +1)'e?2^k.^ ‰ …?'
?k ?3x = 1:k.'
F P”(x)3x = 1:·k. '
F Q”(x)3x = 1:·??u '
F ?1?x2¢m=2 P(m)” (x)3x = 1: ·k. §§·o Legendre §3x = 1: S
I‰ = m=2 )'
F Q(m)” (x)3x = 1:·–(x?1)?m “u §?–§?1?x2¢m=2 Q(m)” (x)3x = 1:
‰·u §§ ·o Legendre §3x = 1: S I‰ = ?m=2 )'
Fk.^ ?)3x = 1:k.§?–§c2 = 0'
2 ?3x = ?1:k.'
F?u ” § P”(x)·????§§3x = ?1: ·??u '
F x = ?1: ·P(m)” (x) m 4:§
F?–§?1?x2¢m=2 P(m)” (x)3x = ?1: ·u '
F v3x = ?1:k. ?§ U·P”(x) ?? “§=” K ?'
Fdu3)¥ y ·P(m)” (x)§?–7Lk” ? m'
o( ? ? § ? o Legendre §3k.^ e )
?l = l(l +1); l = m;m+1;m+2;¢¢¢
…? yl(x) = c1
?
1?x2
·m=2
P(m)l (x):
ˇ~ c1 = (?)m§ …?P Pml (x)§
Pml (x) = (?)m
?
1?x2
·m=2
P(m)l (x);
? m lgo Legendre…?'
o Legendre…?§ · flK )!=o Legendre §3k.^ e
…? \ §ˇd§o Legendre…? A k 5 g o Legendre…
?3?m[?1;1] §
Z 1
?1
Pml (x)Pmk (x)dx = 0; k 6= l:
16.8 o Legendre…? 129
?p5? ·§?uo Legendre §5‘§m· ‰ fi o?§ˇd§3
? ’X¥§o Legendre…? ?m7L· '
–l § u§?A^k.^ §5y? ’X'?·y? …? 5
IO {{'
e? {§ ^ y?Legendre? “ 5aq {'
y duk 6= l§ b k < l'u·§ \o Legendre…? ‰′§?' ¨'§=
Z 1
?1
Pml (x)Pmk (x)dx
=
Z 1
?1
?
1?x2
·m dmPk(x)
dxm
dmPl(x)
dxm dx
=
?
1?x2
·m dmPk(x)
dxm
dm?1Pl(x)
dxm?1
flfl
flfl
1
?1
?
Z 1
?1
d
dx
??
1?x2
·m dmPk(x)
dxm
? dm?1P
l(x)
dxm?1 dx
= ?
Z 1
?1
d
dx
??
1?x2
·m dmPk(x)
dxm
? dm?1P
l(x)
dxm?1 dx:
' ¨' g (J 3¨' cO\ K § L· ¨…?¥Pl(x) ?
=£ g { ˇf ' – §3' ¨'mg § A
Z 1
?1
Pml (x)Pmk (x)dx = (?)m
Z 1
?1
dm
dxm
??
1?x2
·m dmPk(x)
dxm
?
Pl(x)dx:
5? “m ¨…?·lgLegendre? “ , ? “
dm
dxm
??
1?x2
·m dmPk(x)
dxm
?
?¨'N·? ? ? “ g? k ? m + 2m ? m = k'duk < l§?= y o
Legendre…? 5'
C x = cos § – o Legendre…? 5 , ?L /“§=
Z …
0
Pml (cos )Pmk (cos )sin d = 0; k 6= l:
5?§?p y ?sin '
c? {§ U? o Legendre…? '? 3– y?L§ “
¥ k = l= 'u·§
Z 1
?1
Pml (x)Pml (x)dx = (?)m
Z 1
?1
dm
dxm
??
1?x2
·m dmPl(x)
dxm
?
Pl(x)dx:
y3 “m ¨…?·lgLegendre? “ , lg? “
dm
dxm
??
1?x2
·m dmPl(x)
dxm
?
= 12ll! d
m
dxm
??
1?x2
·m dl+m
dxl+m
?
x2 ?1
·l?
16.8 o Legendre…? 130
?¨'d16.4! ? §?¨' z 5g? ? “ p g 'N·
? ? p g X?·
(?)m 12ll! (2l)!(l?m)! (l +m)!l! ;
?–§ Z
1
?1
Pml (x)Pml (x)dx = (2l)!2l(l!)2 (l +m)!(l?m)!
Z 1
?1
xlPl(x)dx
= (l +m)!(l?m)! 22l +1;
‰ ? C x = cos §
Z 1
?1
Pml (cos )Pml (cos )sin d = (l +m)!(l?m)! 22l +1:
l K ‘§o Legendre…? N?5 dLegendre? “ A5
'l '
16.9 ¥?N …? 131
16.9 ¥?N …?
y3£ Laplace §3¥ IXe 'lC ' (‰ § k? ¥
SLaplace § 11 a> flK'
3¥ IXe§‰)flK·
1
r2
@
@r
r2@u@r
?
+ 1r2 sin @@
sin @u@
?
+ 1r2sin2 @
2u
@`2 = 0;
uflfl =0k.§ uflfl =…k.;
uflfl`=0 = uflfl`=2…, @u@`
flfl
fl
`=0
= @u@`
flfl
fl
`=2…
;
uflflr=0k.§ uflflr=a = f( ;`):
?E15.6! ‰§-u(r; ;`) = R(r)S( ;`)§ ? § g>.^ 'lC §=
d
dr
?
r2dR(r)dr
?
??R(r) = 0;
uflflr=0k.;
1
sin
@
@
?
sin @S( ;`)@
?
+ 1sin2 @
2S( ;`)
@`2 +?S( ;`) = 0;
Sflfl =0k.§ Sflfl =…k.;
Sflfl`=0 = Sflfl`=2…, @S@`
flfl
fl
`=0
= @S@`
flfl
fl
`=2…
:
? · flK§ ' § flK'
? ? A …?§ –2-S( ;`) = £( )'(`)§? 'lC §
k
1
sin
d
d
?
sin d£( )d
?
+
h
?? ?sin2
i
£( ) = 0;
£(0)k.§ £(…)k.;
'00 +?' = 0;
'(0) = '(2…), '0(0) = '0(2…):
? ~ ' § flK fi?? L§'O 16.8! 15.4!'? §?u '
§ flK5‘§ ·
?l = l(l +1); l = 0;1;2;3;¢¢¢ ;
16.9 ¥?N …? 132
?Au ?l§k2l +1 …?
Slm1( ;`) = Pml (cos )cosm`; m = 0;1;2;¢¢¢ ;l;
Slm2( ;`) = Pml (cos )sinm`; m = 1;2;¢¢¢ ;l:
? …?§ ? ¥?N …?§‰¥? …?'
flK {? ·2l +1§ u~ '' § flK?N {? 2'
’uR ~ ' §§316.7!¥fi?? L'§3k.^ e )·Rl(r) = rl'?
§ ' §‰)flK A) ·
ulm1(r; ;`) = rlPml (cos )cosm`; l = 0;1;2;¢¢¢ ; m = 0;1;2;¢¢¢ ;l
ulm2(r; ;`) = rlPml (cos )sinm`; l = 0;1;2;¢¢¢ ; m = 1;2;¢¢¢ ;l:
)K
u(r; ;`) =
1X
l=0
lX
m=0
rlPml (cos )[Alm cosm`+Blm sinm`]:
£ e13.8!¥ ? '3T!¥ LLaplace §3 IX¥ ? “
)§§ ? A)· '
F ^ IX §ˇ L “ N/“ '
Fr ? A)U Ix; y; z …?§ –w §§ ·x; y; z l g?
“'
F ‰ l §? ? “k2l +1 '
? ·13.8!¥J L ( '
n 16.4! 16.8! ? § –w §l‰m ¥?N …?3 4…?N ·*
d §
Z …
0
Pml (cos )Pnk(cos )sin d
Z 2…
0
cosm`cosn`d`
= 0; l 6= k; m 6= n;
Z …
0
Pml (cos )Pnk(cos )sin d
Z 2…
0
sinm`sinn`d`
= 0; l 6= k; m 6= n;
Z …
0
Pml (cos )Pnk(cos )sin d
Z 2…
0
cosm`sinn`d`
= 0; l 6= k; m 6= n:
16.9 ¥?N …? 133
§ – ¥?N …?
Z …
0
£Pm
l (cos )
?2 sin d Z 2…
0
cos2m`d` = (l +m)!(l?m)! 2…2l +1 (1+–m0);
Z …
0
£Pm
l (cos )
?2 sin d Z 2…
0
sin2m`d` = (l +m)!(l?m)! 2…2l +1:
3 n ~^ ·, ?/“ ¥?N …?'
F1 §· flK
'00 +?' = 0;
'(0) = '(2…), '0(0) = '0(2…):
)3/“ ?
?m = m2; m = 0;§1;§2;§3¢¢¢ ;
…? 'm(`) = eim`:
? §?Au ?l = l(l+1)§l = 0;1;2;3;¢¢¢§ ' § flK …?
·
Slm( ;`) = Pjmjl (cos )eim`; m = 0;§1;§2;¢¢¢ ;§l:
? ‰′ ¥?N …?§ ’X – ? { /“§
Z …
0
Z 2…
0
Slm( ;`)S?kn( ;`)sin d d`=(l +jmj)!(l?jmj)! 4…2l +1–lk–mn:
duy3 …?·E…?§?–3 ’X ?“¥§ r ¥
…? E ' ˇ· y …? '
F1 §ˇ~ · ^8 z ¥?N …?'~X§
Yml ( ;`) =
s
(l?jmj)!
(l +jmj)!
2l +1
4… P
jmj
l (cos )e
im`;
m = 0;§1;§2;¢¢¢ ;§l:
? k 8 ’X
Z …
0
Z 2…
0
Yml ( ;`)Yn?k ( ;`)sin d d` = –lk–mn:
A 5? ·§3 'z¥§Yml ( ;`)~~k ‰′'3?^ I @
?'
Yml ( ;`)‰′¥ ? ? – K§?·ˇ
P?ml (x) = (?)m(l?m)!(l +m)!Pml (x):