Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(
a18) a191a20
a21a22a23 a24a25a26a27a28a29a30a31a32a33a34a35a36a37a38 (
a39)
§8.1 a40a41a42a43a44a45a46a47a48a49a44a50a51a52a50
a53a54a55a56a57a58a59a60a61a62a63a64a65a66a67a68
d2w
dz2 + p(z)
dw
dz + q(z)w = 0, (8.1)
p(z)a69q(z)a70a71a72a73a74a75a76a77
? a72a73a74a78a79a80a81a82a72a73a74a75a76a83a84a74a77
? a85a86a79a87a72a73a78a74a78a88a89a79a80a81a82a72a73a75a76a74a78a88a89a83a84a74a77
a90a91a92a93a94a93a95a96a97a98a99a100
a87
a101a102a103a93a104a105a106a107a108a109a110z
0
a103a111a112a113a114a115a103a116a117a91a92
a77
a98a99a118a92p(z), q(z)
a119z0a110a103a93a120a121a122a123a109a124a91a92a93a119z0a110a103a93a120a121a87
a125a126a127
a87
a122a123a109
a124a91a92a93a103a128a129
a87a130a131a87
a105Taylora91a92a132a105Laurenta91a92
a77
? a133a134p(z), q(z)a135z0
a136
a78a88a87a137z0
a136
a70a71a72a73a74a138
a136
a77
? a133a134p(z), q(z) a139a140a141a142a143a144a135z0
a136a145
a78a88a87a137z0
a136
a70a71a72a73a74a146
a136
a77
a1478.1
a148a149a150a72a73(Hypergeometric equation)
z(1?z)d
2w
dz2 +
bracketleftbigγ ?(1 + α + β)zbracketrightbigdw
dz ?αβw = 0
a74a75a76a79
p(z) = γ ?(1 + α + β)zz(1?z) a69 q(z) = ? αβz(1?z).
a135a142a151a152a153a87p(z)a69q(z)a142a154a144a146
a136a155
z = 0a69z = 1a77a156a157a87a158a159z = 0a69z = 1a79a148a149a150a72a73
a74a146
a136a160
a87a142a151a152a153a74a161a162
a136a163
a79a72a73a74a138
a136
a77
a1478.2 Legendre
a72a73
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0,
a135a142a151a152a153a74a146
a136
a71x = ±1a77
Wu Chong-shi
§8.1 a3a4a5a6a7a8a9a10a11a12a7a164a165a166a164 a192a20
a167a168a169a170a171
a152
a136
z = ∞a79
a145
a79a72a73(8.1)a74a146
a136
a87a137a172a173a174a175
a176a177
a74
a176a178z = 1/t
a77
dw
dz = ?t
2dw
dt ,
d2w
dz2 = t
4d2w
dt2 + 2t
3dw
dt .
a179a180
a87a72a73(8.1)a176a71
d2w
dt2 +
bracketleftbigg2
t ?
1
t2p
parenleftbigg1
t
parenrightbiggbracketrightbigg dw
dt +
1
t4q
parenleftbigg1
t
parenrightbigg
w = 0. (8.2)
a133a134t = 0a79a72a73(8.2)a74a138
a136
(a146
a136
)a87a137a70
a170a171
a152
a136
z = ∞a79a72a73 (8.1)a74a138
a136
(a146
a136
)a77
t = 0 (a181z = ∞)a71a72a73a138
a136
a74a182a183a79
p
parenleftbigg1
t
parenrightbigg
= 2t + a2t2 + a3t3 +···,
q
parenleftbigg1
t
parenrightbigg
= b4t4 + b5t5 +···,
a181
p(z) = 2z + a2z2 + a3z3 +···,
q(z) = b4z4 + b5z5 +···.
a170a171
a152
a136
a79a148a149a150a72a73a69Legendrea72a73a74a146
a136
a77
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(
a18) a193a20
§8.2 a62a63a59a184a185a186a187a64a188
a189a190
a87
a145a191a192a193a194a195a196a197a198
a74a84a199a77
a200a2018.1
a133a134p(z)a69q(z)a135a202|z ?z0| < R a203a204a205a78a88a87a137a135
a180
a202a203a138a206a207a72a73a208a205a209a210
d2w
dz2 + p(z)
dw
dz + q(z)w = 0,
w(z0) = c0, wprime(z0) = c1 (c0, c1a71a211a212a138a76)
a142a213a143a74a143a144a78w(z)a87a214a215w(z)a135a216a144a202a203a204a205a78a88a77
a217a218
a216a144a84a199a87a219a157a220w(z)a135z0
a136
a74a221a222|z ?z0| < R a203a223a224a71Taylora225a76
w(z) =
∞summationdisplay
k=0
ck(z ?z0)k.
a226a227
a87a216a228(z ?z0)0a229(z ?z0)1a74a75a76c0a229c1
a230a231
a69a208a205a182a183a143a232a77
a233
a216a144a234a235a74a225a76a78a236a237a206a207a72a73a87a238a239a75a76a87a240a219a157a241a242a75a76ck a77a84a199a243
a193
a87a75a76
ck(k = 2,3,···)a244a219a245c0, c1
a246a247
a77
a1478.3
a241Legendrea72a73
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0
a135x = 0
a136
a221a222a203a74a78a87a161a139la79a143a144a248a76a77
a188 x = 0
a79a72a73a74a138
a136
a87
a179a180
a87a219a249a78
y =
∞summationdisplay
k=0
ckxk.
a236a237a72a73a87a240a142
parenleftbig1?x2parenrightbig ∞summationdisplay
k=0
ckk(k ?1)xk?2 ?2x
∞summationdisplay
k=0
ckkxk?1 + l(l + 1)
∞summationdisplay
k=0
ckxk = 0,
a250
a199a251a214a87a252a253
∞summationdisplay
k=0
braceleftBig
(k + 2)(k + 1)ck+2 ?bracketleftbigk(k + 1)?l(l + 1)bracketrightbigck
bracerightBig
xk = 0.
a217a218Taylor
a223a224a74a213a143a89a87a219a252
(k + 2)(k + 1)ck+2 ?[k(k + 1)?l(l + 1)]ck = 0,
a181
ck+2 = k(k + 1)?l(l + 1)(k + 2)(k + 1) ck = (k ?l)(k + l + 1)(k + 2)(k + 1) ck.
a216a254a240a252a253a159a75a76a255a0a74a1a2a3a4a77a5a6a7a245a8a9a10a75a87a240a219a157a241a252a75a76
Wu Chong-shi
§8.2 a10a11a7a164a11a12a13a12a16 a194a20
c2n = (2n?l ?2)(2n + l ?1)2n(2n?1) c2n?2
= (2n?l ?2)(2n?l ?4)(2n + l ?1)(2n + l ?3)2n(2n?1)(2n?2)(2n?3) c2n?4
= ···
= c0(2n)!(2n?l ?2)(2n?l ?4)···(?l)· (2n + l ?1)(2n + l ?3)···(l + 1),
c2n+1 = (2n?l ?1)(2n + l)(2n + 1)(2n) c2n?1
= (2n?l ?1)(2n?l ?3)(2n + l)(2n + l ?2)(2n + 1)(2n)(2n?1)(2n?2) c2n?3
= ···
= c1(2n + 1)!(2n?l ?1)(2n?l ?3)···(?l + 1)· (2n + l)(2n + l ?2)···(l + 2).
a7a245Γa14a76a74a89a15
Γ(z + 1) = zΓ(z),
Γ(z + n + 1) = (z + n)(z + n?1)···(z + 1)zΓ(z),
a219a157
a233c
2na69c2n+1 a16a17
c2n = 2
2n
(2n)!
Γ
parenleftbigg
n ? l2
parenrightbigg
Γ
parenleftbigg
?l2
parenrightbigg
Γ
parenleftbigg
n + l + 12
parenrightbigg
Γ
parenleftbiggl + 1
2
parenrightbigg c0,
c2n+1 = 2
2n
(2n + 1)!
Γ
parenleftbigg
n ? l ?12
parenrightbigg
Γ
parenleftbigg
?l ?12
parenrightbigg
Γ
parenleftbigg
n + 1 + l2
parenrightbigg
Γ
parenleftbigg
1 + l2
parenrightbigg c1.
a156a157a87Legendrea72a73a74a78a240a79
y(x) = c0y1(x) + c1y2(x),
a161a139
y1(x) =
∞summationdisplay
n=0
22n
(2n)!
Γ
parenleftbigg
n? l2
parenrightbigg
Γ
parenleftbigg
?l2
parenrightbigg
Γ
parenleftbigg
n + l + 12
parenrightbigg
Γ
parenleftbiggl + 1
2
parenrightbigg x2n,
y2(x) =
∞summationdisplay
n=0
22n
(2n + 1)!
Γ
parenleftbigg
n? l ?12
parenrightbigg
Γ
parenleftbigg
?l ?12
parenrightbigg
Γ
parenleftbigg
n + 1 + l2
parenrightbigg
Γ
parenleftbigg
1 + l2
parenrightbigg x2n+1.
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(
a18) a195a20
a230
a133a84a199a156a243a87a211a212a18a84a143a19 c0a69c1a87a240a143a84a219a157a241a242a72a73a74a143a144a85a78a77a85a86a79a87
? a133a134a20c0 = 1, c1 = 0a87a240a252a253a85a78y1(x)a21
? a133a134a20c0 = 0, c1 = 1a87a240a252a253a85a78y2(x)a77
a22a23
a87
a24a25a26a27a93y
1(x)a28y2(x)
a105a29a121a116a30a103
a77
a31
a24a25a26a29a121a116a30a27a93a32a33
a87
a122a34a35a36
a37a32a98a99a103a38a93
a77
? a133a134a220a78a235a139a74a138a76c0a69c1
a39a17
a79a211a212a40
a191
a138a76a87
a41
a198
a252a253a74a240a79a72a73a74a42a78a77
a3a43
a188a64a44a45a56a64a46a47
a77
a41
a198
a241a252a74a85a78a139a87y1(x)a48a49a142xa74a50a51a52a87y2(x)a48a49a142xa74a146
a51a52a87a181y1(x)a79xa74a50a14a76a87y2(x)a79xa74a146a14a76a77
a53
a241a78a74a54a73a55
a39
a87a216a79a82a56a8a9a10a75a139a48
a242a57a75a76ck+2a69cka87a58
a229ck+1
a170
a10a87
a179a180c
2na80a81a82c0a83a84a87c2n+1a80a81a82c1a83a84a77
a53a217a59a41
a55a243a87a72a73a74a78a74a60a70a89(a216a228a61a74a79a146a50a89)a87a62
a227a63a64
a79a72a73a74a60a70a89a74a5a65a77
a42a54a216a144a66a67a87a219a157
a39
a242a135a138
a136
a221a222a203a241a225a76a78a74a143a68a69a70a77a216a240a79
a155
? a233(a72a73a138
a136
a221a222a203a74)a78a223a224a71Taylora225a76a87a236a237a206a207a72a73a21
? a238a239a75a76a87a252a253a75a76a255a0a74a8a9a10a75a21
? a5a6a7a245a8a9a10a75a87a241a242a75a76cka74a71a72
a246a73
a235(a245c0a69c1
a246a247
)a87
a53
a58a74a75a252a242a225a76a78a21
a82a56a8a9a10a75a143a84a79a76a89a74(a179a71a72a73a79a76a89a74)a87a156a157a74a75a74a225a76a78a143a84a219a157
a16a17
w(z) = c0w1(z) + c1w2(z)
a74a234a235a77
a135a75a76a255a0a74a8a9a10a75a139a87a143a68a77a78a79a242a57ck, ck+1, ck+2
a80
a144a81a221a74a75a76a87
a179a180c
k a77a78a79a82
a83
a56c0a69c1a87a74a75a241a252a74w1(z)a84w2(z)a240
a145
a77a48a49a142za74a50a51a52a84a146a51a52a77
Wu Chong-shi
§8.2 a10a11a7a164a11a12a13a12a16 a196a20
a63
a245a138a206a207a72a73a74a52a225a76a78a85a87a219a157a252a253a72a73a135a143a84a86a222a203a74a78a235a77a87a88a89a219a157
a217a218a90a167
a87
a241a242a72a73a135
a145
a78a86a222a203a74a78a235a77a219a157
a192a193
a87a72a73a135
a145
a78a86a222a203a74a78a235a87
a91
a71a78a88a92a93a77
a179a180
a87a89a219
a53
a72a73a135a94a143a86a222a203a74a78a235a242a95a87a42a54a78a88a92a93a87a9a242a72a73a135a161a162a86a222a203a74a78a235a77
a1478.4
a96w1a79a72a73
d2w
dz2 + p(z)
dw
dz + q(z)w = 0 (8.3)
a74a78a87a135a86a222G1a203a78a88a77a97 tildewidew1a79w1a135a86a222G2a203a74a78a88a92a93a87a181
w1 ≡ tildewidew1, z ∈ G1 intersectiontextG2, (8.4)
a98
a192a193a155
tildewidew1
a99
a79a72a73(8.3)a74a78a77
a100
a96
d2 tildewidew1
dz2 + p(z)
dtildewidew1
dz + q(z)tildewidew1 = g(z),
g(z)a135G2 a203a78a88a77a179a71w1a79a72a73(8.3)a135a86a222G1 a203a74a78a87a101a135a102a86a222 G1 intersectiontextG2 a203a87
a99a103a104
a72a73
d2w1
dz2 + p(z)
dw1
dz + q(z)w1 = 0.
a58a135
a180
a102a86a222a203a87w1(z) ≡ tildewidew1(z)a87
a101
d2 tildewidew1
dz2 + p(z)
dtildewidew1
dz + q(z)tildewidew1 = 0, z ∈ G1
intersectiontextG
2,
a181g(z) ≡ 0, z ∈ G1 intersectiontextG2a77
a217a218
a78a88a14a76a74a213a143a89a87a105a181
a192
a252
g(z) ≡ 0, z ∈ G2,
a106
a181 tildewidew1a135G2 a203
a103a104
a72a73
d2 tildewidew1
dz2 + p(z)
dtildewidew1
dz + q(z)tildewidew1 = 0. square
a147 8.5
a96 w1 a69 w2
a163
a79a72a73 (8.3) a74a154a144a76a89
a170
a10a78a87a215a244a135a86a222 G1 a203a78a88a77a97
tildewidew1a69 tildewidew2a207a86a79w1a69w2a135a86a222 G2 a203a74a78a88a92a93a87a181a135z ∈ G1 intersectiontextG2 a139
w1 ≡ tildewidew1, w2 ≡ tildewidew2.
a98
a192a155
tildewidew1a69 tildewidew2
a99
a76a89
a170
a10a77
a100
a82a67 8.4a107a87 tildewidew1a69 tildewidew2
a99
a79a72a73(a135G2 a203)a74a78a77
a179
a71w1a69w2 a76a89
a170
a10a87
?[w1,w2] ≡
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
w1 w2
wprime1 wprime2
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle negationslash= 0, z ∈ G1.
a96
?[tildewidew1, tildewidew2] ≡
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
tildewidew1 tildewidew2
tildewidewprime1 tildewidewprime2
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle = g(z),
g(z)a135G2 a203a78a88a77a82a56a135z ∈ G1 intersectiontextG2 a139a87
w1 ≡ tildewidew1, w2 ≡ tildewidew2,
a101g(z) negationslash= 0, z ∈ G
1
intersectiontextG
2a77a99
a227a217a218
a78a88a14a76a74a213a143a89a87a240
a192
a252
g(z) negationslash= 0, z ∈ G2.
a156a157a87 tildewidew1a69 tildewidew2(a135G2 a203)
a99
a76a89
a170
a10a77square