Wu Chong-shi
a0a1a2a3 a4 a5 a6 (a1)
§20.1 Legendre a7a8a9a10a11a12a13a14
Legendrea15a16a17a18a19a20a21a22a23a24a25a26a27a28a29a24a30
a31
a21a32a33a34 ra35a36a37a38a39a40a41a34a42a43a44
a45
a34
a42a43a46a21a34a24a41a47a48 z a49a50a51a44a52a53a34a42a43a21 (rprime, θ, φ)a34a24a42a22(a54a55a56φa57a58)a59a48
1√
r2 + rprime2 ?2rrprime cosθ =
?
????
???
?
1
r
1√
1?2xt + t2, t =
rprime
r ,
1
rprime
1√
1?2xt + t2, t =
r
rprime,
a60
a27x = cosθ a44a61a62a63a15a64a65a661/√1?2xt + t2 a24a40a64a67a68a48
1√
1?2xt + t2
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 1 a30a21a52a69a24
a62a63a70a44a65a66 1/√1?2xt + t2 a21t = 0a34a71
a60a72a73a74
a18a75a76a24a44a77a78a79a80a81 Taylora82a83
1√
1?2xt + t2 =
∞summationdisplay
l=0
cltl, |t| < |x±
radicalbig
x2 ?1|.
a70a84a85a86a82a83a87a66 cl
a88
a18Legendrea15a16a17Pl(x)a44a59
1√
1?2xt + t2 =
∞summationdisplay
l=0
Pl(x)tl, |t| < |x±
radicalbig
x2 ?1|.
a65a661/√1?2xt + t2 a59a89a48Legendrea15a16a17a24a90a91a65a66a30
a92 a93a94a95
a65a66 1/
√1?2xt + t2
a21t = 0a34a81Taylora82a83
1√
1?2xt + t2 =
1radicalbig
1?2t + t2 ?2(x?1)t =
1
1?t
bracketleftbigg
1? 2(x?1)t(1?t)2
bracketrightbigg?1/2
= 11?t
∞summationdisplay
k=0
1
k!
parenleftbigg
?12
parenrightbiggparenleftbigg
?32
parenrightbigg
···
parenleftbigg1
2 ?k
parenrightbiggbracketleftbigg
?2(x?1)t(1?t)2
bracketrightbiggk
=
∞summationdisplay
k=0
(2k?1)!!
k! (x?1)
ktk(1?t)?(2k+1) =
∞summationdisplay
k=0
(2k?1)!!
k! (x?1)
ktk
∞summationdisplay
n=0
(2k + n)!
n!(2k)! t
n
=
∞summationdisplay
l=0
bracketleftBigg lsummationdisplay
k=0
(l + k)!
k!k!(l?k)!
parenleftbiggx?1
2
parenrightbiggkbracketrightBigg
tl. square
a96a97Legendre
a15a16a17a24a90a91a65a66a44a98a79a80a99a100a101a15a37
a97
a24a102a103a30a104a105a44a106 x = 1a44
a88
a99a100
1√
1?2t + t2 =
1
1?t =
∞summationdisplay
l=0
tl =
∞summationdisplay
l=0
Pl(1)tl =? Pl(1) = 1.
a107
a105a44
1√
1?2xt + t2 =
1radicalbig
1?2(?x)(?t) + (?t)2,
∞summationdisplay
l=0
Pl(x)tl =
∞summationdisplay
l=0
Pl(?x)(?t)l,
=? Pl(?x) = (?)lPl(x).
Wu Chong-shi
§20.2 Legendrea108a109a110a111a112a113a114a115 a1162a117
§20.2 Legendre a7a8a9a10a118a119a120a121
a122Legendre
a15a16a17a24a90a91a65a66a123a124a44
a125a126a127a128
a123
a72a129Legendre
a15a16a17a130a131a24a58a87a44a59Legendre
a15a16a17a24a132a133a58a87a30
a134a135Legendre
a15a16a17a24a90a91a65a66
1√
1?2xt + t2 =
∞summationdisplay
l=0
Pl(x)tl,
a136a137a138t
a139a140a44a37
?12 ?2x+ 2t
(1?2xt + t2)3/2
=
∞summationdisplay
l=0
lPl(x)tl?1,
a59
x?t
(1?2xt + t2)1/2
= parenleftbig1?2xt + t2parenrightbig
∞summationdisplay
l=0
lPl(x)tl?1
= (x?t)
∞summationdisplay
l=0
Pl(x)tl.
a141a142tl
a16a24a87a66a44a37
xPl(x)?Pl?1(x) = (l + 1)Pl+1(x)?2xlPl(x) + (l?1)Pl?1(x),
a143a144
a59a99
(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl?1(x). (maltesecross)
a52a69
a88
a99a100 Legendrea15a16a17a24a38a39a132a133a58a87a44a145a146a147a148a149a150a151a152 Legendrea153a154a155a156a157a158a159a160a30
a161a162a96a97
a52a39a132a133a58a87a44
a88
a79a80a163a164a165
a129
a24Legendrea15a16a17
a97a166a129Legendre
a15a16a17P0(x) = 1a167
a38
a129 Legendre
a15a16a17P1(x) = xa168a169a123a170a30
a95Legendre
a15a16a17a24a90a91a65a66
1√
1?2xt + t2 =
∞summationdisplay
l=0
Pl(x)tl,
a138x
a171
a128
a44
a107a172
a99a100
?12 ?2t
(1?2xt + t2)3/2
=
∞summationdisplay
l=0
Pprimel(x)tl,
a173
a18
t
∞summationdisplay
l=0
Pl(x)tl = parenleftbig1?2xt + t2parenrightbig
∞summationdisplay
l=0
Pprimel(x)tl.
a141a142tl+1
a16a24a87a66a44a99
Pl(x) = Pprimel+1(x)?2xPprimel(x) + Pprimel?1(x). (#)
a52a39a132a133a58a87a27a44a123a174a24a18a175a39
a72a129 Legendre
a15a16a17a71
a60a128
a66a30
Wu Chong-shi
a176a177a178a179 a180 a181 a182 (a177)
a1163a117
a163(maltesecross)a17
a138x
a171
a128
a44a183a79a80a99a100
(2l + 1)Pl(x) + (2l + 1)xPprimel(x) = (l + 1)Pprimel+1(x) + lPprimel?1(x),
a167(#)a17a184a185a44a186a187 Pprimel?1(x)a188Pprimel+1(x)a44
a107
a79a80a99a100a132a133a58a87
Pprimel+1(x) = xPprimel(x) + (l + 1)Pl(x),
Pprimel?1(x) = xPprimel(x)?lPl(x).
a52
a136
a39a132a133a58a87a44a189a18a163 Pprimel±1(x)a97Pl(x)a71
a60a128
a66a168a169a123a170a30
a163a52a190a132a133a58a87a191a192a193a194a44a183a79a80a29a38a195a99a100
a60a196a197
a17a24a132a133a58a87a30
a132a133a58a87a24a38a39
a97a198
a18a199a200a201a190a202a203a24a204a67a44a104a105integraldisplay
1
?1
xPk(x)Pl(x)dx.
a134a135
a132a133a58a87 (maltesecross)a44
a88
a172a205
a199a200a123integraldisplay
1
?1
xPk(x)Pl(x)dx = l + 12l + 1
integraldisplay 1
?1
Pk(x)Pl+1(x)dx + l2l + 1
integraldisplay 1
?1
PkPl?1(x)dx
= l + 12l + 1 22l + 3δl+1,k + l2l + 1 22l?1δl?1,k.
Wu Chong-shi
§20.3 Legendrea108a109a110a206a207a208a209 a1164a117
§20.3 Legendre a7a8a9a210a211a212a213
a214 20.1
a215a216a42a217a27a24
a128a218a219
a30
a31
a21a42a217a220a221a48E0 a24a215a216a42a217a27a36a29a38a39
a94a222a128a218a219
a44
a219
a24a223a224a48aa30a171
a219a225
a164a165a38a34a24a42
a22a30a226
a36a29
a128a218a219a227
a44a228
a173a229
a42a230a231a44a21
a128a218a219
a24
a219
a84a232
a88a233
a197
a91a38a63a24a230a90a84a42a43a67a234a44a78
a235a219a218
a91a48a236a22
a218
a30
star a219a225a164a165a38a34a24a237a42a22
a88
a18a33a37a24a215a216a42a217a24a42a22a167a230a90a42a43a24a42a22a24a238a239a30
star a219a218a94a222a44a165a240a241
a219a218
a24a42a22a48 0a30
star a77a48a21
a219a225
a35a35a242a37a42a43a44a46a80a21
a219a225
a24a42a22a243a244 Laplacea50a245a30
star a246
a97a219a247a248
a87a44
a247a248
a33a34a56
a219a249
a191a194a44a250a49a251a33a170a42a217a24a50a51a30
star a252a253a100a215a216a42a217a80a71
a219a218
a24
a138
a89a254a44a21
a219
a84a232a24a230a90a42a43a38a63a18a255a250a49a0a1a2a3a24a44a77a78a44
a138
a173a219a225
a164a165a38a34a44a57a23a18a230a90a42a43a4a90a24a24a42a22a44a188a18a237a42a22a44a98a5a18a255a250a49a0a1a2a3a24a30
a31u(r,θ)
a18
a219a225
a38a34 (r,θ,φ)a24a237a42a22a44u1(r,θ)a167 u2(r,θ)a67a6a18a215a216a42a217a167a230a90a42a43a24a42a22a44
u1(r,θ) = ?E0z + u0 = ?E0rcosθ + u0,
a7
a66u0 a59a48
a247a248
a33a34a35a24a42a22a30 u2(r,θ)a189a228a63a75a8a9
1
r2
?
?r
parenleftbigg
r2?u2?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u2?θ
parenrightbigg
= 0,
u2vextendsinglevextendsingleθ=0 a37a10a44 u2vextendsinglevextendsingleθ=pia37a10,
u2vextendsinglevextendsingler=a = E0acosθ?u0, u2vextendsinglevextendsingler→∞ → 0.
a11
a63a30
u2(r,θ) a130a46a80a243a244 Laplace a50a245a44
a122a12a144
a232a13a44a18a228
a173
a230a90a42a43a14a18a67a234a21
a219
a84a232a44
a78
a219a225
a35a35a15a57a230a90a42a43a16a21a30
a122
a66a17a232a13a44a77a48 u(r,θ) = u1(r,θ) + u2(r,θ) a167a40a18a24
u1(r,θ) a5a243a244 Laplacea50a245a30a19a69a228
a173
a230a90a42a43a14a18a67a234a21
a219
a84a232a44a46a80a20 r → ∞a53
u2(r,θ)a231a20a21
a1730
a30
a171a75a63a75a8a9a30
a95
a50a245a167a37a10a22a23a67a24a3a25
a227
a44a79a80a99a100
1
sinθ
d
dθ
bracketleftBig
sinθdΘ(θ)dθ
bracketrightBig
+ λΘ(θ) = 0,
Θ(0)a37a10a44 Θ(pi)a37a10,
d
dr
bracketleftBig
r2dR(r)dr
bracketrightBig
?λR(r) = 0,
Wu Chong-shi
a176a177a178a179 a180 a181 a182 (a177)
a1165a117
a60
a27λa18a67a24a3a25a53a28a29a24a26a63a27a66a30a21 18a28a292a30a27a31a32a33a23a34a52a39a35a36a64a8a9a44
a60
a75a18
a35a36a64 λl = l(l + 1), l = 0,1,2,3,···,
a35a36a65a66 Θl(θ) = Pl(cosθ).
a48a37a171a75a58
a173 R(r)
a24a50a245a44a38a55a79a80a81a3a39 t = lnr a44
a95
a50a245a3a48
d2Rl
dt2 +
dRl
dt ?l(l + 1)Rl = 0.
a173
a18
Rl(r) = Alelt + Ble?(l+1)t = Alrl + Blr?l?1.
a77a40a44a243a244Laplacea50a245a167a37a10a22a23a24a38a41a75
a88
a18
u2(r,θ) =
∞summationdisplay
l=0
parenleftbigA
lrl + Blr?l?1
parenrightbigP
l(cosθ).
a252a253a100a57a42a43a22a23 u2vextendsinglevextendsingler→∞ → 0a44a231a44a37
Al = 0.
a45a46a47a219
a84 r = aa232a24a48a10a22a23a44
u2(r,θ)vextendsinglevextendsingler=a =
∞summationdisplay
l=0
Bla?l?1Pl(cosθ)
= E0acosθ?u0 = E0aP1(cosθ)?u0P0(cosθ),
a46a80a37
B0 = ?u0a, B1 = E0a3, a167 Bl = 0, l ≥ 2.
a52a69
a88
a171a99
u2(r,θ) = ?u0ar + E0a
3
r2 cosθ.
a49a50a51a52a53u
2(r,θ) a54a55a56a57a58a59
a60a61a62a63a64a65a66a53a67a68a69a70
a30
a71a72a73a65a74a53a75a76a77
a44
a78a79a60a61a62a53a63a64a65a66a80
a54a81a82a81a83a84a85a86
a53
a86
a65a66a87a65a88a89a90a53a91a92
a30a86
a65a66a53a65
a93a94?4piε
0u0a a95
a65a88a89a90a53a88a89a96a94 4piε
0E0a3 a44a97a98a99
a72a73a65a74a53
a97a98
a80a100
a30
a95u
1(r,θ)a167u2(r,θ)a238a239a44a88
a99a100
a219a225
a164a165a38a34a24a237a42a22a101
u(r,θ) = u0
parenleftBig
1? ar
parenrightBig
?E0
parenleftBig
1? a
3
r3
parenrightBig
rcosθ.
a10220.1
a103a123a37a34a250a49a24a164a165a38a39a104a84a232a42a217a105a24a67a234
a102
a30
Wu Chong-shi
§20.3 Legendrea108a109a110a206a207a208a209 a1166a117
a102
20.1 a215a216a42a217a27a24
a128a218a219
a214 20.2
a215a216a106a42a107a108a109a24
a229
a42a22a30
a31
a37a38a215a216a107a108a109a44a223a224a48 aa44a237a42a43a48M a44a171a145a21a110a131a164a165a38a34a24
a229
a42a22a30a226
a38
a45a219a247a248
a87a44
a247a248
a33a34a36a21a109
a249
a44a78a108a109a189a35a21a111a112a84a232a30a52a53a44a110a131a164a165a38a34(r,θ,φ)
a24
a229
a42a22a231a44a56 φa57a58a44u = u(r,θ)a30a79a80a113a123ua46a243a244a24a50a245a167a114a67a63a75a22a23
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
= 0, (r,θ)negationslash=
parenleftBig
a, pi2
parenrightBig
,
uvextendsinglevextendsingleθ=0a37a10, uvextendsinglevextendsingleθ=pia37a10,
uvextendsinglevextendsingler=0a37a10, uvextendsinglevextendsingler→∞ → 0.
a49a115a116a117a118a119a120a121a53a122a123a124a125(
a126a127a128a44
a49a119a122a123a124a125a116a117a129a122a53)
a44a130
a94a131a132a133
a57a58
a134a135a64a136a65a137a53a138 (a65a66a67a68) a53a69a70
a30
a139
a113a123a215a216a107a108a109a232a24a42a43a140a221a44a22a141
a139a97
a100 δ a65a66a30a50a245
a88
a3a48
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
= ? 1ε
0
f(r)δ(r?a)δ
parenleftBig
θ? pi2
parenrightBig
, (#)
a65a66f(r)a79a80a228 integraldisplayintegraldisplayintegraldisplay
f(r)δ(r ?a)δ
parenleftBig
θ? pi2
parenrightBig
r2 sinθdrdθdφ = 1
a63a123a44a78a142a228
a173 f(r)δ(r ?a) = f(a)δ(r?a)
a44a46a80a37
f(r) = f(a) = 12pia2.
a143
a226a144a226a145a146
a30a228δ a65a66a24a254a147a79a80a148a112a44a20r negationslash= aa53a44a50a245 (#)
a88a149a150
a48Laplacea50a245a30a52
a69a44
a45
a102a194a37a10a22a23a167a57a42a43a22a23a44
a88
a99a100
u(r,θ) =
??
???
?
???
??
∞summationdisplay
l=0
AlrlPl(cosθ), r < a,
∞summationdisplay
l=0
Blr?l?1Pl(cosθ), r > a.
a55
a227
a88
a231a44
a96a97
a108a109a24a147a25a67a234 (a59a50a245(#)a151
a137
a24a152a153
a129
a16) a63a123a87a66 Al a167Bl a30
Wu Chong-shi
a176a177a178a179 a180 a181 a182 (a177)
a1167a117
star a252a253a100δ a65a66a231a44a18a131a154a65a66a24
a128
a66a44a46a80 u(r,θ)a21
a219
a84r = aa232a38a63a18a155a156a24a44
u(r,θ)vextendsinglevextendsingler=a+0r=a?0 = 0,
star ?u(r,θ)/?ra21a219a84r = aa232a38a63a18a2a155a156a24a44a145a21a219a84r = aa136a157a24a158a3a79a80a228a50a245(#) a138r
a204a67a99a100a101
r2?u?r
vextendsinglevextendsingle
vextendsingle
r=a+0
r=a?0
= ? 12piε
0
δ
parenleftBig
θ? pi2
parenrightBig
a59
?u
?r
vextendsinglevextendsingle
vextendsingle
r=a+0
r=a?0
= ? 12piε
0a2
δ
parenleftBig
θ? pi2
parenrightBig
.
a95δ(θ?pi/2)
a98a159Legendrea15a16a17a82a83
δ
parenleftBig
θ? pi2
parenrightBig
=
∞summationtext
l=0
clPl(cosθ),
cl = 2l + 12
integraldisplay pi
0
δ
parenleftBig
θ? pi2
parenrightBig
Pl(cosθ)sinθdθ = 2l + 12 Pl(0).
a77a40
Alal = Bla?l?1,
Allal+1 + Bl(l + 1)a?l = 2l + 14piε
0
Pl(0).
a75a130a59a99
Al = 14piε
0
a?l?1Pl(0), Bl = 14piε
0
alPl(0).
a46a80
u(r,θ) =
?
???
?
???
??
1
4piε0a
∞summationdisplay
l=0
parenleftBigr
a
parenrightBigl
Pl(0)Pl(cosθ), r < a,
1
4piε0a
∞summationdisplay
l=0
parenleftBiga
r
parenrightBigl+1
Pl(0)Pl(cosθ), r > a.
a46a47P
l(0)a64a44a59a99
u(r,θ) =
??
???
?
???
??
1
4piε0a
∞summationdisplay
l=0
(?)l (2l)!22l l!l!
parenleftBigr
a
parenrightBig2l
P2l(cosθ), r < a,
1
4piε0a
∞summationdisplay
l=0
(?)l (2l)!22l l!l!
parenleftBiga
r
parenrightBig2l+1
P2l(cosθ), r > a.
a160
a62a161a162a53a117a163a124a125a53
a84a164
a123a165
a101
a166
a120a121a53a122a123a124a125a134a167
a44
a168a134a118a169a123
a44a55a170a171a172a173a174
a175a176a53a177a178a179a122a134a91a92a180a176
a30
a71a49a119a124a125a181
a44a97a182
a53a183a184a185a186a187a133a188a189a179
a101
a190a71a191a192 r = a, θ = pi/2a62a116a940
a44
a193a194
a44
a183a184a185a186a71a191a192a62a53a176a195a94∞(a49a196a197a198a199a200a201a201a65a66a93a94a133a202a195)
a30
a80a203a79
a44
a71a51a123a204a205
a56a206
a76
a59
a188a189a53a207a165
a44
a208a209a183a184a185
a97a182(#)a210a211
a94a184a185
a97a182
a87a60a61
r = aa62a53a212a78a213a214a30
a49a50a215a216a62a117a161a162
a59
a118a217a168a212a78a213a214a53
a97
a165
a30
Wu Chong-shi
§20.3 Legendrea108a109a110a206a207a208a209 a1168a117
a35a9a183a37a38a218a219a220a221a158
a226a222
a44a223a224a225a226a152a227a228a229
a144a226a230a231
(a232a233
a230a231
a229a234a235a236
a230a231
) a44
a143
a147
a237a238
a226
a44a239a240a241a242a243a244a245a246
a230a231
a247
a224a225 Legendre a153a154a155a158a248a249a250
a144
a160a251a44a252a253a254
a237a238
a226a255a0
a253
u(r,θ) a1 r = 0 a2 r = ∞ a3a158a151a4a5a158 Taylor a6a7a8a9
a222a10a11
u(r,θ) a1a12a13a14a15 θ a16a17a18a19a20
a21
a8a22a23a24a25 Taylor a6a7a19a26a13a27a28a29a30a31a32a20a33
a34a35a36a37a38a39a40a41
a8
a36a37a42a43a44a45a46a47a48a49a42 (r,θ) = (r,0)
a50(r,pi)a46a38a51a52a53a54a8
a55a56a57a58
a34Coulomb
a59a60a61a62a63a64a65
a48a49a42a43a44a45a46 (r,0)
a50(r,pi)a38a66a67a68a8
u(r,θ)vextendsinglevextendsingleθ=0,pi =
contintegraldisplay 1
8pi2ε0a
dl√
a2 + r2 =
1
4piε0
1√
a2 + r2.
a69Taylor
a70a71
u(r,θ)vextendsinglevextendsingleθ=0,pi =
?
???
?
???
?
1
4piε0a
∞summationdisplay
l=0
(?)l (2l)!22l (l!)2
parenleftBigr
a
parenrightBig2l
, r < a,
1
4piε0r
∞summationdisplay
l=0
(?)l (2l)!22l (l!)2
parenleftBiga
r
parenrightBig2l
, r > a.
a72a45a73a74
a8
a34a45a75a76a77a57a58a78a47
u(r,θ)
vextendsinglevextendsingle
vextendsingle
θ=0
=
?
???
??
???
??
∞summationdisplay
l=0
Alrl, r < a,
∞summationdisplay
l=0
Blr?l?1, r > a
a50
u(r,θ)
vextendsinglevextendsingle
vextendsingle
θ=pi
=
??
???
?
???
?
∞summationdisplay
l=0
(?)lAlrl, r < a,
∞summationdisplay
l=0
(?)lBlr?l?1, r > a.
a79a80a81a82(
a83a84a85Taylora70a71
a38a86a45a41)
a8a87
a57a58a88a78
A2l = (?)
l
4piε0a
(2l)!
22l l!l!a
?2l, A2l+1 = 0,
B2l = (?)
l
4piε0a
(2l)!
22l l!l!a
2l+1, B2l+1 = 0.
a57a58a89
a65a8a90a91
a78a47a38a76a92a93a94a74a38a95a96a53a97
a33