Wu Chong-shi
a0a1a2a3 a4a5a6a7a8a9a10a11 (
a12) a131a14
a15a16a17a18 a19a20a21a22a23a24a25a26 (
a27)
§11.1 a28a29a30a31a32a33a34a35a36a37
a38a39a40a41a42a43a44a45a46a47a48a49a50a51
I =
integraldisplay ∞
?∞
f(x)cospxdx a52 I =
integraldisplay ∞
?∞
f(x)sinpxdx.
a38a53a54a55a56a57p > 0
a58
a59a60a61a62a63a64a65a66a67a68a69a70a71a72a73a74a75a76a65a77a78
a58
a79a80a81a66a82a83a84a85a86a87a88a89a90f(z)cos pz
a91f(z)sinpz
a58
a61a80a92a90z = ∞a80a82a83 sinza91cosz a65a93a94a95a96(a61a97a98a99a100z a71a84a101
a102a103a104a105∞
a106
a68sinza91cosza70a71a107a108a105a84a101a65a83a109) a68a84a110a105a111a112a113a114
lim
R→∞
integraldisplay
CR
f(z)cospzdz a91 lim
R→∞
integraldisplay
CR
f(z)sinpzdz.
a115a116a43a117a118a119a120a121a41a122a123a124a125 f(z)eipz
a58a126a127
a122a123f(z)eipz
a128a129a130a131a132a133a134a135a135a136a137a138a139
a68a140
contintegraldisplay
C
f(z)eipzdz =
integraldisplay R
?R
f(x)eipxdx +
integraldisplay
CR
f(z)eipzdz
=
integraldisplay R
?R
f(x)[cospx + isinpx]dx +
integraldisplay
CR
f(z)eipzdz
= 2pii
summationdisplay
a141a142a143a144
res braceleftbigf(z)eipzbracerightbig.
a134a145a146a147a148a149a150
lim
R→∞
integraldisplay
CR
f(z)eipzdz,
a42a151a152a153a154a155a156a157a155a68a158a48a49a159a160
integraldisplay ∞
?∞
f(x)cospxdx a156
integraldisplay ∞
?∞
f(x)sinpxdx.
a90a161a68a162a163a164a165a166a60
a58
a167a168 11.1(Jordana167a168) a57
a1280 ≤ argz ≤ pi
a43a169a170
a133
a68a171|z|→ ∞
a172
a68Q(z)
a173a174a175a176a177a178
0a68a140
lim
R→∞
integraldisplay
CR
Q(z)eipzdz = 0,
a179a180p > 0a68C
R
a119a49a181
a139
a125a182a183a68Ra125
a130a184
a43
a129a130
a182
a58
a185 a171z
a128CR a129
a172
a68z = Reiθ a68
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
CR
Q(z)eipzdz
vextendsinglevextendsingle
vextendsinglevextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay pi
0
QparenleftbigReiθparenrightbigeipR(cosθ+isinθ)Reiθidθ
vextendsinglevextendsingle
vextendsinglevextendsingle
Wu Chong-shi
§11.1 a186a187a188a189
a5a190a191a192a193a194
a132a14
≤
integraldisplay pi
0
vextendsinglevextendsingleQparenleftbigReiθparenrightbigvextendsinglevextendsinglee?pRsinθRdθ
<εR
integraldisplay pi
0
e?pRsinθdθ = 2εR
integraldisplay pi/2
0
e?pRsinθdθ.
a195a196a43a197a198
a128
a178a199
a116a200
a148sinθ
a201a58a202a20311.1a48a204a68a1710 ≤ θ ≤ pi/2a172
a68
a135
sinθ ≥ 2θ/pia68a205a49vextendsingle
vextendsinglevextendsingle
vextendsingle
integraldisplay
CR
Q(z)eipzdz
vextendsinglevextendsingle
vextendsinglevextendsingle < 2εR
integraldisplay pi
0
e?pR·2θ/pidθ
= 2εR pi2pR parenleftbig1?e?pRparenrightbig
= εpip parenleftbig1?e?pRparenrightbig. a20611.1
a38a207a68a158a195a196a208
lim
R→∞
integraldisplay
CR
Q(z)eipzdz = 0. square
a178
a119a68
a128a209a210Jordan
a211a212
a43a213a214a215a68
integraldisplay ∞
?∞
f(x)eipxdx = 2pii
summationdisplay
a141a142a143a144
resbraceleftbigf(z)eipzbracerightbig.
a42a151a124a154a155a156a157a155a68a216a160
integraldisplay ∞
?∞
f(x)cospxdx =Re
??
?2pii
summationdisplay
a141a142a143a144
resbracketleftbigf(z)eipzbracketrightbig
??
? = ?2piIm
??
?
summationdisplay
a141a142a143a144
resbracketleftbigf(z)eipzbracketrightbig
??
?,
integraldisplay ∞
?∞
f(x)sinpxdx =Im
?
?
?2pii
summationdisplay
a141a142a143a144
resbracketleftbigf(z)eipzbracketrightbig
?
?
? = 2piRe
?
?
?
summationdisplay
a141a142a143a144
resbracketleftbigf(z)eipzbracketrightbig
?
?
?.
a21711.1
a148a149
a41a42
integraldisplay ∞
0
xsinx
x2 + a2 dx, a > 0a58
a218 a219a220
a129a132
a43a221a222a68
a135
integraldisplay ∞
?∞
xeix
x2 + a2dx = 2pii·
1
2e
i·ia = piie?a.
a205a49
integraldisplay ∞
?∞
xsinx
x2 + a2dx = pie
?a,
integraldisplay ∞
0
xsinx
x2 + a2dx =
pi
2e
?a.
a223a224a225
a172
a68a226a160a227
integraldisplay ∞
?∞
xcosx
x2 + a2dx = 0.
a38a119a228a229a43a68a230a125a121a41a122a123a119
a138
a122a123
a58
Wu Chong-shi
a0a1a2a3 a4a5a6a7a8a9a10a11 (
a12) a133a14
§11.2 a231a232a233a234a235a236a33a237a238
a239a41a42
(
a57a239
a139
a125
c)
a43a40a240a119
integraldisplay b
a
f(x)dx = lim
δ1→0
integraldisplay c?δ1
a
f(x)dx + lim
δ2→0
integraldisplay b
c+δ2
f(x)dx.
a126a127
a38a241
a137a242a136a243a244a245
a54a246
a128
a68a247a119
lim
δ→0
bracketleftbigg integraldisplay c?δ
a
f(x)dx +
integraldisplay b
c+δ
f(x)dx
bracketrightbigg
a246
a128
a68a140a248a125a239a41a42a43a249
a201
a246
a128
a68a250a125
v.p.
integraldisplay b
a
f(x)dx = lim
δ→0
bracketleftbigg integraldisplay c?δ
a
f(x)dx +
integraldisplay b
c+δ
f(x)dx
bracketrightbigg
.
a171a229a68
a126a127
a239a41a42a251a179a249
a201
a245
a246
a128
a68a252a253a254a255
a173
a40a0a1
a58
a92a161a68a2a3a4a5a66a67a80a164a165a6a66a67a68a7a59a60a8a9a65a10a5a66a67
contintegraldisplay
C
f(z)dza106
a68a4a11a12a65a6
a96a13a80a81a66a82a83a65a95a96a68a14a15a16a17a95a96a18a19a20a21a22a65a66a67a77a78
a58
a23a24a25a26a27a28a29a165a30a31
a32a33a34a35a36a59a60a61a63a66a67a65a37a93a38a39
a58
a21711.2
a148a149
a41a42
integraldisplay ∞
?∞
dx
x(1 + x + x2) a58
a218 a38a119
a173
a137a40a41
a41a42a68
a40a41a42a43a44a45a128
a41a42a46a47a125a48a49a46a47a68a50
a44a45
a125a121a41a122a123
a128x = 0a139
a54a51a52 (x = 0
a139
a125a239
a139)
a58
a224a41a42
a128
a249
a201a53
a240a215a246
a128
a68
v.p.
integraldisplay ∞
?∞
dx
x(1 + x + x2) = limR1→∞
integraldisplay ?1
?R1
dx
x(1 + x + x2) + limR2→∞
integraldisplay R2
1
dx
x(1 + x + x2)
+ lim
δ→0
bracketleftBiggintegraldisplay ?δ
?1
dx
x(1 + x + x2) +
integraldisplay 1
δ
dx
x(1 + x + x2)
bracketrightBigg
.
a230a224a68
a128a54a55a56
a123a40
a212
a148a149
a224a41a42
a172
a68
a54a57a58a59a60a61
a41a42
contintegraldisplay
C
dz
z(1 + z + z2),
a179a180a43a41a42a170a62 C
a126a20311.2a205a63a68a202
a49a181
a139
a125a182a183a64 δ a125
a130a184
a43a65
a130
a182a66 C
δ
a156a49a181
a139
a125a182a183a64Ra125
a130a184
a43a67
a130
a182a66 C
R
a49a251
a68a69a70?R →?δa156δ → R
a71
a51
a58a178
a119a68a219a220
a56
a123a40
a212
a68
a135
a20611.2contintegraldisplay
C
dz
z(1 + z + z2) =
integraldisplay ?δ
?R
dx
x(1 + x + x2) +
integraldisplay
Cδ
dz
z(1 + z + z2) +
integraldisplay R
δ
dx
x(1 + x + x2) +
integraldisplay
CR
dz
z(1 + z + z2)
= 2pii·res 1z(1 + z + z2)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=ei2pi/3
= ? pi√3 ?ipi.
a230a125
limz→∞z · 1z(1 + z + z2) = 0,
Wu Chong-shi
§11.2 a72a73a74a75a76a77
a190a78a79
a134a14
a205a49a68a219a220
a211a2123.2a68a135
lim
R→∞
integraldisplay
CR
dz
z(1 + z + z2) = 0.
a50a230a125
limz→0z · 1z(1 + z + z2) = 1,
a205a49a68a219a220
a211a2123.1a68a135
lim
δ→0
integraldisplay
Cδ
dz
z(1 + z + z2) = ?pii.
a38a207a68a124
a242a136R →∞
a68δ → 0a68a158a160a227
v.p.
integraldisplay ∞
?∞
dx
x(1 + x + x2) = ?
pi√
3.
a80a81a82
a126a127
a41a42a170a62a180a43a65
a130
a182a66a119a83a215
a130a131a132a84a85 z = 0a139
a68a230a86a87
z = 0a139a88
a170
a128
a170a62
a133
a68a119a89a90a160a227a54a225a43a91
a127a92
a125a93a253
a92
a94a12a24
a65a113a114a95a70a71a96a97a68a98a105a66a67a99a100a12a101a95a96a65a102a76a68a103a104a113a114a77a16a95a96a65a105a75
a106a12a65a66a67a109(
a107a108
a88a35a68a104a113a114a109a65a110a111a109)
a58
a7a101a112a102a113 (a30a2a68a114a115a116a82a83a65a117a118a66a67)
a23a68a93a32a4a5a66a67a119a84a80a6a66a67a68a79a120a105
a7a8a9a65a10a5a66a67a95a68a119a84a80a86a87a88a121a81a66a82a83 f(x)
a122
a20f(z)a68a92a18a7a10a5a82a83a65a77
a78a66a67a95a68a66a67a99a100a12a123a70a71a97a124a95a96
a58
a61a94a23a24a65a30a31a95a70a71a96a97
a58
a21711.3
a148a149
a41a42
integraldisplay ∞
?∞
sinx
x dxa58
a218 a125a126a229
a175
a68
a54
a171
a58a59
a41a42
contintegraldisplay
C
eiz
z dz
a68a41a42a170a62C a156a127 9a0a225(
a20311.2)a58
contintegraldisplay
C
eiz
z dz =
integraldisplay ?δ
?R
eix
x dx +
integraldisplay
Cδ
eiz
z dz +
integraldisplay R
δ
eix
x dx +
integraldisplay
CR
eiz
z dz.
a128
a41a42a170a62
a88
a170a43a46a128
a133
a68a121a41a122a123a129a130a68a131a170a62a41a42a1250
a58
a219a220Jordan
a211a212
a156
a211a2123.1a68a42a151a135
lim
R→∞
integraldisplay
CR
eiz
z dz = 0, limδ→0
integraldisplay
Cδ
eiz
z dz = ?pii.
a230a224
integraldisplay ∞
?∞
eix
x dx = pii.
a152a153a241a132a43a154a155a156a157a155a68a216a160
v.p.
integraldisplay ∞
?∞
cosx
x dx = 0,
integraldisplay ∞
?∞
sinx
x dx = pi.
a197
a178
a38a133a39a134a43a41a42a68a226a48a49a135
a150
integraldisplay ∞
?∞
sin2x
x2 dx =pi;
Wu Chong-shi
a0a1a2a3 a4a5a6a7a8a9a10a11 (
a12) a135a14
integraldisplay ∞
?∞
sin3x
x3 dx =
3
4pi;integraldisplay
∞
?∞
sin4x
x4 dx =
2
3pi;
integraldisplay ∞
?∞
sin5x
x5 dx =
115
192pi;integraldisplay
∞
?∞
sin6x
x6 dx =
11
20pi;
a52a136
a68a137a138a139a43a91
a127a140
integraldisplay ∞
?∞
sinnx
xn dx =
pi
(n?1)!
[n/2]summationdisplay
k=0
(?)k
parenleftbiggn
k
parenrightbiggparenleftbiggn?2k
2
parenrightbiggn?1
.
a148a149
a38a141a41a42a68a197a198
a128
a178
a115a116
a175a142a143
a60a61
a41a42a43a121a41a122a123
a58
a127
a126
a68a125a208
a148a149
a41a42
integraldisplay ∞
?∞
sin2x
x2 dx,
a158
a54a57a58a59a60a61
a41a42
contintegraldisplay
C
1?ei2z
z2 dz,
a41a42a170a62C
a144a126a20311.2a58
a38a53a68a158
a60a61
a41a42a86a145a68
a128
a154a146
a129
a48a49
a135a138a139
a58
a247a38a133
a138a139
a68
a173a147a148a149
a68
a134a146
a119a48a150
a138a139
a52a173a151
a242a139
a58
a38a83
a211a2123.1a158a48a49a152a150a58a126a127
a119a153
a151a52
a153
a151
a49
a129
a43
a242a139
a68
a52
a119a154
a42
a138a139
a68a155a65a182a66 C
δ
a43a41a42a158a48
a146
a176a178∞a58
Wu Chong-shi
§11.3 a156a157a158a159a160a161a162 a1636a164
§11.3 a165a166a31a32a33a36a37
a45a116
a175a148
a68a38a53a205
a148
a43a167
a201
a122a123a43a41a42a119a83
a60a61
a122a123a43a168a169
a148
a43
a58
a83
a60
a123a128
a149
a152a68a154
a61
a40a41a42a180
a43a41a42
a61a170xa128x > 0
a172
a54a57
a212
a129a125
argx = 0a58
a173
a133
a41
a204a43a167
a201
a122a123a41a42a119
I =
integraldisplay ∞
0
xs?1Q(x)dx,
a179a180sa125a154a123a68Q(x)
a243
a201
a68
a128
a115a154a146
a129a171a135a138a139
a58
a125a208a172a195a41a42a173a174a68
a145
a159
limx→∞x·xs?1Q(x)dx = limx→∞xsQ(x) = 0.
a58a59
a0
a54
a43
a60a61
a41a42contintegraltext
C z
s?1Q(z)dz
a58
a120a105z = 0
a175z = ∞a80a81a66a82a83a65a176a96a68a177a71a178a104a121
a179a24a180a181a4a11a182a17a68a119a183a184a180a182a185a12a186 argz = 0
a58
a61
a106
a65a66a67a99a100a120a182a17a65a187a105a75a106 (a74a100a67a188a90R
a189δ)
a175
a182a185a12a23a186a190a20 (
a191a19211.3)a58
a180a182a185a12a23a186a65a66a67
a193a194a111a112a195a177a104a113a114a65a4a5a66a67a101a196
a58a197a198
a80a2a199a113
a114a180a187a105a75a106a65a66a67a109
a58
contintegraldisplay
C
zs?1Q(z)dz =
integraldisplay R
δ
xs?1Q(x)dx +
integraldisplay
CR
zs?1Q(z)dz
+
integraldisplay δ
R
parenleftbigxei2piparenrightbigs?1 Q(x)dx +integraldisplay
Cδ
zs?1Q(z)dz. a20611.3
a202a211a2123.1a156a211a2123.2a48a49a152a150a68a126a127
a1280 ≤ argz ≤ 2pi
a43a169a170
a133
a68
limz→0zsQ(z) = 0, limz→∞zsQ(z) = 0,
a140
lim
δ→0
integraldisplay
Cδ
zs?1Q(z)dz = 0, lim
R→∞
integraldisplay
CR
zs?1Q(z)dz = 0.
a137a200
a173a201
a68
a126a127Q(z)a128a202a131a132a129a203a208a135a136a137a204a205a138a139(a54a128a115a154a146a129)a206
a68a119
a243
a201
a129a130a43a68a230a86a48
a49
a54a55a56
a123a40
a212a58
a128
a124
a242a136δ → 0, R → ∞
a207
a68a158a160a227
parenleftbig1?ei2pisparenrightbigintegraldisplay ∞
0
xs?1Q(x)dx = 2pii
summationdisplay
a208a143a144
res braceleftbigzs?1Q(z)bracerightbig.
a205a49
integraldisplay ∞
0
xs?1Q(x)dx = 2pii1?ei2pis
summationdisplay
a208a143a144
res braceleftbigzs?1Q(z)bracerightbig.
Wu Chong-shi
a209a210a211a212 a213a214a215a216a217a218a219a220 (
a221) a2227 a223
a224
a145a225
a53
a68
a128a148a149a56
a123
a172
a68
a145a226a227a129a132a228
a178
a167
a201
a122a123 zs a205a229a43
a136a230
a68a216 0 ≤ argz ≤ 2pi
a58
a80a81a82
a126a127a231
a40
a128a232
a69
a129a233 argz = 2pi
a68a119a89a234a235a236
a207
a91
a127a92
a80a81a82
a126a127Q(x)a237
a135
a173
a40a43
a228
a248
a42a238
a68a127
a126
a119
x
a43
a138
a122a123
a52a239
a122a123a68a119a89a48a49a124a179a240a46a47
a43a170a62
a92
a21711.4
a148a149
a41a42
integraldisplay ∞
0
xα?1
x + ei?dx
a680 < α < 1, ?pi < ? < pi
a58
a218 a38a53a43a121a41a122a123a228a229
a209a210a129a241
a221a222a180a43
a145
a159a68a230a224
integraldisplay ∞
0
xα?1
x + ei?dx =
2pii
1?ei2piαe
i(?+pi)(α?1) = pi
sinpiα ·e
i?(α?1) (star)
a83a38
a137
a41a42a226a48a49a242
a150
a173
a141a137a200
a173a201
a43a91
a127a58
a127
a126
a68a229a125a38
a137
a41a42a43a243a244a245a46a68 ? = 0a68a140
integraldisplay ∞
0
xα?1
1 + xdx =
pi
sinpiα.
a128Γ
a122a123
a173a246
a180
a145
a68a247
a54a55
a227a38
a137
a91
a127a58
a50
a126
a68a152a153 (star)a47a241a132a43a157a155a68a226a48a49a160a227
integraldisplay ∞
0
xα?1
x2 + 2xcos? + 1dx =
pi
sinpiα
sin(1?α)?
sin? .
a61a165a248a3a80a7 0 < α < 1a65a249a250a23a251a252a65a68a79a80a70a71a253a254a255a0a2520 < α < 2
a58a1a2 (star)
a103a29a3a65a4a4a68a13a70a71a251a252a101a5a65a248a3
a58
a6
a173
a133a167
a201
a122a123a43a41a42a7a251
a228
a123a122a123
a58a8
a221a222a215
a132
a43a127a9
a58
a21711.5
a148a149
a41a42
integraldisplay ∞
0
lnx
1 + x + x2 dxa58
a218 a124a170a62
a126a20311.3a68a148a149a60a61a41a42contintegraldisplay
C
lnz
1 + z + z2dz =
integraldisplay R
δ
lnx
1 + x + x2 dx +
integraldisplay
CR
lnz
1 + z + z2dz +
integraldisplay δ
R
lnparenleftbigxei2piparenrightbig
1 + x + x2dx +
integraldisplay
Cδ
lnz
1 + z + z2dz
=2pii
summationdisplay
a208a143a144
res
braceleftbigg lnz
1 + z + z2
bracerightbigg
= 2pii
parenleftbigg 2pi
3√3 ?
4pi
3√3
parenrightbigg
= ?4pi
2i
3√3.
a230a125
limz→∞z · lnz1 + z + z2 = 0, limz→0z · lnz1 + z + z2 = 0,
a219a220
a211a2123.2
a156
a211a2123.1
a68
a135
lim
R→∞
integraldisplay
CR
lnz
1 + z + z2dz = 0, limδ→0
integraldisplay
Cδ
lnz
1 + z + z2dz = 0.
a205a49a68a124
a242a136R →∞, δ → 0
a68a216a160
integraldisplay ∞
0
lnx
1 + x + x2dx?
integraldisplay ∞
0
lnx + 2pii
1 + x + x2 dx = ?
4pi2i
3√3.
Wu Chong-shi
§11.3 a10a11a189
a5a190a193a194
a138a14
a12a13a124a7a180a182a185a12a23a186a65a66a67a14a195a177a104a113a114a65a66a67a101a196a68a79a80a68a15a16a84a17a68a109a26a123a8a18
a19a20a21a22a68a18a23a24a25a26a27a28a29a30a31a32a33a34a35a36a37a38a39
integraldisplay ∞
0
1
1 + x + x2 dx =
2pi
3√3.
a40a41a42a43a38a39
contintegraldisplay
C
lnz
1 + z + z2dz
a34a35
integraldisplay ∞
0
lnx
1 + x + x2 dxa44a45a46
star a47a48a49a50a51a52a53a54a55a56a57a58a59a60a53a61a58a57a58 lnz a49a62a63a64a65a66a67a68a69a70a53a51a71a72a73a74
a70a75a76a77a78a79a53a80a81a69 (a82lnx)a83a84a85a86a87
star a88a47a48a89a49a90a91a92a93a94a95
? a96a97a53a61a98a99a77a78
integraldisplay ∞
0
f(x)dxa53
a100a101f(x)
a59a52a102a57a58 (a51a71a103a104a105a106a10710.3a108a109a49a110
a106a111a112) a53a103a113a114a115a116a107a117a58a99a118a111a112a119a120a77a78
contintegraldisplay
C
f(z) lnz dz a121a122a123a87
? a96a124a53
a100a101a125
a111a112a77a78
integraldisplay ∞
0
f(x)lnxdxa53a126a103a113a127a128a129a130a77a78
contintegraldisplay
C
f(z)ln2z dz a87
a51a131a132a79a73a74a70a75a76 ln
2z
a49a57a58a63 ln2x a54 (lnx + 2pii)2 a84a83a85a86a53a133a75a49a134
a135a136a137a138a139a140a125
a49 lnxa141a87
a66a67a142a121a143a144a145 12 a109
a139a125
a122a49a77a78a111a112a87a131a71a53a127a128a77a78
contintegraldisplay
C
ln2z
1 + z + z2dz a53a119a120 C a59a130a87
a146
a129a70a147a49a111a112a148a149a53a142a123a150integraldisplay
∞
0
ln2x
1 + x + x2dx?
integraldisplay ∞
0
(lnx + 2pii)2
1 + x + x2 dx = 2pii
summationdisplay
a151a152a153
res
braceleftbigg ln2z
1 + z + z2
bracerightbigg
= 2pi√3
bracketleftbigg16
9 pi
2 ? 4
9pi
2
bracketrightbigg
= 83√3pi3.
a98a52
?4pii
integraldisplay ∞
0
lnx
1 + x + x2dx + 4pi
2
integraldisplay ∞
0
1
1 + x + x2dx =
8
3√3pi
3.
a139
a113a53a142a123a150
a137a138a139a125
a122a49a77a78 integraldisplay
∞
0
lnx
1 + x + x2dx = 0.
a154
a71a155a156a53a157a158a103a113a159a160a123a150 integraldisplay
∞
0
1
1 + x + x2 dx =
2pi
3√3.
a113a70a161a162a163a117a58a99a118a49a97a164a165a166a167a49a116a107 a111a112a99a77a78a87a168a98a169a170a49a171a172a53a132a173a174a175a176a163
a165a177a178a49a179a164a180a181a49a99a77a78a87
a154
a163a132a179a164a180a181a155a156a53a158
a136
a80a182a97a183a180a181a49a99a77a78a53
a184a185a1864.5
a108a109
a49a187a188a189a49a105a190a77a78a53a157a103a113a107a117a58a99a118a111a112a87
Wu Chong-shi
a191a192a193a194 a195a196a197a198a199a200a201a202 (
a203) a2049a205
a206a207a208a209a210a211a212
integraldisplay ∞
?∞
sin2n+1 x
x2n+1 dx, n = 1,2,··· a213a214a215
a55a216Eulera217a56a53
a136
sin2n+1 x =
parenleftbiggeix ?e?ix
2i
parenrightbigg2n+1
=
parenleftbigg 1
2i
parenrightbigg2n+1 2n+1summationdisplay
k=0
parenleftbigg2n + 1
k
parenrightbiggparenleftbig
eixparenrightbig2n+1?kparenleftbig?e?ixparenrightbigk
=
parenleftbigg 1
2i
parenrightbigg2n+1 2n+1summationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
ei(2n+1?2k)x
=
parenleftbigg 1
2i
parenrightbigg2n+1 nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbiggbracketleftBig
ei(2n+1?2k)x ?e?i(2n+1?2k)x
bracketrightBig
= (?)
n
22n
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
sin(2n + 1?2k)x
a51a71a53a127a128a129a130a77a78 contintegraldisplay
C
1
z2n+1f(z)dz,
a77a78a218a219C a100a220a221a53a222
f(z) =
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
ei(2n+1?2k)z ?Q2n?1(z),
Q2n?1(z) a52a59a223a115 2n? 1 a160a49a62a141a56a53a224 z = 0 a131a225a77a57a58 f(z)/z2n+1 a49a97a226a227a228a53a82 z = 0 a131
f(z)a492na226a229a228a53
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbiggbracketleftbig
i(2n + 1?2k)bracketrightbigl ?Ql2n?1(0) = 0, l = 0,1,2,···,2n?1.
a98a52
Q2n?1(0) =
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
Qprime2n?1(0) = i
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2m + 1?2k) = 0
parenleftbigg
a51a131
d
dx sin
2n+1 xvextendsinglevextendsingle
x=0 = 0
parenrightbigg
Qprimeprime2n?1(0) = ?
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2m + 1?2k)2
...
Wu Chong-shi
a230a231a232a233
a20410a205
Q(2n?2)2n?1 (0) = (?)n?1
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2m + 1?2k)2n?2
Q(2n?1)2n?1 (0) = (?)n?1i
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2m + 1?2k)2n?1 = 0
parenleftbigg
a51a131
d2n?1
dx2n?1 sin
2n+1 xvextendsinglevextendsingle
x=0 = 0
parenrightbigg
a168a71a82a103a99a234
Q2n?1(z) =
n?1summationdisplay
l=0
(?)l
(2l)!
bracketleftBigg nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
(2n + 1?2k)2l
bracketrightBigg
z2l,
a82Q2n?1(z)a522n?2a160a49a102a160a62a141a56a53a235a58a131a81a58a87a55a216a117a58a99a118
a136
integraldisplay ?δ
?R
1
x2n+1f(x)dx +
integraldisplay
Cδ
1
z2n+1f(z)dz
+
integraldisplay R
δ
1
x2n+!f(x)dx +
integraldisplay
CR
1
z2n+1f(z)dz = 0.
a51a131
limz→∞ 1z2n+1 = 0,
a139
a113
lim
R→∞
integraldisplay
CR
1
z2n+1e
i(2n+1?2k)zdz = 0;
a236
a51a131
limz→∞z · 1z2n+1 = 0,
a139
a113
lim
R→∞
integraldisplay
CR
1
z2n+1Q2n?1(z)dz = 0.
a237a238a239
a121a142a123a150
lim
R→∞
integraldisplay
CR
1
z2n+1f(z)dz = 0.
a240
a97a110a147a53
limz→0z · 1z2n+1f(z) = limz→0 1z2nf(z)
= limz→0 1z2n
braceleftBigg nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
ei(2n+1?2k)z ?Q2n?1(z)
bracerightBigg
= 1(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
[i(2n + 1?2k)]2n
= (?)
n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n,
Wu Chong-shi
a191a192a193a194 a195a196a197a198a199a200a201a202 (
a203) a20411a205
a139
a113
lim
δ→0
integraldisplay
Cδ
1
z2n+1f(z)dz = ?pii×
(?)n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n.
a241
a227a171δ → 0, R →∞a53a82a123integraldisplay
∞
?∞
1
x2n+1f(x)dx = pii
(?)n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n.
a242a243
a68a69a53
a238a244a245 Q
2n?1(x)a49a235a58a131a81a58a53a142a123a150integraldisplay
∞
?∞
1
x2n+1
braceleftBigg nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbigg
sin(2n + 1?2k)x
bracerightBigg
dx
= (?)n22n
integraldisplay ∞
?∞
sin2n+1 x
x2n+1 dx
= pi(?)
n
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n+ 1
k
parenrightbigg
(2n + 1?2k)2n.
a165a246a142a122a234a163 integraldisplay
∞
?∞
sin2n+1 x
x2n+1 dx =
pi
(2n)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n + 1
k
parenrightbiggparenleftbigg2n + 1
2 ?k
parenrightbigg2n
.
Wu Chong-shi
a230a231a232a233
a20412a205
a206a207a208a209a210a211a212
integraldisplay ∞
?∞
sin2n x
x2n dx, n = 1,2,···a213a214a215
a55a216Eulera217a56a53
a136
sin2n x =
parenleftbiggeix ?e?ix
2i
parenrightbigg2n
= (?)
n
22n
2nsummationdisplay
k=0
parenleftbigg2n
k
parenrightbiggparenleftbig
eixparenrightbig2n?kparenleftbig?e?ixparenrightbigk
= (?)
n
22n
2nsummationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)x
= (?)
n
22n
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)x + (?)n
parenleftbigg2n
n
parenrightbigg
+
2nsummationdisplay
k=n+1
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)x
bracerightBigg
= (?)
n
22n
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbiggbracketleftBig
ei(2n?2k)x + e?i(2n?2k)x
bracketrightBig
+ (?)n
parenleftbigg2n
n
parenrightbiggbracerightBigg
= (?)
n
22n
braceleftBigg
2
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
cos(2n?2k)x + (?)n
parenleftbigg2n
n
parenrightbiggbracerightBigg
a51a71a53a127a128a129a130a77a78 contintegraldisplay
C
1
z2nf(z)dz,
a77a78a218a219C a100a220a221a53a222
f(z) =
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)z + (?)
n
2
parenleftbigg2n
n
parenrightbigg
?Q2n?2(z),
Q2n?2(z)a52a59a223a1152n?2a160a49a62a141a56a53a224z = 0a131a225a77a57a58f(z)/z2n a49a97a226a227a228a53a82z = 0a131 f(z)
a492n?1a226a229a228a53
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
+ (?)
n
2
parenleftbigg2n
n
parenrightbigg
?Q2n?2(0) = 0,
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbiggbracketleftbig
i(2n?2k)bracketrightbigl ?Ql2n?2(0) = 0, l = 1,2,···,2n?2.
a98a52
Q2n?2(0) =
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
+ (?)
n
2
parenleftbigg2n
n
parenrightbigg
= 0
parenleftBig
a51a131sin2nvextendsinglevextendsinglex=0 = 0
parenrightBig
Qprime2n?2(0) = i
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)
Wu Chong-shi
a191a192a193a194 a195a196a197a198a199a200a201a202 (
a203) a20413a205
Qprimeprime2n?2(0) = ?
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)2 = 0
parenleftbigg
a51a131
d2
dx2 sin
2nvextendsinglevextendsingle
x=0 = 0
parenrightbigg
...
Q(2n?3)2n?2 (0) = (?)ni
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)2n?3
Q(2n?2)2n?2 (0) = (?)n+1
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2m?2k)2n?2 = 0
parenleftbigg
a51a131
d2n?2
dx2n?2 sin
2nvextendsinglevextendsingle
x=0 = 0
parenrightbigg
a168a71a82a103a99a234
Q2n?2(z) = i
n?2summationdisplay
l=0
(?)l
(2l + 1)!
bracketleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2l+1
bracketrightBigg
z2l+1,
a82Q2n?2(z)a522n?3a160a49a247a160a62a141a56a53a235a58a131a248a68a58a87a55a216a117a58a99a118
a136
integraldisplay ?δ
?R
1
x2nf(x)dx +
integraldisplay
Cδ
1
z2nf(z)dz
+
integraldisplay R
δ
1
x2nf(x)dx +
integraldisplay
CR
1
z2nf(z)dz = 0.
a51a131
limz→∞ 1z2n = 0,
a139
a113
lim
R→∞
integraldisplay
CR
1
z2ne
i(2n?2k)zdz = 0;
a236
a51a131
limz→∞z · 1z2n = 0,
a139
a113
lim
R→∞
integraldisplay
CR
1
z2ndz = 0;
a159a51a131
limz→∞z · 1z2nQ2n?2(z) = 0,
a139
a113
lim
R→∞
integraldisplay
CR
1
z2nQ2n?2(z)dz = 0.
a132a179a69a78
a237a238a239
a121a142a123a150
lim
R→∞
integraldisplay
CR
1
z2nf(z)dz = 0.
Wu Chong-shi
a230a231a232a233
a20414a205
a240
a97a110a147a53
limz→0z · 1z2nf(z) = limz→0 1z2n?1f(z)
= limz→0 1z2n?1
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
ei(2n?2k)z + (?)
n
2
parenleftbigg2n
n
parenrightbigg
?Q2n?2(z)
bracerightBigg
= 1(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
[i(2n?2k)]2n?1,
a139
a113
lim
δ→0
integraldisplay
Cδ
1
z2nf(z)dz = ?pii×
i2n?1
(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1
= (?)n+1 pi(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1.
a241
a227a171δ → 0, R →∞a53a82a123integraldisplay
∞
?∞
1
x2nf(x)dx = (?)
n pi
(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1.
a242a243
a81a69a53
a238a244a245 Q
2n?2(x)a49a235a58a131a248a68a58a53a142a123a150integraldisplay
∞
?∞
1
x2n
braceleftBiggn?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
cos(2n?2k)x + (?)
n
2
parenleftbigg2n
n
parenrightbiggbracerightBigg
dx
= (?)n22n?1
integraldisplay ∞
?∞
sin2n x
x2n dx
= (?)n pi(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(2n?2k)2n?1.
a165a246a142a122a234a163 integraldisplay
∞
?∞
sin2n x
x2n dx =
pi
(2n?1)!
n?1summationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(n?k)2n?1
= pi(2n?1)!
nsummationdisplay
k=0
(?)k
parenleftbigg2n
k
parenrightbigg
(n?k)2n?1.