Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (
a8)
§21.1 a9a10 Legendre a11a12
a13a14a15a16a17a18 Legendre
a19a20
d
dx
bracketleftbiggparenleftbig
1?x2parenrightbig dydx
bracketrightbigg
+
parenleftBig
λ? m
2
1?x2
parenrightBig
y = 0
a21a22a23a24a25
y(±1)a22a23
a26a27a28a29
a19a30a31a32a33a34a35
a17a18 Legendre
a19a20a36 Legendrea19a20a37a38
a27a39a40a29
a41a42a43a44a45a46 Legendre
a47a48
d
dz
bracketleftbiggparenleftbig
1?z2parenrightbig dwdz
bracketrightbigg
+
parenleftBig
λ? m
2
1?z2
parenrightBig
w = 0
a49a50a51a52a53a54a55
a29
a45a46 Legendre
a47a48
a53a50a51a56 Legendre
a47a48a57a58a59a60a61a62a63 z = ±1a56z = ∞a61
a64a65a66
a62a63a67a68
a50a51
a29
a49 z = ±1a52a53a69a70
a47a48a63
ρ(ρ?1) + ρ? m
2
4 = 0,
a71a72
a61
a69a70a73
ρ = ±m2 .
a74a75a76
a61
a45a46 Legendre
a47a48
a53a77a78a72a79a80
w(z) = parenleftbig1?z2parenrightbigm/2 v(z)
a53a81a82
a29a83a84
a47a48a61a85
a78a72a86a87 v(z)a71a88a89a53
a47a48parenleftbig
1?z2parenrightbigvprimeprime ?2(m + 1)zvprime + [λ?m(m + 1)]v = 0. (maltesecross)
a74a90v(z)a49z = ±1a53a69a70a73 0
a91?ma29a69a70a73?ma53a77a49z = ±1a51a59a92a63a93a94
a53
a29
a95a96a97a98a99a100a78a72a101a76
a61a47a48 (maltesecross)
a78a72a102a103 Legendre
a47a48a104a105ma106
a64a86a87a29
star m = 0a90a107a108a67a109
a29
Wu Chong-shi
§21.1 a110a111 Legendrea112a113 a1142a115
star a116m = ka90a80a117a61parenleftbig
1?z2parenrightbig
parenleftBig
v(k)
parenrightBigprimeprime
?2(k + 1)z
parenleftBig
v(k)
parenrightBigprime
+ [λ?k(k + 1)]
parenleftBig
v(k)
parenrightBig
= 0.
a118
a104a105a59a106a61
parenleftbig1?z2parenrightbigparenleftBigv(k)parenrightBigprimeprimeprime ?2zparenleftBigv(k)parenrightBigprimeprime ?2(k + 1)zparenleftBigv(k)parenrightBigprimeprime ?2(k + 1)parenleftBigv(k)parenrightBigprime + [λ?k(k + 1)]parenleftBigv(k)parenrightBigprime = 0,
a74
a60a85
a86a87
parenleftbig1?z2parenrightbigparenleftBigv(k+1)parenrightBigprimeprime ?2(k + 2)zparenleftBigv(k+1)parenrightBigprime + [λ?(k + 1)(k + 2)]v(k+1) = 0.
a119a120a86a101
a29 square
a121
a63a61
a45a46 Legendre
a47a48
a49a122a123 0 < |z ?1| < 2
a124
a53a77
a85a63
w(z) = c1 parenleftbig1?z2parenrightbigm/2 P(m)ν (z) + c2 parenleftbig1?z2parenrightbigm/2 Q(m)ν (z),
a125a126λ = ν(ν + 1)
a29a127a128
a118a95a129a130a131a132
a92a133a134a135a136
a56
a134a135a137
a96
a29
a41a42a138a139a140x = 1
a141a142a143
a29
star Pν(x) a49x = 1a51a63
a129a130a53
a29
star Qν(x) a49x = 1a51a63a144
a96
a93a94
a53
a29
star parenleftbig1?x2parenrightbigm/2 P(m)ν (x) a49x = 1a51a66a63
a129a130a53
a61a145a63
a45a46 Legendre
a47a48
a49x = 1a51a53a146a123
a124
a69a70
ρ = m/2a53a77a29
star Q(m)ν (x)a49x = 1a51a63
a72(x?1)?m a53
a47
a82
a93a94
a53
a61
a71a72
a61
parenleftbig1?x2parenrightbigm/2 Q(m)
ν (x)
a49x = 1a51a66
a59
a92a63a93a94
a53
a61a145a67a63
a45a46 Legendre
a47a48
a49x = 1a51a53a146a123
a124
a69a70 ρ = ?m/2a53a77
a29
star a129a130a131a132a147a148a77a49 x = 1a51a129a130a61a71a72a61 c2 = 0a29
a118a138a139a140x = ?1
a141a142a143
a29
star a144
a121
a59a149
a53 ν
a136a61a150
a147 P
ν(x)a63a151a152a153
a96
a61a145
a49 x = ?1a51
a85a63a144
a96
a93a94
a53
a29
star x = ?1a51a85a63 P(m)ν (x)a53ma154a155
a51
a61
star a71a72a61parenleftbig1?x2parenrightbigm/2 P(m)ν (x) a49x = ?1a51a66a156a63a93a94a53a29
star a73a157a88a89a49 x = ?1a51a129a130a53a147a148a61a158a59
a53a78a159
a63 Pν(x) a160
a80a161a162a82
a61a163 ν a73a164a165a166a96a29
star a167
a121a49a77a126
a133a168
a53
a63 P(m)ν (x) a61
a71a72a169a170a129ν ≥ ma29
a171a172a173
a128
a53a174a175
a61a85
a148
a133
a157a45a46 Legendre
a47a48
a49a129a130a131a132
a127
a53a77
a134a135a136 λl = l(l + 1), l = m,m + 1,m + 2,···
a134a135a137
a96 y
l(x) = c1
parenleftbig1?x2parenrightbigm/2 P(m)
l (x).
a102a176a177c
1 = (?)m a61
a64a178
a134a135a137
a96a179a73 Pm
l (x) a61
Pml (x) = (?)m parenleftbig1?x2parenrightbigm/2 P(m)l (x),
Wu Chong-shi
a180a181a182a183a184 a185
a112 a113 (a186) a1143a115
a187a73m
a154la106
a45a46 Legendre
a137
a96
a29
a45a46Legendre
a137
a96
a61
a66
a63a188
a73
a134a135a136a189
a120a53a77a190
a163
a45a46 Legendre
a47a48
a49a129a130a131a132
a127
a53
a134a135a137
a96a191
a84
a53
a61
a192a193
a61
a45a46 Legendre
a137
a96a66a194a195a196a129
a67a197
a54a198a199a200a201a202a203a200a204a205a206a207 Legendre
a208a209
a140a210a211 [?1,1]
a212a213a214a61
integraldisplay 1
?1
Pml (x)Pmk (x)dx = 0, k negationslash= l.
a215a216a217a218a27
a31a61
a219a220a17a18 Legendre
a19a20a221a222a61ma31a223a224
a27a225a226a227a228
a61a229a230a61
a21a231a232
a27
a233a234a39a40a235
a61
a17a18 Legendre
a236
a228a27a237a228m
a238a239a31a240a241
a27a29
a242a243a244
a19a20a35a245a61
a246a247a248a22a23a24a25
a61a221a249a250
a233a234a39a40a29
a215
a31a249a250
a13a251
a236
a228a233a234a252a27a253a254
a19a30
a29
a26
a232a255a0a1a2
a30a61a3
a248
a36a249a250Legendre a4a5a6
a27a233a234a252a7a8a27a9
a30
a29
a10
a167
a121k negationslash= l
a61
a11a12a13
a116k < la29a121a63a61a83a84a45a46 Legendrea137
a96a53
a92a14a61
a15a43a16a17a43
a61a163
a86
integraldisplay 1
?1
Pml (x)Pmk (x)dx =
integraldisplay 1
?1
parenleftbig1?x2parenrightbigm dmPk(x)
dxm
dmPl(x)
dxm dx
= parenleftbig1?x2parenrightbigm d
mPk(x)
dxm
dm?1Pl(x)
dxm?1
vextendsinglevextendsingle
vextendsinglevextendsingle
1
?1
?
integraldisplay 1
?1
d
dx
bracketleftbiggparenleftbig
1?x2parenrightbigm d
mPk(x)
dxm
bracketrightbigg dm?1P
l(x)
dxm?1 dx
= ?
integraldisplay 1
?1
d
dx
bracketleftbiggparenleftbig
1?x2parenrightbigm d
mPk(x)
dxm
bracketrightbigg dm?1P
l(x)
dxm?1 dx.
a43a16a17a43
a59a106
a53a172a18a19a157a49a17a43a20a21a22a23
a59a24
a165a20a25
a61a85a150
a11a103
a63
a178a26a17
a137
a96a126P
l(x)
a53
a104a105a27
a28
a59a106
a87a125a29a53a192a30a173a29a78a72a31a32
a61
a49a43a16a17a43 m
a106a33a61a85
a194a195a86a87
integraldisplay 1
?1
Pml (x)Pmk (x)dx = (?)m
integraldisplay 1
?1
dm
dxm
bracketleftbiggparenleftbig
1?x2parenrightbigm d
mPk(x)
dxm
bracketrightbigg
Pl(x)dx.
a34a35a173a82a36
a47
a53a26a17
a137
a96
a63 l a106Legendrea161a162a82a56a37a59a24a161a162a82
dm
dxm
bracketleftbiggparenleftbig
1?x2parenrightbigm d
mPk(x)
dxm
bracketrightbigg
a53a38a17
a29
a39a40a148
a133
a74
a24
a161a162a82a53
a106
a96a73 k?m+2m?m = k
a29
a167
a121k < l
a61
a117
a163a85
a101a86a45a46Legendre
a137
a96a53
a67a197
a54
a29 square
a188a41a42x = cosθ a61
a156a78a72a86a87a45a46 Legendre
a137
a96
a67a197
a54a53a37
a59a43a44a45
a81a82
a61a163
integraldisplay pi
0
Pml (cosθ)Pmk (cosθ)sinθdθ = 0, k negationslash= l.
a34a35
a61
a74a46
a133a168
a157
a67a197a47a48 sinθ a29
a57a58a49a50
a21
a128
a53a51a100
a61
a156a159a148a86a45a46 Legendre
a137
a96a53
a49a47
a29
a74
a150
a147a49a72a173a101a76a103
a48
a53a52a82a126
Wu Chong-shi
§21.1 a110a111 Legendrea112a113 a1144a115
a177k = l
a163
a78
a29a121
a63a61integraldisplay
1
?1
Pml (x)Pml (x)dx = (?)m
integraldisplay 1
?1
dm
dxm
bracketleftbiggparenleftbig
1?x2parenrightbigm d
mPl(x)
dxm
bracketrightbigg
Pl(x)dx.
a133a168
a49a53a82a36a54a53a26a17
a137
a96
a63 la106Legendrea161a162a82a56a37a59a24 la106
a161a162a82
dm
dxm
bracketleftbiggparenleftbig
1?x2parenrightbigm d
mPl(x)
dxm
bracketrightbigg
= 12ll! d
m
dxm
bracketleftbiggparenleftbig
1?x2parenrightbigm d
l+m
dxl+m
parenleftbigx2 ?1parenrightbiglbracketrightbigg
a53a38a17
a29
a16718a55a564a57
a53a174a175a78a58
a61a144
a17a43
a136
a53
a158a59a59a60a85a150a61a62
a74
a24
a161a162a82a53a63a64a65
a106
a162a29a39
a40a148
a133
a74
a24
a63a64a65
a106
a162a53a66a96
a63
(?)m 12ll! (2l)!(l ?m)! (l + m)!l! ,
a71a72
a61a85
a86a87
integraldisplay 1
?1
Pml (x)Pml (x)dx = (2l)!2l(l!)2 (l + m)!(l ?m)!
integraldisplay 1
?1
xlPl(x)dx
= (l + m)!(l ?m)! 22l + 1,
a67a68a69
a59a70a188a41a42 x = cosθ a61
integraldisplay 1
?1
Pml (cosθ)Pml (cosθ)sinθdθ = (l + m)!(l ?m)! 22l + 1.
a244a71a72
a231
a222a61
a17a18 Legendre
a236
a228a27a73
a4
a252a74a75a242a76Legendre
a4a5a6
a27
a240
a247
a252a74a77a78a29
a244a79a29
Wu Chong-shi
a180a181a182a183a184 a185
a112 a113 (a186) a1145a115
§21.2 a80a81a82a83a11a12
a84a21a85a78Laplace
a19a20
a21a86a87
a253a40a26a27a88a89a90a91a29a92a93a94
a224a95a96a61
a97a98a99
a15a16a86a100Laplace
a19a20
a27a101
a0
a7a102a103a104a105a29
a49a106a107a70a66
a127
a61a92
a77
a189
a120
a63
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
+ 1r2sin2θ ?
2u
?φ2 = 0,
uvextendsinglevextendsingleθ=0 a129a130a61 uvextendsinglevextendsingleθ=pia129a130,
uvextendsinglevextendsingleφ=0 = uvextendsinglevextendsingleφ=2pi, ?u?φ
vextendsinglevextendsingle
vextendsingle
φ=0
= ?u?φ
vextendsinglevextendsingle
vextendsingle
φ=2pi
,
uvextendsinglevextendsingler=0 a129a130a61 uvextendsinglevextendsingler=a = f(θ,φ).
a48a10818a55a563a57
a53
a70a109a61
a110u(r,θ,φ) = R(r)S(θ,φ)
a61
a178a173a128a53
a47a48
a56a111
a106a112
a130a131a132a43a113
a41a114a61
a86
d
dr
bracketleftbigg
r2 dR(r)dr
bracketrightbigg
?λR(r) = 0,
uvextendsinglevextendsingler=0a129a130,
a56
1
sinθ
?
?θ
bracketleftbigg
sinθ?S(θ,φ)?θ
bracketrightbigg
+ 1sin2θ ?
2S(θ,φ)
?φ2 + λS(θ,φ) = 0,
Svextendsinglevextendsingleθ=0 a129a130a61 Svextendsinglevextendsingleθ=pia129a130,
Svextendsinglevextendsingleφ=0 = Svextendsinglevextendsingleφ=2pi, ?S?φ
vextendsinglevextendsingle
vextendsingle
φ=0
= ?S?φ
vextendsinglevextendsingle
vextendsingle
φ=2pi
.
a74a66
a63a59a24a134a135a136a189
a120
a61a115a116a117a118a119
a205a120a121a122a123a124
a29
a73a157a148
a133a134a135a136λ
a56a125a194a53
a134a135a137
a96
a61
a78a72a118a110S(θ,φ) = Θ(θ)Φ(φ)
a61
a69
a59a70
a43a113
a41a114a61a85
a129
1
sinθ
d
dθ
bracketleftbigg
sinθdΘ(θ)dθ
bracketrightbigg
+
bracketleftbigg
λ? μsin2θ
bracketrightbigg
Θ(θ) = 0,
Θ(0)a129a130a61 Θ(pi)a129a130
a56 Φ
primeprime + μΦ = 0,
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi).
a74a126
a24
a176
a104
a43
a47a48
a53
a134a135a136a189
a120
a62a127a128
a174a175a103
a61
a43a129a130a173
a59a57
a56
a56 18a55a561a57
a29
a74
a60a61a144
a121a131
a104
a43
a47a48
a53
a134a135a136a189
a120
a61
a75
a61a134a135a136a85a63
λl = l(l + 1), l = 0,1,2,3,···,
a64
a144
a194a121
a59a24a134a135a136 λl a61
a1292l + 1
a24a134a135a137
a96
Slm1(θ,φ) = Pml (cosθ)cosmφ, m = 0,1,2,···,l,
Slm2(θ,φ) = Pml (cosθ)sinmφ, m = 1,2,···,l.
a74a132
a134a135a137
a96
a61a133
a187a73a134a135a136a137
a208a209a61
a67a134a135a138
a208a209
a29
a134a135a136a189
a120a53a139a15a140
a63 2l + 1a61a141
a121a176
a104
a43
a47a48a134a135a136a189
a120a71a142a78a53a139a15a140 2
a29
a143a121Ra53a176
a104
a43
a47a48a61
a49
a56 20a55a563a57
a126
a127a128
a174a175a103
a29
a145
a49a129a130a131a132
a127
a53a77
a63 Rl(r) = rl a29
a74
a60a61
a131
a104
a43
a47a48a92
a77
a189
a120a53a144a77
a85a63
ulm1(r,θ,φ) = rlPml (cosθ)cosmφ, l = 0,1,2,···, m = 0,1,2,···,l
Wu Chong-shi
§21.2 a185a145a146a147a112a113 a1146a115
a56
ulm2(r,θ,φ) = rlPml (cosθ)sinmφ, l = 0,1,2,···, m = 1,2,···,l.
a64
a59a149
a77
a68
a73
u(r,θ,φ) =
∞summationdisplay
l=0
lsummationdisplay
m=0
rlPml (cosθ)[Alm cosmφ + Blm sinmφ].
a148a14919
a55a564a57
a56
a134a55a561a57
a53a174a175
a61
a78a72a150
a133a61la151ma203a200a205a134a135a136a137a208a209a140a152a153 4pia154
a155a156
a212a157a158a159a213a214
a205
a61
integraldisplay pi
0
Pml (cosθ)Pnk(cosθ)sinθdθ
integraldisplay 2pi
0
cosmφcosnφdφ = 0, l negationslash= k, m negationslash= n,
integraldisplay pi
0
Pml (cosθ)Pnk(cosθ)sinθdθ
integraldisplay 2pi
0
sinmφsinnφdφ = 0, l negationslash= k, m negationslash= n,
integraldisplay pi
0
Pml (cosθ)Pnk(cosθ)sinθdθ
integraldisplay 2pi
0
cosmφsinnφdφ = 0, l negationslash= k, m negationslash= n.
a160
a60a61
a156a78a72a79
a133
a134a135a136a137
a208a209
a205a161
a118
integraldisplay pi
0
bracketleftbigPm
l (cosθ)
bracketrightbig2 sinθdθintegraldisplay 2pi
0
cos2mφdφ = (l + m)!(l ?m)! 2pi2l + 1 (1 + δm0),
integraldisplay pi
0
bracketleftbigPm
l (cosθ)
bracketrightbig2 sinθdθintegraldisplay 2pi
0
sin2mφdφ = (l + m)!(l ?m)! 2pi2l + 1.
a49a162a163a173a176a95a53
a63
a37
a59a43
a81a82a53a106
a128a164
a56
a137
a96
a29
star a56a59a61a63
a178
a134a135a136a189
a120
Φprimeprime + μΦ = 0,
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi).
a53a77a49a81a82a173a79a80
a134a135a136 μm = m
2, m = 0,±1,±2,±3···,
a134a135a137
a96 Φ
m(φ) = eimφ.
a74
a60a61a144
a194a121
a59a24a134a135a136 λl = l(l + 1)a61l = 0,1,2,3,···a61
a131
a104
a43
a47a48a134a135a136a189
a120a53
a134a135a137
a96
a85a63
Slm(θ,φ) = P|m|l (cosθ)eimφ, m = 0,±1,±2,···,±l.
a74
a60a92a14
a53a106
a128a164
a56
a137
a96
a61
a125
a67a197
a143a66a56
a49a47
a78a72a79a80a165a139a166a53a81a82
a61integraldisplay
pi
0
integraldisplay 2pi
0
Slm(θ,φ)S?kn(θ,φ)sinθdθdφ= (l +|m|)!(l ?|m|)! 4pi2l + 1δlkδmn.
a76
a220a84a21a27a13a251
a236
a228
a31a167a236
a228
a61a168
a243
a21
a233a234a39a40
a36a169a19
a27a170
a6
a235
a61a171a172a173
a235a27
a0a1a13
a251
a236
a228a174
a167a175a176
a29
a173a177a178
a71
a229a31
a92a93a179
a249
a13a251
a236
a228a27
a169a19a180
a92
a233a103a29
Wu Chong-shi
a180a181a182a183a184 a185
a112 a113 (a186) a1147a115
star a56a181a61
a102a176a165
a63a182
a95a98
a59a183
a53a106
a128a164
a56
a137
a96
a29a184a185
a61
Yml (θ,φ) =
radicalBigg
(l ?|m|)!
(l +|m|)!
2l + 1
4pi P
|m|
l (cosθ)e
imφ,
m = 0,±1,±2,···,±l.
a74a90
a85
a129
a67a197
a98
a59
a143a66
integraldisplay pi
0
integraldisplay 2pi
0
Yml (θ,φ)Yn?k (θ,φ)sinθdθdφ = δlkδmn.
a247a186a217a218
a27
a31a61
a21
a97
a241
a27a187a188a235
a61 Yml (θ,φ) a189a189
a22
a97
a241
a27
a224a190
a29
a21a191a248a192a193
a171a194a195a196
a219a29
Yml (θ,φ) a224a190
a235a27a197a219a103a198a199a200a242a243a201a202
a61
a215
a31a229
a92
P?ml (x) = (?)m(l ?m)!(l + m)!Pml (x).