Wu Chong-shi
a0a1a2(
a3) Cauchya4a5a6a7 a81a9
a10a11a12 (
a13) Cauchy a14a15a16a17
§4.1 Cauchy a18a19a20a21
a22a23a24a25a26 Cauchy
a27a28a29a30 a31f(z)a32a33a34 G a35a36
a37a38a39a40a41a42a43 G
a36a44a45 C a32a46a47a48a49a50a51
a43 a
a52 G a53a54
a55a43a56
f(a) = 12pii
contintegraldisplay
C
f(z)
z ?adz,
a57
a35a58a46a59a51a60 C a36a61a62a63
a64 a65G
a53
a66a67|z?a| < r(
a68a694.1a43a70a71a67a72|z?a| = r
a65G
a53)a43a56a73a74a75a76a77a33a34a36 Cauchya78a79
a43a80
contintegraldisplay
C
f(z)
z ?adz =
contintegraldisplay
|z?a|=r
f(z)
z ?adz, a814.1 a82a83a84a85a86Cauchya87a88a89a90
a91a92a93a94a95 r
a36a96a97a98a99
a43a100a101a102 r → 0
a63a103a52
limz→a(z ?a) f(z)z ?a = f(a),
a104a105
a79 3.1
a43a106a107a108
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a). square
Wu Chong-shi
§4.1 Cauchya4a5a6a7 a82a9
a109a23a24a25a26 Cauchy
a27a28a29a30
a110a111
a98a45a33a34
a43a112a113a114
a31f(z)
a65a115a37a116a117a118a119C
a120a121C
a122 (
a123a124a98a125a126
a55) a37a38a39a40
a63a127a128a129
a43a130a65a131a132
1
2pii
contintegraldisplay
C
f(z)
z ?adz,
a57
a35aa52C
a122
a54
a55a43
a58a46a59a51C a36a133a62a32a134a135a136a137a62
a43a138a139
a98a125a126
a55
a36a61a62
a43a140
a69 4.2a63
a65C a122a141a66
a54a142a143a144
a55
a52
a67a145a43 R
a52a146a147a36a96
a67C
R
a43
a148a149a43a110a111 C
a150 CR
a151
a123
a118
a36
a75a76a77
a33a34
a43a73a74a80
a45a33a34a36
Cauchya58a46a152a153
a43a80
a814.2
a154a83a84a85a86Cauchya87a88a89a90
1
2pii
contintegraldisplay
CR
f(z)
z ?adz +
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a),
a148a155
a58a46a59a51CR a36a133a62a32a156a135a136a137a62a63
a157a113 R
a158a159a96
a43a148
a142
a92a93a160a161a106a95 R
a36a162a163a96a97a98a99
a43
a111
a32
a43a101a102R → ∞a43a164a108a165
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a)? limR→∞
bracketleftbigg 1
2pii
contintegraldisplay
CR
f(z)
z ?adz
bracketrightbigg
.
a140a93f(z)
a166a158a167a168a169
a105
a79 3.2a36
a113a170a43a56a101
a143
a131a132a171
a60a96
a67C
R a36a58a46a36a172a173
a38a43
lim
R→∞
bracketleftbigg 1
2pii
contintegraldisplay
CR
f(z)
z ?adz
bracketrightbigg
= K,
K = limz→∞z · f(z)z ?a = f(∞).
a103
a91a43
1
2pii
contintegraldisplay
C
f(z)
z ?adz = f(a)?K.
a174a175a160K = 0
a135
a43a106a108a165a176
a109a23a24a25a26 Cauchy
a27a28a29a30
a176a140a93 f(z) a65a115a37a116a117a118a119 C
a120a121 C a122a39a40a43a177a160 z → ∞
a135
a43f(z)
a54a178a129a179
a111 0a43a56 Cauchy
a58a46a152a153
f(a) = 12pii
contintegraldisplay
C
f(z)
z ?adz
a180a161a181a182a43a91a183 a
a52C a122a54a55a43a58a46a59a51 C a52a134a135a136a137a62a63
Wu Chong-shi
a0a1a2(
a3) Cauchya4a5a6a7 a83a9
§4.2 a184a185a186a187a188a189a190a191a187
a192Cauchy
a58a46a152a153
a43a101
a143a193a194
a171
a54a142a195
a113a92a196a176a140a93f(z)
a65 G
a35
a39a40a43a56a65 G
a53f(z) a36a197a198a199a200
a42 f(n)(z)
a201a202
a65a43
a203a177
f(n)(z) = n!2pii
contintegraldisplay
C
f(ζ)
(ζ ?z)n+1dζ,
a57
a35C a32Ga36a61a62a44a45
a43 z
a52G a53a197a204a54
a55a43a140
a69 4.3a63
a64 a205a206a170fprime(z)
a63a103a52
f(z + h)?f(z)
h =
1
2pii
1
h
contintegraldisplay
C
bracketleftbigg f(ζ)
ζ ?z ?h ?
f(ζ)
ζ ?z
bracketrightbigg
dζ
= 12pii
contintegraldisplay
C
f(ζ)
(ζ ?z ?h)(ζ ?z)dζ, a814.3 a207a208a209a210a89a90
a211
a172a173h → 0a43a212a213a138a52fprime(z)a43a164a214a213a215a58
a41a42
a36a172a173a52 f(ζ)/(ζ ?z)2 a63a52a216
a107a217a65
a58a46a218a219
a170
a172a173
a117a220a43a221a222a223a224
contintegraldisplay
C
f(ζ)dζ
(ζ ?z ?h)(ζ ?z) ?
contintegraldisplay
C
f(ζ)dζ
(ζ ?z)2 = h
contintegraldisplay
C
f(ζ)dζ
(ζ ?z ?h)(ζ ?z)2.
a104a111f(ζ)a65C
a120
a76a225a43a100a65C
a120
a80|f(ζ)| ≤ M a43
a31za165C a36a226a227a228a229a52δa43la52C a36a230a231
a43a56a80
vextendsinglevextendsingle
vextendsinglevextendsingle
contintegraldisplay
C
f(ζ)
(ζ ?z ?h)(ζ ?z)dζ ?
contintegraldisplay
C
f(ζ)
(ζ ?z)2dζ
vextendsinglevextendsingle
vextendsinglevextendsingle ≤ |h|· Ml
δ2(δ ?|h|) → 0,
a103
a91a43
a58a46a218a219
a170
a172a173
a117a220a43
fprime(z) = 12pii
contintegraldisplay
C
f(ζ)
(ζ ?z)2dζ.
a232a149a43a101
a143
a170a171
fprimeprime(z) = lim
h→0
fprime(z + h)?fprime(z)
h = limh→0
1
2pii
1
h
contintegraldisplay
C
bracketleftbigg f(ζ)
(ζ ?z ?h)2 ?
f(ζ)
(ζ ?z)2
bracketrightbigg
dζ
= lim
h→0
1
2pii
contintegraldisplay
C
2ζ ?2z ?h
(ζ ?z ?h)2(ζ ?z)2f(ζ)dζ =
2!
2pii
contintegraldisplay
C
f(ζ)
(ζ ?z)3dζ.
a140a91a233a225a43a138a101a170a171 f(n)(z)
a63 square
star a148a142
a92a93a234a217a43
a54a142
a75a235a41a42a43a157a113a65
a54a142a33a34a35a54a199a200
a42a183a183
a202
a65 (
a236a237a238a239a240a241a242a243a244
a245a246) a43a56a247
a36a197a198a199a200
a42a248
a202
a65a43a203a177a248
a32
a148
a142a33a34a53a36
a39a40a41a42
a63
star a65a249a235a41a42a35
a203a250a140a91
a63a251a252
a203a221a253a104fprime(x)
a36a202
a65
a193a194
a171 fprimeprime(x)
a36a202
a65
a63
star a75a235a41a42a35f(z) a65a54a33a34a35
a183a183a101
a200 (a138a39a40) a32a54a142a254a255a36
a113a170
a63
a249a235a41a42
a35fprime(x) a36a202
a65a157
a123a0
a160 xa65a42a1
a120 (a54a78a33a2a53)
a235a3
a135
a110 f(x)
a36
a113a170a43a164a75a235a41a42
a35fprime(z) a36a202
a65a56
a123a0a216
a65a4a5a6a7
a33a34a120
a110 f(z)
a36
a113a170
a63
Wu Chong-shi
§4.3 Cauchya8a4a5a9a10a11a12a4a5a13a14a15a16 a84a9
§4.3 Cauchy a17a18a19a18a19a20a21a18a19a188a184a185a22
a65
a120a54a23a99
a111a39a40a41a42
a255a199a200
a42
a152a153a36
a107a217a24a25
a35
a43f(z)
a36
a39a40a26a157
a32a163
a130a65a176 (1) f(z)a101
a27 Cauchy
a58a46a152a153a28a29a30 (2)f(z)a65C a120
a76a225
a63a103
a91a43
a195
a75
a120
a7
a36a31a32
a43a106a101
a143
a107a217a176a65
a54a33a46
a47a48a49a36 (a116a117a34a221a116a117) a50a51C a120
a76a225
a36
a41a42 φ(ζ)
a151a35
a181
a36a58a46
f(z) = 12pii
integraldisplay
C
φ(ζ)
ζ ?zdζ
(a36a52Cauchy a37a27a28) a32a50a51
a122a55 z
a36
a39a40a41a42a43 fprime(z)a101a77a24
a58a46a218a219
a170
a200
a164a108a165a43
f(p)(z) = p!2pii
integraldisplay
C
φ(ζ)
(ζ ?z)p+1dζ.
a38 a131a132
a58a46
f(z) = 12pii
contintegraldisplay
|ζ|=1
ζ?
ζ ?zdζ, |z| negationslash= 1.
a39 a148
a32a54a142 Cauchya40a58a46a63a103a52
a65|ζ| = 1
a120ζ? = 1/ζ a43a100
f(z) = 12pii
contintegraldisplay
|ζ|=1
1
ζ(ζ ?z)dζ.
a160|z| > 1
a135
a43a91
a58a46
a101
a143
a27 Cauchy
a58a46a152a153
a131a132a43
f(z) = 12pii
contintegraldisplay
|ζ|=1
1
ζ
bracketleftbigg 1
ζ ?z
bracketrightbigg
dζ = ?1z.
a1600 < |z| < 1
a135
a43
f(z) = 12pii
contintegraldisplay
|ζ|=1
1
z
bracketleftbigg 1
ζ ?z ?
1
ζ
bracketrightbigg
dζ = 0.
a41a42a43a171a43a91a92a93a110a111 z = 0a180a181a182
a63a44
a117
a143a120
a92a93a43a106a80
f(z) = 12pii
contintegraldisplay
|ζ|=1
ζ?
ζ ?zdζ =
?
?
?
?1z, |z| > 1,
0, |z| < 1.
a104a91a101
a68
a43 f(z)a65|z| negationslash= 1a183a39a40a43a45a46 ζ? a65a47a6a7a221a39a40
a63
Wu Chong-shi
a0a1a2(
a3) Cauchya4a5a6a7 a85a9
a48a27Cauchy
a40a58a46
a43a106a101
a143a193
a171a49a50a51
a27a28
a26a39a52a53
a63
a54a55 4.2
a31
1. f(t,z)a238ta56z a242a57a58
a245a246a43 t ∈ [a,b]a43z ∈ Ga43
2. a59a60[a,b]a61a242a62a63ta64
a43f(t,z)
a238Ga61a242a65a64a243a244
a245a246a43
a56F(z) =
integraldisplay b
a
f(t,z)dta65G a53a32
a39a40
a36
a43a177
Fprime(z) =
integraldisplay b
a
?f(t,z)
?z dt.
a64
a103a52f(t,z)
a65G
a120
a39a40a43a100a110a111 G
a53a36a197a198a54
a55 z a43Cauchy
a58a46a152a153
a181a182a43
f(t,z) = 12pii
contintegraldisplay
C
f(t,ζ)
ζ ?z dζ.
a66a67F(z)
a36a78a68
a43a203a69a70
a58a46a71a72 (a103a52f(t,z)a76a225) a43a108
F(z) =
integraldisplay b
a
dt
2pii
contintegraldisplay
C
f(t,ζ)
ζ ?z dζ =
1
2pii
contintegraldisplay
C
1
ζ ?z
bracketleftBiggintegraldisplay b
a
f(t,ζ)dt
bracketrightBigg
dζ.
a148
a32a54a142 Cauchya40a58a46
a43
integraldisplay b
a
f(t,z)dta76a225a43a100F(z)a52G a53a36
a39a40a41a42a43a177
Fprime(z) = 12pii
contintegraldisplay
C
1
(ζ ?z)2
bracketleftBiggintegraldisplay b
a
f(t,ζ)dt
bracketrightBigg
dζ
=
integraldisplay b
a
bracketleftbigg 1
2pii
contintegraldisplay
C
f(t,ζ)
(ζ ?z)2dζ
bracketrightbigg
dt =
integraldisplay b
a
?f(t,z)
?z dt. square
a73a161a43a148
a142
a92a196a74a75a27a111
integraldisplay
C
f(t,z)dta63a148a135a94a160a113a170 C a32a46a47a48a49a50a51a43a160 ta65C a120a235a76a43
z ∈ Ga135
a43f(t,z)
a32 ta150z a36
a76a225a41a42
a63
a107a217
a36a137
a220a95
a120
a7a77a232
a63
Wu Chong-shi
§4.4 a78 a79 a80 a79 a86a9
a10a11a12 (
a81) a82 a83 a84 a85
a86a87a88a246a43a89a90
a238a91
a88a246a43
a238a243a244
a245a246
a242a92a93a94a242a95a96a97a98a99a100a63
a101a102a103a104a245a246
a56
a89a105a245a246a106
a238a107a91
a88a246a108a109
a242a63
a110a111a245a246a88a246a112a113
a56a114
a111a245a246
a242a115a116
a176a117a118
a56a119a120a242a121a122a63
§4.4 a123 a187 a124 a187
a54a125 a75a42a126a42
u0 + u1 + u2 +···+ un +··· =
∞summationdisplay
n=0
un.
a102u
n a36
a249a127
a150a128
a127
a46
a175
a52 αn a95βn,a56
∞summationdisplay
n=0
un =
∞summationdisplay
n=0
αn + i
∞summationdisplay
n=0
βn.
a54a142
a75a42a126a42summationtextu
n a129
a47a130a131a111a132
a142
a249a42a126a42summationtextα
n a150
summationtextβ
n
a43a133a134a135a161
a63
a136a137a138a137a26a139a140a141a142a143 a140a93a126a42
a36
a127
a46a150
Sn = u0 + u1 + u2 +···+ un
a151a35
a181
a36a72a144{Sn}a145a146
a43a56
a36
a126a42summationtextu
n a145a146
a43
a72a144{Sn}a36a172a173 S = limn→∞Sn a43a36a52
a126a42summationtextu
n
a36a150
∞summationdisplay
n=0
un = limn→∞Sn.
a147a56a43a126a42summationtextu
n a32a148a149a36a63
a126a42
a36a145a146
a26a43
a32
a27a247
a36
a127
a46a150a72a144a36a145a146
a26
a78a68a36a63a103
a91a43a73a74
a72a144a145a146a36a150
a113
a33a151
a43a101
a143a152
a171a126a42
a145a146a36a150
a113
a33a151 Cauchya150
a113
a33a151
a176
a62a153a154
a108ε > 0a43a155a156a157a158a246na43a159
a59a60a62a153
a157a158a246pa43a160
|un+1 + un+2 +···+ un+p| < ε.
a174a175
a32
a43a102 p = 1a43a106a108a165a126a42
a145a146a36a161
a113
a33a151
limn→∞un = 0.
star a65a221a162a235a170a150a71a72a36a163a164a219
a43a101
a143a165a145a146
a126a42a203a166
a63
u1 + u2 + u3 + u4 +··· = (u1 + u2) + (u3 + u4) +···.
Wu Chong-shi
a0a1a2(
a167) a168 a169 a80 a79 a87a9
star a140a93a126a42
∞summationtext
n=0
|un|a145a146a43a56a36a126a42
∞summationtext
n=0
un
a170
a110
a145a146a63
a170
a110
a145a146a36
a126a42
a54a78a32a145a146a36a63
|un+1 + un+2 +···un+p| ≤ |un+1|+|un+2|+··· +|un+p|.
a133a134a43
a54a142a145a146a36
a126a42a43a171a221
a54a78a32
a170
a110
a145a146a36a63
star
a170
a110
a145a146
a126a42
a36a172
a175a220
a63
stara173a174a175a176a177 a178|un|<vn a43a164
∞summationtext
n=0
vn a145a146
a43a56
∞summationtext
n=0
|un|a145a146
parenleftbiga138 ∞summationtext
n=0
un
a170
a110
a145a146
parenrightbig
a63
a178|un| > vn,a164
∞summationtext
n=0
vn a148a149
a43a56
∞summationtext
n=0
|un|a148a149a63
stara173a179a175a176a177 a178a202
a65a95 n
a98a99a36a180
a42ρa43a56
a160
vextendsinglevextendsingle
vextendsingleun+1u
n
vextendsinglevextendsingle
vextendsingle < ρ < 1a135a43a126a42
∞summationtext
n=0
un
a170
a110
a145a146a30
a160
vextendsinglevextendsingle
vextendsingleun+1u
n
vextendsinglevextendsingle
vextendsingle > ρ > 1a135a43a126a42
∞summationtext
n=0
|un|a148a149a63
? a115a64a181
a90
a120a242a182a183
a176
a59a60
a101a102a184
a107
a88a246a43a185
a98|un+1/un|a242a97a98a186a186a94a115un a242a97a98a187
a65a188
a102a43
a236a237a189a107a115a64a181
a90
a120a190a191a192a193a194a181a195
summationtext|u
n|a242a196a197a198a63
? ρa242
a155a156
a198a199
? a200a119a201a242a202a203a238
a159
a107a204a242a205a206a97a98
a43a207d’Alembert
a181
a90
a120a63
star d’Alembert a175a176a177
a140a93 lim
n→∞|un+1/un| = l < 1,
a56
∞summationtext
n=0
un
a170
a110
a145a146a30
a140a93 lim
n→∞
|un+1/un| = l > 1,a56
∞summationtext
n=0
|un|a148a149a63
? d’Alemberta181
a90
a120a242a182a183
a176
a100a208a209a210
a43a211
a61a212a205a206a213a94a115
a211
a115a64a181
a90
a120a214a242 ρa210a188a187
a65a63
? d’Alemberta181
a90
a120a242a215a183
a176a216
a107a217a122a242a218a219a181
a90a88a246
a242a196a197a56a220a221
a43a207
a107 limn→∞|un+1/un|
a181a195
a88a246
∞summationtext
n=0
|un| a242a196a197
a43a222
a107 lim
n→∞
|un+1/un| a181a195
a88a246
a242a220a221a63a236a237a59a60
limn→∞|un+1/un| ≥ 1a223 lim
n→∞
|un+1/un| ≤ 1a242a224a97a225a217a226a227a228a181a195
a43a229a230
limn→∞|un+1/un| = lim
n→∞
|un+1/un| = limn→∞|un+1/un|.
? Cauchya181
a90
a120a242a182a183a225a238a231a232a122a100a181a232 limn→∞|un|1/n a210a181a195
a88a246
a238a233a234a59a196a197a63
star Cauchy a175a176a177
a140a93 lim
n→∞|un|
1/n < 1,a56a126a42 ∞summationtext
n=0
|un|a145a146a30
a140a93 lim
n→∞|un|
1/n > 1,a56a126a42 ∞summationtext
n=0
un a148a149a63
Wu Chong-shi
§4.4 a78 a79 a80 a79 a88a9
a235a236a139a140a138a137a26a53a237a176
1. a162a70a71a72a63a238a140
u0 + u1 + u2 + u3 + u4 +··· = u0 + u1 + u2 + u4 + u3 + u6 + u8 + u5 +···.
2. a101a143a239a54a142
a170
a110
a145a146
a126a42a240a181a241
a142a242
a126a42a43a243
a142a242
a126a42a180
a170
a110
a145a146a63
∞summationdisplay
n=0
un =
∞summationdisplay
n=0
u2n +
∞summationdisplay
n=0
u2n+1.
3. a132a142
a170
a110
a145a146
a126a42a134
a58
a180a161
a170
a110
a145a146
a43
summationdisplay
k
uk ·
summationdisplay
l
vl =
summationdisplay
k,l
ukvl.
a148a155
a36a244a58a32a54a142
a4
a195
a126a42
u0v0 + u0v1 + u0v2 + u0v3 + ···
+ u1v0 + u1v1 + u1v2 + u1v3 + ···
+ u2v0 + u2v1 + u2v2 + u2v3 + ···
+ u3v0 + u3v1 + u3v2 + u3v3 + ···
+ ···.
a57
a170
a110
a145a146
a26
a204a245a246
a101
a143a247a248a197a204a134a72
a170
a150
a43a57a38a221a235
a63a238
a140a101
a247 k + l = na36a96a97a134a72a249a144
a43
∞summationdisplay
k=0
uk ·
∞summationdisplay
l=0
vl =
∞summationdisplay
n=0
wn, wn =
nsummationdisplay
k=0
ukvn?k.
a140a93
a173
a111a148a250a170
a150a71a72 (
a148a250a170
a150a71a72a162
a80a174a251
a36a195
a113a26) a43a56
a244
a220
a36a33a151a252
a101
a143a253a254
a181a176 summationtextu
k,summationtext
vl a248a145a146
a43a177a57
a35
a134
a54
a170
a110
a145a146a30
a34 summationtextu
k,
summationtextv
l a150
summationtextw
n
a248
a145a146a63
Wu Chong-shi
a0a1a2(
a167) a168 a169 a80 a79 a89a9
§4.5 a186 a187 a124 a187
a255a137a138a137a26a139a140a53
a31uk(z) (k = 1,2,···)
a65
a33a34 G a35
a80
a78a68a63
a140a93a110a111G
a35a54
a55z
0
a43a126
a42
∞summationtext
k=1
uk(z0)a145a146
a43a56
a36
a126a42
∞summationtext
k=1
uk(z)a65z0 a55a145a146a63
a133a134a43a140a93
∞summationtext
k=1
vk(z0)a148a149a43a56a36a126a42
∞summationtext
k=1
vk(z)a65z0 a55a148a149a63
a140a93a126a42
∞summationtext
k=1
uk(z)a65a33a34G a53
a243
a54
a55a248
a145a146
a43a56
a36
a126a42a65 G
a53a145a146a63
a57
a150
a41a42S(z)
a32G a53
a36
a37a38a41a42
a63
a255a137a138a137a26a0a1a139a140a53 a140a93a110a111
a197a204a2a78a36ε > 0,a202
a65
a54a142
a95z
a98a99a36N(ε),a3
a160n > N(ε)
a135
a43
vextendsinglevextendsingle
vextendsingleS(z)?
nsummationtext
k=1
uk(z)
vextendsinglevextendsingle
vextendsingle < εa43a56a36a126a42
∞summationtext
k=1
uk(z)a65G a53a54a178a145a146a63
a255a137a138a137a0a1a139a140a26
a175a176a177 (1)a4a5a6
a27
a78a68
a43 (2) Weierstrass
a36M a172
a175a220
a63
Weierstrassa36M a172
a175a220a176
a178
a65
a33a34Ga53|uk(z)| < ak a43aka95za98a99
a43a164
∞summationtext
k=1
ak a145a146a43a56
∞summationtext
k=1
uk(z)
a65G
a53
a170
a110a164a177
a54a178a145a146a63
a0a1a139a140a138a137a7a22a8a9a10a11a53a237a12
1. a13a14a15 a16a17 uk(z) a18 G a19a20a21a22a23a24
∞summationtext
k=1
uk(z) a18 G a19a25a26a27a28a22a29a30a31a32a24 S(z) =
∞summationtext
k=1
uk(z)a33a18G a19a20a21a34
a35a36a37a38a39a40a41a42
a22a16a17a23a24a43a44a25a45a46a47a20a21a32a24a22a29a25a26a27a28a23a24a48a49a50a45a51a52a53(a54a55
a56
a22 a57a51a52a53a58a59 a57a51a23a24a31a58a48a49a60a61a62a63) a22
limz→z
0
∞summationdisplay
k=1
uk(z) =
∞summationdisplay
k=1
limz→z
0
uk(z).
2. a64a65a66a67a68 a69C a47a70a71G a19a43a25a72a73a74a75a76a77a78a22a16a17uk(z) (k = 1,2,···)a47C a79a43a20
a21a32a24a22a29a80a81 C a79a25a26a27a28a43a23a24
∞summationtext
k=1
uk(z)a48a49a50a45a51a82a73
integraldisplay
C
∞summationdisplay
k=1
uk(z)dz =
∞summationdisplay
k=1
integraldisplay
C
uk(z)dz.
3. a64a65a66a83a84(Weierstrassa85a86) a69uk(z)(k = 1,2,···)a18 G a87a88a89a90a91a22
∞summationtext
k=1
uk(z)a18G a87
a25a26a27a28a22a29a92a23a24a93a31 f(z)a47G a19a43a90a91a32a24a22 f(z)a43a94a95a96a24a48a49a97
∞summationtext
k=1
uk(z)a50a45a51a96a24
Wu Chong-shi
§4.5 a98 a99 a100 a99 a10110a102
a103a104
a22
f(p)(z) =
∞summationdisplay
k=1
u(p)k (z),
a51a96a24a105a43a23a24a18 G a19a43a106a25a107a70a71a87a25a26a27a28a34
a35a108a37a38
a43a109a110a111a112a113a114a34
Wu Chong-shi
a115a116a117(
a118) a119 a120 a100 a99 a10111a102
§4.6 a121a122a123a124a125a126a127a128a129a130a131
1. a13a14a15 a16a17 uk(z) a18 G a19a20a21a22a23a24
∞summationtext
k=1
uk(z) a18 G a19a25a26a27a28a22a29a30a31a32a24 S(z) =
∞summationtext
k=1
uk(z)a33a18G a19a20a21a34
a132
a69z0
a133
G a19a25a134a22
|S(z)?S(z0)|
= |S(z)?Sn(z) + Sn(z)?Sn(z0) + Sn(z0)?S(z0)|
≤ |S(z)?Sn(z)| +|Sn(z)?Sn(z0)| +|S(z0)?Sn(z0)|.
a135a136
a23a24
summationtextu
k(z)a43a25a26a27a28
a37
a48a137a22a106a138 ε > 0a22a139a48a49a140
a104 N(ε)
a22a141a142n > N(ε)a143a22
|S(z)?Sn(z)| < ε3, |S(z0)?Sn(z0)| < ε3.
a144a145S
n(z) =
nsummationtext
k=1
uk(z)a47G a19a43a20a21a32a24a22a146a80a81a147a25
a36 ε > 0
a22a139a148a18 δ > 0a22a141a142|z ?z0| < δ
a143a22
|Sn(z)?Sn(z0)| < ε3.
a149a150
a49a79a151a17a22a152
a103a104a12
a80a81a106a138a43 ε > 0a22a148a18δ > 0a22a153a154|z ?z0| < δ a22a152a155
|S(z)?S(z0)| < ε.
S(z)a18z0 a134a20a21a34a97a81z0 ∈ Ga106a156a22a157a49S(z)a18G a19a20a21a34 square
2. a64a65a66a67a68 a69 C a47a70a71 G a19a43a25a72a73a74a75a76a77a78a22a16a17 uk(z) (k = 1,2,···) a47 C a79a43
a20a21a32a24a22a29a80a81 C a79a25a26a27a28a43a23a24
∞summationtext
k=1
uk(z)a48a49a50a45a51a82a73
integraldisplay
C
∞summationdisplay
k=1
uk(z)dz =
∞summationdisplay
k=1
integraldisplay
C
uk(z)dz.
a132 a135a136a37a38 1
a137
∞summationtext
k=1
uk(z)a47a77a78C a79a43a20a21a32a24a22a146a82a73
integraldisplay
C
∞summationtext
k=1
uk(z)dz a148a18a22a158a155
integraldisplay
C
∞summationdisplay
k=1
uk(z)dz =
integraldisplay
C
nsummationdisplay
k=1
uk(z)dz +
integraldisplay
C
Rn(z)dz
=
nsummationdisplay
k=1
integraldisplay
C
uk(z)dz +
integraldisplay
C
Rn(z)dz,
a30a87Rn(z) = S(z)?Sn(z) =
∞summationtext
k=1
uk(z)a34
a135a136
a23a24a43a25a26a27a28
a37
a22a80a81a106a138a43ε > 0a22a148a18N(ε) > 0a22
a153a154n > N(ε)a22a152a155
|S(z)?Sn(z)| = |Rn(z)| < ε.
Wu Chong-shi
§4.6 a159a160a161a162a100a99a163a164a165a166a167 a10112a102
a145
a92 vextendsingle
vextendsinglevextendsingle
vextendsingle
integraldisplay
C
Rn(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle ≤
integraldisplay
c
|Rn(z)|·|dz| < εl,
la47C a43a168a169a34a170a171a172a52a53a22a173a103
limn→∞
integraldisplay
C
Rn(z)dz = 0.
a157a49 integraldisplay
C
∞summationdisplay
k=1
uk(z)dz = limn→∞
nsummationdisplay
k=1
integraldisplay
C
uk(z)dz =
∞summationdisplay
k=1
integraldisplay
C
uk(z)dz. square
3. a64a65a66a83a84(Weierstrassa85a86) a69uk(z)(k = 1,2,···)a18 G a87a88a89a90a91a22
∞summationtext
k=1
uk(z)a18G a87
a25a26a27a28a22a29a92a23a24a93a31f(z)a47G a19 a43a90a91a32a24a22f(z)a43a94a95a96a24a48a49a97
∞summationtext
k=1
uk(z)a50a45a51a96a24
a103a104
a22
f(p)(z) =
∞summationdisplay
k=1
u(p)k (z),
a51a96a24a105a43a23a24a18 G a19a43a106a25a107a70a71a87a25a26a27a28a34
a132
a109a110a174a73a175a176a73a34
(1)a109a110f(z) =
∞summationtext
k=1
uk(z)a18G a19a90a91a34
a145
a133
uk(z)a90a91a22a146
a135a136 Cauchy
a82a73a177a178
uk(z) = 12pii
contintegraldisplay
C
uk(ζ)
ζ ?z dζ,
f(z) =
∞summationdisplay
k=1
uk(z)
= 12pii
∞summationdisplay
k=1
contintegraldisplay
C
uk(ζ)
ζ ?zdζ
= 12pii
contintegraldisplay
C
∞summationdisplay
k=1
uk(ζ) dζζ ?z
= 12pii
contintegraldisplay
C
f(ζ)
ζ ?zdζ.
a97
a37a38 1
a22a137f(ζ)a47C a79a43a20a21a32a24a22a146 f(z)a90a91a34
(2)a109a110a48a49a50a45a51a96a24a34
a69Gprime
a133
G a19a106a25a107a70a71a22 Cprime a47a179a43a180a181a22a29 f(z)a18Gprime a87a90a91a22a146a155
f(p)(z) = p!2pii
contintegraldisplay
Cprime
f(ζ)
(ζ ?z)p+1dζ
Wu Chong-shi
a115a116a117(
a118) a119 a120 a100 a99 a10113a102
= p!2pii
contintegraldisplay
Cprime
∞summationdisplay
k=1
uk(ζ) dζ(ζ ?z)p+1
=
∞summationdisplay
k=1
p!
2pii
contintegraldisplay
Cprime
uk(ζ)
(ζ ?z)p+1dζ =
∞summationdisplay
k=1
u(p)k (z).
(3)a109a110a23a24
∞summationtext
k=1
u(p)k a18Gprime a87a25a26a27a28a34
a16a182a157a183a22a18G a19a139a48a49a184a172a25
a36
a107a70a71Gprimeprime a22a141
a103Gprime
a185a186
a18G
primeprime
a19a34
a187Gprime
a43a180a181Cprime a104Gprimeprime
a43a180a181Cprimeprime a43a188a189a190a191
a133
δ a34a172z
a133
Gprime a19a25a134a22ζ
a133
Cprimeprime a79a43a192a134a34
a193 Weierstrass
a194a195
a97a79a196a43
a37a382
a22a48a49a197a198a22
∞summationtext
k=1
uk(ζ)a18a180a181Cprimeprime a79a25a26a27a28a22a173a80a81a106a156a138a198a43ε > 0a22a139
a148a18N(ε)a22a141a142n > N(ε)a143a22a199a155 vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
n+qsummationdisplay
k=n+1
uk(ζ)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle < ε,
q a47a106a156a200a201a24a34a81a47a22vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
n+qsummationdisplay
k=n+1
u(p)k (ζ)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
n+qsummationdisplay
k=n+1
p!
2pii
contintegraldisplay
Cprimeprime
uk(ζ)
(ζ ?z)p+1dζ
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
=
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
p!
2pii
contintegraldisplay
Cprimeprime
n+qsummationdisplay
k=n+1
uk(ζ) dζ(ζ ?z)p+1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
≤ p!2pi
contintegraldisplay
Cprimeprime
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
n+qsummationdisplay
k=n+1
uk(ζ)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
|dζ|
|ζ ?z|p+1
< p!2pi εδp+1lprimeprime, lprimeprime
a133
Cprimeprimea43a169a202.
a157a49
∞summationtext
k=1
u(p)k (z)a18(G a19a43a106a25a107a70a71)Gprime a87a25a26a27a28a34 square