Wu Chong-shi
a0a1a2a3 a4a5a6a7a8 (
a9) a10a11a12a13a14a15a16
a17a18a19a20a21a22a23a24a20a21a22a25a26 Lapalce
a27a28
a29a30a31a32a33 (r,φ)
a34a35a36
a32a33 (x,y)
a37a38a39a40
x = r cosφ, y = r sinφ.
a41a42a43a44a45a46
dr = cosφdx + sinφdy, dφ = ?sinφr dx + cosφr dy,
a47
?r
?x = cosφ,
?φ
?x = ?
sinφ
r ,
?r
?y = sinφ,
?φ
?y =
cosφ
r .
a48a49a50a51a52a53
a37
a45a54a55a56a57
?
?x =
?r
?x
?
?r +
?φ
?x
?
?φ = cosφ
?
?r ?
sinφ
r
?
?φ,
?
?y =
?r
?y
?
?r +
?φ
?y
?
?φ = sinφ
?
?r +
cosφ
r
?
?φ.
a58a59a60a61a62a63a64
?2
?x2 =
parenleftbigg
cosφ ??r ? sinφr ??φ
parenrightbiggparenleftbigg
cosφ ??r ? sinφr ??φ
parenrightbigg
= cos2φ ?
2
?r2 ?
2sinφ cosφ
r
?2
?r?φ +
sin2φ
r2
?2
?φ2 +
sin2 φ
r
?
?r +
2sinφ cosφ
r2
?
?φ,
?2
?y2 =
parenleftbigg
sinφ ??r + cosφr ??φ
parenrightbiggparenleftbigg
sinφ ??r + cosφr ??φ
parenrightbigg
= sin2φ ?
2
?r2 +
2sinφ cosφ
r
?2
?r?φ +
cos2φ
r2
?2
?φ2 +
cos2 φ
r
?
?r ?
2sinφ cosφ
r2
?
?φ.
a65a66a61a63a64a29a30a31a32a33
a39a67a37 Laplacea68a69
?2 ≡ ?
2
?r2 +
1
r
?
?r +
1
r2
?2
?φ2
≡ 1r ??r
parenleftbigg
r ??r
parenrightbigg
+ 1r2 ?
2
?φ2.
a70a42a71a72a73a57a74a75a76a63a64a77a32a33
a39a67a37 Laplacea68a69
?2 ≡ ?
2
?r2 +
1
r
?
?r +
1
r2
?2
?φ2 +
?2
?z2
≡ 1r ??r
parenleftbigg
r ??r
parenrightbigg
+ 1r2 ?
2
?φ2 +
?2
?z2.
Wu Chong-shi
§18. a78a79a80a81a82a83 Lapalcea84a85 a862a87
a88a20a21a22a25a26 Lapalce
a27a28
a89a32a33 (r,θ,φ)
a34a35a36
a32a33 (x,y,z)
a37a38a39a40
x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ.
a41a42a75a76a90a46
dr = sinθ cosφdx + sinθ sinφdy + cosθdz,
dθ = cosθ cosφr dx + cosθ sinφr dy ? sinθr dz,
dφ = ? sinφrsinθdx + cosφrsinθdy.
a91a42
?
?x =
?r
?x
?
?r +
?θ
?x
?
?θ +
?φ
?x
?
?φ = sinθ cosφ
?
?r +
cosθ cosφ
r
?
?θ ?
sinφ
r sinθ
?
?φ,
?
?y =
?r
?y
?
?r +
?θ
?y
?
?θ +
?φ
?y
?
?φ = sinθ sinφ
?
?r +
cosθ sinφ
r
?
?θ +
cosφ
r sinθ
?
?φ,
?
?z =
?r
?z
?
?r +
?θ
?z
?
?θ = cosθ
?
?r ?
sinθ
r
?
?θ.
a70a42a71a72a73a61a75a76a45a46
?2
?x2 =
parenleftbigg
sinθ cosφ ??r + cosθ cosφr ??θ ? sinφr sinθ ??φ
parenrightbiggparenleftbigg
sinθ cosφ ??r + cosθ cosφr ??θ ? sinφr sinθ ??φ
parenrightbigg
= sin2 θ cos2 φ ?
2
?r2 +
cos2θcos2φ
r2
?2
?θ2 +
sin2 φ
r2 sin2 θ
?2
?φ2 +
2sinθ cosθ cos2 φ
r
?2
?r?θ
? 2sinφ cosφr ?
2
?r?φ ?
2cosθ sinφ cosφ
r2 sinθ
?2
?θ?φ +
cos2 θ cos2 φ + sin2 φ
r
?
?r
+ ?2sin
2 θ cosθ cos2 φ + cosθ sin2 φ
r2 sinθ
?
?θ +
2sinφ cosφ
r2 sin2 θ
?
?φ,
?2
?y2 =
parenleftbigg
sinθ sinφ ??r + cosθ sinφr ??θ + cosφr sinθ ??φ
parenrightbiggparenleftbigg
sinθ sinφ ??r + cosθ sinφr ??θ + cosφr sinθ ??φ
parenrightbigg
= sin2θsin2φ ?
2
?r2 +
cos2θsin2φ
r2
?2
?θ2 +
cos2 φ
r2 sin2 θ
?2
?φ2 +
2sinθ cosθ sin2 φ
r
?2
?r?θ
+ 2sinφ cosφr ?
2
?r?φ +
2cosθ sinφ cosφ
r2 sinθ
?2
?θ?φ +
cos2 θ sin2 φ + cos2 φ
r
?
?r
+ ?2sin
2 θ cosθ sin2 φ + cosθ cos2 φ
r2 sinθ
?
?θ ?
2sinφ cosφ
r2 sin2 θ
?
?φ,
?2
?z2 =
parenleftbigg
cosθ ??r ? sinθr ??θ
parenrightbiggparenleftbigg
cosθ ??r ? sinθr ??θ
parenrightbigg
= cos2 θ ?
2
?r2 +
sin2 θ
r2
?2
?θ2 ?
2sinθ cosθ
r
?2
?r?θ +
2sinθ cosθ
r2
?
?θ +
sin2 θ
r
?
?r.
Wu Chong-shi
a92a93a94a95 a96a97a98a99a100 (
a101) a102a103a104
a105
a79a80a81 a863a87
a65a66a61a63a64a89a32a33
a39a67a37 Laplacea68a69
?2 ≡ ?
2
?r2 +
2
r
?
?r +
1
r2
?2
?θ2 +
cosθ
r2 sinθ
?
?θ +
1
r2 sin2 θ
?2
?φ2
≡ 1r2 ??r
parenleftbigg
r2 ??r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ ??θ
parenrightbigg
+ 1r2 sin2 θ ?
2
?φ2.
Wu Chong-shi
§18.1 a106a107a108a109 a864a87
§18.1 a110 a111 a112 a113
a114a115a116a117a118a119a120a121a122a123a124a125a90a126a127a128
?2u
?x2 +
?2u
?y2 = 0, x
2 + y2 < a2,
uvextendsinglevextendsinglex2+y2=a2 = f.
a70
a35a36
a32a33
a39a67
a57a129a130(
a131a132Laplacea129a130)a133a134
a75a76a135a136a137a138a124a139a140a141a142a143a144
a134a145
a62a124a41a146a140a141
a37
a147a148
a40a149
a147a57a150a151
a134a152a153a154a155a156
a29a30a31a32a33
a39
a124
a70a29a30a31a32a33
a39a157
a57a158a159
a37
a125a90a126a127
a153a154
a75a76a160a128
1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
+ 1r2 ?
2u
?φ2 = 0, 0 < r < a,
uvextendsinglevextendsingler=a = f(φ).
a161u(r,φ) = R(r)Φ(φ) a57a162a163a129a130a57a164
1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
Φ + Rr2 d
2Φ
dφ2 = 0, =?
r
R
d
dr
parenleftbigg
rdRdr
parenrightbigg
= ?1Φ d
2Φ
dφ2 = λ.
a91a42a57a75a76a135a136a137a138a57
r ddr
parenleftbigg
rdRdr
parenrightbigg
?λR = 0,
d2Φ
dφ2 + λΦ = 0.
a139
a40
a140a141a142a143
R(a)Φ(φ) = f(φ)
a165
a134a145
a62a135a136a137a138a57a91a128a140a141a142a143
a40a166a167a168a37
a124a169a170a171a172a62a173a174
a167a168
a129a130a135a136a137a138a57a63a64a175a176a177a164
a178a125a179a53
a37a167a168a180a181
a135a129a130a57a139
a40a182a183
a164a184
a153a37a167a168
a140a141a142a143a185a186a187a51a188a189a190a59a176a191a192a193a126a127a124
a194a195a196a197a198a199a200a201a202a203a204a205a206a207a208a57a209a210a211a212a213a119a214a215a119a216a217a218
a73a30a46a219
a37a220a221
a57a222a223
a40
a41a146a224a225
a157a37a226a227a228
a190
a37a229
a70
a149
a147a230a231
a37
a142a143
a67
a57a41a29a30
a35a36
a32a33
a39
a137a232a64a29a30a31a32a33
a39a233
a57a234a235
1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
+ 1r2 ?
2u
?φ2 = 0, 0 < r < a,
uvextendsinglevextendsingler=a = f(φ).
a182a145
a222a223a236a237a146a158a159
a37
a125a90a126a127a238a239a240a241a57a242
a182a145
a189a190a59a176a222a243
a37
a125a90a126a127a124
Wu Chong-shi
a92a93a94a95 a96a97a98a99a100 (
a101) a102a103a104
a105
a79a80a81 a865a87
star a244
a59a57a70a53a245a73a57a158a159a125a90a126a127
a37a181
a135a129a130a70
a149a246a247a247
a190a248a238
a134
a188a137a232a64a29a30a31a32a33a66a57a129
a130a70a230a249
a37a250a251 φ = 0a34φ = 2pia182a145
a190a248a124a252a253a241a57a70a29a30a31a32a33
a157
a57a151a137a138 φ
a37
a137a254a255a0
a40[0, 2pi]
a57a91a128 u(r, φ)a70
a250a251φ = 0a34φ = 2pia247a37a1
a54a53
a183
a164a125a2a57a3a4a138a65a5a6a7a62a125a2
u(r, φ)a70a175a176a250a251a247a37a8a9a1
a54a53a124
a10a175a176
a250a251a11a12a40
a41a146
a155a156
a29a30a31a32a33
a39a13
a160
a149
a147a188a46a219
a37
a57
a182a166a14a15a37a16a17
a140a141a57a70a158a18
a37
a125a90a126a127
a157
a57a61a19
a145
a73a20a21a125a184
a153a37
a140a141a142a143a124a10a22a61a54a23a70a73a30
a37
a234a235
a157
a6
a183
a164a24a46 u(r,φ)
a70φ = 0
a34φ = 2pia247a25a153a133a26a27a37
a140a141a142a143a124
a28a29a64a29a30a31a32a33
a39a37a30a251
a57 (r, φ = 0)
a34(r, φ = 2pi)a162a31a37a40
a29a30a73
a37a32
a59
a251
a57
a25
a76a57a33a128
a222a243
a37
a125a90a126a127a57
a153a133a34
a3a73a35a36a142a143
u(r,φ)vextendsinglevextendsingleφ=0 = u(r,φ)vextendsinglevextendsingleφ=2pi a34
?u(r,φ)
?φ
vextendsinglevextendsingle
vextendsingle
φ=0
= ?u(r,φ)?φ
vextendsinglevextendsingle
vextendsingle
φ=2pi
.
a10a22a57a73a30a37a64
a37
a41a146a38Laplacea129a130a39
a35a36
a32a33
a39a40
a232a64a31a32a33
a39a233
a188a41a42
a37a43a44
a57a75a76a45
a46a35a36a142a143a188a63a64
a34a47
a124
star a244a131
a57a158a159
a37
a129a130a70a32a33a158
a251(x, y) = (0, 0)a6a40a190a248a37a124a139a40
a57a137a232a64a29a30a31a32a33a66a57a129a130a70
r = 0a251a182a145
a190a248a124a91a128u(r,φ)a70r = 0
a251a37a1
a54a53a6
a182a183
a164a125a2a57a3a4a138a6a7a62a125a2 u(r, φ)
a70r = 0
a251a37a8a9a1
a54a53a124
r = 0a251
a33a128a151a137a138r
a37a250a251
a57a6
a11a12a40
a41
a155a156
a31a32a33
a39
a188a46a219
a37
a57a242
a182a145a40a149
a147a230a231
a37a16a17
a140a141a124a10a22a6a74a48a20
a34
a3a73 u(r, φ)a70r = 0
a251a25a153a133a26a27a37
a140a141a142a143a124
a28a29a64a158a159
a37
a129a130
a40a167a168a37
a57a70
a149a246(a49a50
a32a33a158
a251)a40a51a52a37
a57a91a42a57u(r, φ)a70a32a33a158
a251a153
a133a40
a164a141
a37
a57
a153a133
a20
a34
a3a73a164a141a142a143
u(r, φ)vextendsinglevextendsingler=0a164a141.
a53a54
a229
a194a55a56a211a195a196a197a198a199a200a57a57a121a58a122a123a59a202a60a206a61
1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
+ 1r2 ?
2u
?φ2 = 0, 0 < φ < 2pi, 0 < r < a,
u(r,φ)vextendsinglevextendsingleφ=0 = u(r,φ)vextendsinglevextendsingleφ=2pi, 0 < r < a,
?u(r,φ)
?φ
vextendsinglevextendsingle
vextendsingle
φ=0
= ?u(r,φ)?φ
vextendsinglevextendsingle
vextendsingle
φ=2pi
, 0 < r < a,
u(r, φ)vextendsinglevextendsingler=0a164a141, 0 < φ < 2pi,
uvextendsinglevextendsingler=a = f(φ), 0 < φ < 2pi.
Wu Chong-shi
§18.1 a106a107a108a109 a866a87
a219a70a57a62a159a63a50a135a136a137a138
a37
a60a64a57a61a75a76a65a64a57a66a67a68a30a69a70a63a64
a37
a175a176
a167a168a180a181
a135a129a130
r ddr
parenleftbigg
rdRdr
parenrightbigg
?λR = 0,
d2Φ
dφ2 + λΦ = 0
a186a71a57a41a35a36a142a143a74a75a76a63a64
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi).
a10a22a57a72a63a64a67a59a176a73
a37
a191a192a193a126a127
d2Φ
dφ2 + λΦ = 0,
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi).
a74a75a76a77a78a79a80a81a82a83a84
a229
a85a84a86a87a88a89a90a91a92a81a93a94a95a96a97a98a99a100a101a102a103a104a105a106a81a124
a74a75a76a77a78a79a80a81a107a108a109a110a111a112a113a114a81a82a83a124
a133λ = 0a233
a57
a180a181
a135a129a130
a37
a45a90a128
Φ0(φ) = A0φ + B0.
a162a163a35a36a142a143a57a164
B0 = A02pi + B0, A0 = A0.
a91a42
A0 = 0, B0
a115a116
.
a10a241a117λ = 0
a40
a191a192a193a57a184
a153a37
a191a192a52a53
a40
Φ0(φ) = 1.
a133λ negationslash= 0a233
a57a129a130
a37
a45a90a128
Φ(φ) = Asin
√
λφ + Bcos
√
λφ.
a162a163a35a36a142a143a57a63a64
B = Asin
√
λ2pi+ Bcos
√
λ2pi,
A = Acos
√
λ2pi?Bsin
√
λ2pi.
a10a75a76a65a190
a40a38
a146
a39
a53 A
a34B a37a118a119a167a168
a162a53a129a130a120a57a164
a166a121
a90
a37
a3a135a122a20a142a143
a40vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle sin
√λ2pi cos√λ2pi?1
cos√λ2pi?1 ?sin√λ2pi
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle = 0,
a472(cos√λ2pi?1) = 0a124a10a22a72a75a76a45a63a191a192a193
λm = m2, m = 1,2,3,···,
a184
a153a37a166a121
a90
a40
A
a115a116
, B
a115a116
.
Wu Chong-shi
a92a93a94a95 a96a97a98a99a100 (
a101) a102a103a104
a105
a79a80a81 a867a87
a10a61
a40
a241a57a123
a153
a146a59a176a191a192a193 λ
m
a57a164a175a176a191a192a52a53
Φm1(φ) = sinmφ,
Φm2(φ) = cosmφ.
a108a109a57a124a125a126a127a128 λ
0 = 0
a81a129a130a98λ
0 negationslash= 0
a81a129a130a131a132a133a134a57a135a99a136a106
Φm1(φ) = sinmφ,
Φm2(φ) = cosmφ,
a137
a128ma81a138a78a139a140a141a142a143 0,1,2,3,···a124
a48a49a135a136a137a138a55
a37
a33a144a60a64a57a62a159a45
a180a181
a135a129a130
r ddr
parenleftbigg
rdRdr
parenrightbigg
?λR = 0
a37
a90a124a145
a116
a10a176
a180a181
a135a129a130
a40
a59a176
a30a146a37
a137
a39
a53a129a130a57a70a46a151a137a138
a37
a137a232
d
dt = r
d
dr
a47 t = lnr
a66a57a61a75a76a137a128
a180a39
a53
a37a180a181
a135a129a130
a229
d2R
dt2 ?λR = 0.
a25
a76a57
a133λ0 = 0a233
a57a45a90a128
R0(r) = C0 + D0t = C0 + D0 lnr;
a133λm = m2, m negationslash= 0a233
a57a45a90a128
Rm(r) = Cmemt + Dme?mt = Cmrm + Dmr?m.
a219a70a57a61a45a63a67
a26a27a167a168
a129a130
a34a167a168
a140a141a142a143 (a35a36a142a143)
a37
a223a147
a30
a90
u0(r,φ) = C0 + D0 lnr,
um1(r,φ) = parenleftbigCm1rm + Dm1r?mparenrightbigsinmφ,
um2(r,φ) = parenleftbigCm2rm + Dm2r?mparenrightbigcosmφ.
a148a149a150a159a57a61a63a64a125a90a126a127
a37
a59a151a90
u(r,φ) = C0 + D0 lnr +
∞summationdisplay
m=1
parenleftbigC
m1rm + Dm1r?m
parenrightbigsinmφ + ∞summationdisplay
m=1
parenleftbigC
m2rm + Dm2r?m
parenrightbigcosmφ.
a28a29a64a164a141a142a143
uvextendsinglevextendsingler=0a164a141,
a91a128lnr
a34r?m a70r = 0a251a152a40a51
a141
a37
a57
a25
a76a242a170
a37a39
a53
a152
a122a153a128 0a57
D0 = 0, Dm1 = 0, Dm2 = 0.
a62a162a163a4a154
a37
a140a141a142a143a57a61a63a64
u(r,φ)
vextendsinglevextendsingle
vextendsingle
r=a
= C0 +
∞summationdisplay
m=1
am(Cm1 sinmφ + Cm2 cosmφ) = f(φ).
Wu Chong-shi
§18.1 a106a107a108a109 a868a87
a67
a30
a37
a126a127a155
a40a156a17
a125a46a148a149
a39
a53 C
0, Cm1 a34Cm2
a124a171a172a6a75a76a39Fourier
a157a158a37a36a159a160
a45a46
a39
a53C
0, Cm1 a34Cm2
a57a139
a155a156
a135a136a137a138a55
a37
a33a144a161a55a57a74
a40a162a156
a191a192a52a53
a37a15a163a119
a125a148a149
a39
a53a124
a164a165a166a167a168a122a123
d2Φ
dφ2 + λΦ = 0,
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi),
a164a202a169a170a166a167a168a119a166a167a171a172a173a174a175a119a124
star a191a192a52a531(a123a153a146a191a192a193λ0 = 0)a34
a191a192a52a53sinmφa239cosmφ (a123
a153
a146a191a192a193λ
m = m2, m negationslash= 0)
a40a15a163a37a229 integraldisplay
2pi
0
sinmφdφ = 0,
integraldisplay 2pi
0
cosmφdφ = 0.
star a123a153
a146a191a192a193λ
m = m2 a37
a191a192a52a53 sinmφ, cosmφ
a34
a123
a153
a146a191a192a193λ
n = n2, n negationslash= ma37
a191a192a52
a53sinnφ, cosnφ
a40
a175a175
a15a163a37a229 integraldisplay
2pi
0
sinnφsinmφdφ = 0,
integraldisplay 2pi
0
sinnφcosmφdφ = 0,
integraldisplay 2pi
0
cosnφcosmφdφ = 0.
a164a202a165a170a176a177a166a167a168 λ
m = m2
a119a178a177a166a167a171a172 sinmφ
a179cosmφa180
a173a174a175a119
a229integraldisplay
2pi
0
sinmφcosmφdφ = 0.
a91a42a57
a162a156
a191a192a52a53
a37a15a163a119
a76a181
integraldisplay 2pi
0
sin2mφdφ = pi,
integraldisplay 2pi
0
cos2mφdφ = pi,
a61a75a45a63
C0 = 12pi
integraldisplay 2pi
0
f(φ)dφ,
Cm1 = 1ampi
integraldisplay 2pi
0
f(φ)sinmφdφ,
Cm2 = 1ampi
integraldisplay 2pi
0
f(φ)cosmφdφ. square
Wu Chong-shi
a92a93a94a95 a96a97a98a99a100 (
a101) a102a103a104
a105
a79a80a81 a869a87
a219a70a62a123a73a30a45a90a46a130
a157a37a182a183
a126a127a33a59
a183a34
a3a184a185a124
star a186
a176a57a194a187a58a166a167a168a122a123a188a57a164a202a165a176a177a166a167a168a189a178a177 (
a190a191a192a193
a119) a166a167a171a172a124
? a123a153
a59a176a191a192a193a164
a145a194
a59a176 (
a118a119a51a38a37) a191a192a52a53a37
a219a195a57a196a128a197
a182 (a239a198a254)a124
? a156
a235a123
a153
a59a176a191a192a193a164 na176a191a192a52a53a57a56a196a191a192a193a126a127
a40 na63a197a182a37
a57a239a240a241a197
a182a159
a128 na124
? a123a146a131a199a180a181
a135a129a130
a37
a191a192a193a126a127a57a65a5a7a62
a40a131
a63a197
a182a37
a124
? a70a131a199a180a181a135a129a130a37a191a192a193a126a127a157a57a156a235a140a141a142a143a40a59a200a131a200a201a202a57a56a123a153a59a176a191a192a193a57a7a62
a164a59a176a191a192a52a53a57a239a240a241a57a191a192a193a126a127a59a125
a40a166
a197
a182a37
a124a188
a133
a140a141a142a143
a40
a35a36a142a143
a233
a57a191a192a193
a126a127a203
a40
a197
a182a37
a124
star a186a204
a57a164a165a205a206a119a166a167a168a122a123a57a166a167a171a172a119a207a208a206a169a209a176a124
? a123a153a32
a59a176a191a192a193
a37
a191a192a52a53a6
a145
a59a125
a15a163
a57
? a139a40a59a125a75a76a45a46a210a133a37
a63a73a120a51a188a211a242a170
a15a163
a254a124
a110a76a80a137a212a57a110a126a127a128a100a140a213 λ
m = m2, m = 1, 2, 3, ···
a81a76a77a214a92a138a143
eimφ a98 e?imφ,
a215a216a217a218a141a128a219a220a76a77a78 (
a221a222λ0 = 0)a98a76a77a214a92a135a99a136a106
λm = m2, m = 0, ±1, ±2, ±3, ···,
Φm(φ) = eimφ.
a74a223a57a100a140a224a225a76a77a78a81a76a77a214a92a108a109a226a109a84a227a228a81
a229
integraldisplay 2pi
0
einφ(eimφ)?dφ = 0, n, m = 0,±1,±2,±3,···,a229n negationslash= m.
a137
a229
a57a100a140a213a225a99a75a76a77a78 λ
m = m2, m negationslash= 0
a81a230a75a76a77a214a92 e±imφ a124a84a227a228a81
a229
integraldisplay 2pi
0
eimφ(e?imφ)?dφ = 0.
a231a232a113a233a81a76a77a214a92a84a234a214a92a57a233a235a236a81a227a228a237a238a239a240a241a128a242a239a81a99a75a76a77a214a92a138a234
a243a244a124
Wu Chong-shi
§18.1 a106a107a108a109 a8610a87
? a38
a146a125a90a126a127
a37a30
a90a57a242a170
a40
1, lnr, rm sinmφ, rm cosmφ, r?m sinmφa34r?m cosmφ.
a145
a116
a10a245
a37a1a181
a135a129a130
a40 (a131a132)Laplacea129a130a124a70a50a137a52a53a147a135a157a57a169a170a246a70a247a117a57a90a248a52a53
a37a249
a147a239a250a147a59a125
a40 Laplacea129a130a37
a90a124a38 reiφ a65a190
a40
a50a137a53z = x + iy a57a61a75a76a65a46a57a73a30
a37
a10
a183a30
a90
a15a40
a90a248a52a53
z0, lnz, zm a34 z?m
a37a249
a147a239a240a250a147a124a188a164a141a142a143
a15a40
a211a169a170a251a252a253a70
a149a246|z| < a a182a145a247a247
a90a248
a37
a52a53 lnz
a34
z?m a124
a254a58a59a60a57a38a73a30a45a63
a37a39
a53a162a163a64a90a255
a157
a57a74a75a76a63a64
u(r,φ) = 12pi
integraldisplay 2pi
0
f(φprime)dφprime + 1pi
∞summationdisplay
m=1
parenleftBigr
a
parenrightBigm
sinmφ
integraldisplay 2pi
0
f(φprime)sinmφprimedφprime
+ 1pi
∞summationdisplay
m=1
parenleftBigr
a
parenrightBigm
cosmφ
integraldisplay 2pi
0
f(φprime)cosmφprimedφprime
= 12pi
integraldisplay 2pi
0
f(φprime)
bracketleftBig
1 + 2
∞summationdisplay
m=1
parenleftBigr
a
parenrightBigm
cosm(φ?φprime)
bracketrightBig
dφprime.
a144
a134
a57
a133r < aa233a0
a53a1a2a124a174a154a3a52a53a4a160a128a50a21a53a52a53a57
a162a156
a236a5
a0
a53
a37
a45
a34a6
a255a61a75a76a45a46
a0
a53
a37a34
a57a65a66a61a63a64
u(r,φ) = a
2 ?r2
2pi
integraldisplay 2pi
0
f(φprime)
r2 + a2 ?2arcos(φ?φprime)dφ
prime.
a10a176a234a235a196a128Poisson
a7
a135
a6
a255a8a242a38Laplace
a9a10a11a12a13a14a15a16a17a18a19a20a21a14a22a23a24a25a18a19f(φ)
a14a7a26a27
a28a29a30a8a31
a22a32a33a34a14 Cauchya7a26a35a36
a8a37a38a39a40a41a42a43a44a45 (
a463.7a47)a8a48u(r,φ)a49
a50a51
a22a32a33a34a14
a29a52a53a54a52
a27
a42a55a56a57a58a59
a16a60a61a62a22a32a33a34a14
a29a52a53a54a52a63a64a65 Laplace
a9a10
a14a22a66a67a14a68a69a27
Wu Chong-shi
a70a71a72a73 a74a75a76a77a78 (
a79) a80a81a82
a83a84a85a86 a8711
a88
§18.2 Helmholtz a89a90a91a92a93a94a95a96a97a98a99a100a101
a102a103a104
a69a105
a8 Helmholtz
a9a10a14a106a107a108a36
a51
1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
+ 1r2 ?
2u
?θ2 +
?2u
?z2 + k
2u = 0.
a109a110
a33a34
a51a111a43a112a113a114
a14a33a34a27
a115a116a117a118a119a120a121a122a123a123
a26a124a125a16
a43a112a113a114a8a126a127a59a128a129a130
a14a131
a43a112a113a114
a26a124a27
a132u(r,θ,z) = v(r,θ)Z(z)a8a133a134
a9a10
a8a135a136
Z
bracketleftBig1
r
?
?r
parenleftbigg
r?v?r
parenrightbigg
+ 1r2 ?
2v
?θ2 + k
2v
bracketrightBig
+ vd
2Z
dz2 = 0.
a137a39
1
v
bracketleftBig1
r
?
?r
parenleftbigg
r?v?r
parenrightbigg
+ 1r2 ?
2v
?θ2 + k
2v
bracketrightBig
= ? 1Z d
2Z
dz2 .
a138
a36a14a139a140
a51ra63θ
a14a33a34
a8a141z
a142a68a143
a144
a140
a51z
a14a33a34
a8a141 r
a145θa146a142a68a27
a137a39a147a148a149a150a138a151a152
a141r, θ
a142a68a153
a141z
a142a68a14a154a34a27a155
a42a43
a154a34a156a25 λa8a157a136a62
1
r
?
?r
parenleftbigg
r?v?r
parenrightbigg
+ 1r2 ?
2v
?θ2 +
parenleftbigk2 ?λparenrightbigv = 0,
d2Z
dz2 + λZ = 0.
a59a132v(r,θ) = R(r)Θ(θ) a8
a153
a136
a62
Θ(θ)
bracketleftbigg1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
+parenleftbigk2 ?λparenrightbigR
bracketrightbigg
+ R(r)r2 d
2Θ
dθ2 = 0.
a131a140a158
a39r2/R(r)Θ(θ) a8a159a160a161a8
a153a162
a136
a62
r2
R(r)
bracketleftbigg1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
+parenleftbigk2 ?λparenrightbigR
bracketrightbigg
= ? 1Θ(θ) d
2Θ
dθ2 .
a59
a60a61a62
a8a138
a36a14a139a140
a56a51r
a14a33a34
a8a141θ
a142a68a143
a144
a140
a56a51θ
a14a33a34
a8a141r
a142a68a27
a137a39a147a148a149a150a138
a151a152a141r
a142a68a153
a141θ
a142a68a14a154a34
a8
a156a25 μa27
a151a51
a153
a136
a62
1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
+
parenleftBig
k2 ?λ? μr2
parenrightBig
R = 0,
d2Θ
dθ2 + μΘ = 0.
a42a163a8a157a164a165a166 Helmholtz
a9a10a14a26a124
a113a114
a27
Wu Chong-shi
§18.3 Helmholtza167a168a169a170
a84a85a86a171a172a74a75a76a77 a8712
a88
§18.3 Helmholtz a89a90a91a173a93a94a95a96a97a98a99a100a101
a174a103a104
a69a105
a8 Helmholtz
a9a10a14a106a107a108a36
a51
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
+ 1r2sin2θ ?
2u
?φ2 + k
2u = 0.
a132u(r,θ,φ) = R(r)S(θ,φ) a8a133a134
a9a10
a8a135a136
S(θ,φ)
bracketleftbigg 1
r2
d
dr
parenleftBig
r2dR(r)dr
parenrightBig
+ k2R(r)
bracketrightbigg
+ R(r)r2
bracketleftbigg 1
sinθ
?
?θ
parenleftBig
sinθ?S(θ,φ)?θ
parenrightBig
+ 1sin2θ ?
2S(θ,φ)
?φ2
bracketrightbigg
= 0.
a131a140a158
a39r2/R(r)S(θ,φ)a8a159a160a161a8a157a38a39a136
a62
r2
R(r)
bracketleftbigg 1
r2
d
dr
parenleftBig
r2dR(r)dr
parenrightBig
+ k2R(r)
bracketrightbigg
= ? 1S(θ,φ)
bracketleftbigg 1
sinθ
?
?θ
parenleftBig
sinθ?S(θ,φ)?θ
parenrightBig
+ 1sin2θ ?
2S(θ,φ)
?φ2
bracketrightbigg
.
a138
a36a14a139a140
a56a51 r
a14a33a34
a8a141 θ, φ
a142a68a143
a144
a140
a56a51 θ, φ
a14a33a34
a8a141 r
a142a68a27
a137a39a147a148a149a150a138a151a152
a141r
a142a68a153
a141θ, φ
a142a68a14a154a34a27a155
a42a43
a154a34a156a25 λa8a157a136a62
1
r2
d
dr
parenleftBig
r2dR(r)dr
parenrightBig
+
parenleftbigg
k2 ? λr2
parenrightbigg
R(r) = 0,
1
sinθ
?
?θ
parenleftBig
sinθ?S(θ,φ)?θ
parenrightBig
+ 1sin2θ ?
2S(θ,φ)
?φ2 + λS(θ,φ) = 0.
a59a132S(θ,φ) = Θ(θ)Φ(φ) a8a175a48a136
a62
Φ
bracketleftbigg 1
sinθ
d
dθ
parenleftBig
sinθdΘ(θ)dθ
parenrightBig
+ λΘ
bracketrightbigg
+ Θsin2θ d
2Φ
dφ2 = 0.
a59a128a138
a36a131a140a158
a39 sin2θ/ΘΦa8a160a161a8
a153
a38a39a136
a62
sin2θ
Θ
bracketleftbigg 1
sinθ
d
dθ
parenleftBig
sinθdΘ(θ)dθ
parenrightBig
+ λΘ
bracketrightbigg
= ?1Φ d
2Φ
dφ2 .
a42a163a8a138
a36a14a139a140
a56a51θ
a14a33a34
a8a141φ
a142a68a143
a144
a140
a56a51φ
a14a33a34
a8a141θ
a142a68a27
a137a39a147a148a149a150a138a151
a152a141θ
a142a68a153
a141φ
a142a68a14a154a34
a8
a156a25μa8a151a51a153
a164a165a166a128θa52
a26
a63φa52
a26a14a26a124
a8a136
a62a14a131
a43
a154
a176
a26a9a10
a51
1
sinθ
d
dθ
parenleftBig
sinθdΘ(θ)dθ
parenrightBig
+
parenleftbigg
λ? μsin2θ
parenrightbigg
Θ = 0,
d2Φ
dφ2 + μΦ = 0.
a42a163
a153a177a178
a164a165a166 Helmholtz
a9a10a11
a174a103a104
a69a105a14a26a124
a113a114
a27
a42a55a179a180a181a182
a16a183a154a46a184a185a186a108
a8a135u = u(r,θ) a141φ
a142a68a14a186a108a27
a42a157a51a187a8a188a43a189
a22a20a21
a11a190a191a192a193a194a195a196a197a198
a57a113
a27a11
a42
a183a186a108a199
a8 Helmholtz
a9a10a14a108a36
a157a200a201
a25
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
+ k2u = 0.
a132u(r,θ) = R(r)Θ(θ) a8a133a134
a9a10
a8a135a136
Θ(θ)
bracketleftbigg 1
r2
d
dr
parenleftBig
r2dR(r)dr
parenrightBig
+ k2R(r)
bracketrightbigg
+ R(r)r2 1sinθ ??θ
parenleftBig
sinθ?Θ(θ)?θ
parenrightBig
= 0.
Wu Chong-shi
a70a71a72a73 a74a75a76a77a78 (
a79) a80a81a82
a83a84a85a86 a8713
a88
a131a140a158
a39r2/R(r)Θ(θ) a8a159a160a161a8a157a38a39a136
a62
r2
R(r)
bracketleftbigg 1
r2
d
dr
parenleftBig
r2dR(r)dr
parenrightBig
+ k2R(r)
bracketrightbigg
= ? 1Θ(θ) 1sinθ ddθ
parenleftBig
sinθdΘ(θ)dθ
parenrightBig
.
a138
a36a14a139a140
a56a51r
a14a33a34
a8a141θ
a142a68a143
a144
a140
a56a51θ
a14a33a34
a8a141r
a142a68a27
a137a39a147a148a149a150a138a151a152a141r
a142
a68a153
a141θ
a142a68a14a154a34
a8
a156a202λa8a42a163a157a164a165a166a26a124
a113a114
a14a195a203a27
a136
a62a14a131
a43
a154
a176
a26a9a10
a8a204a205a206
a10
a63a207a208
a14
a164a209a210a211a212a213
a16
a43a141a206a214
a197 (a135a215a216)θ a217a68a14a154
a176
a26
a206
a10
a51
1
sinθ
d
dθ
parenleftBig
sinθdΘ(θ)dθ
parenrightBig
+ λΘ(θ) = 0,
a218
a25Legendrea206a10
a212a147a51a219a220 Legendrea206
a10
1
sinθ
d
dθ
parenleftBig
sinθdΘ(θ)dθ
parenrightBig
+
parenleftbigg
λ? μsin2θ
parenrightbigg
Θ = 0
a14a184a185a186a108 (μ = 0)a27