Wu Chong-shi
a0a1a2a3a4 Laplace
a5a6
§26.1 Laplace a7a8
? Laplacea9a10(a11a12a13a14a9a10)a15a16a17a18a19a20a21a22a9a10a23
a24a25a26a27a28a29a30a31a32a33a26a34
a35a36a37
a18a38a17a23
? a39a40a41a42 Laplacea9a10a18a43a44
a30a45a46
a39a47a48a49a50
a30a51
a18a11a52a38a17a23
Laplacea53a54a55a56a57a58a59a53a54a49a60a61 f(t)a53a54a62F(p)a49
F(p) =
integraldisplay ∞
0
e?ptf(t)dt.
a63a64a65 t
a66a67a68a49 pa66a69a68a49 p = s + iσ a23 F(p) a70a71f(t) a65 Laplacea72a73a49a74a70a75a76a72a73a23 e?pt
a66Laplacea77a72
a65a78
a23
a79a80a81 Laplace
a77a72a74a82a71
F(p) =a83{f(t)} a84 F(p)equaldotrightleftf(t);
f(t) =a83
?1{F(p)}
a84 f(t) equaldotleftrightF(p).
f(t)a85F(p)a86a87a88a89a90a70a71 Laplacea77a72
a65a91a92
a68a85a93
a92
a68a23
a94a95a96a97
a49
a24
a39a40
a34a98
a43a99 f(t)a38a100
a29a101a102 f(t)η(t)
a49
a45a34
η(t) =
braceleftBigg
1, t > 0,
0, t < 0.
a103a104a96
a49a105t < 0a106a38a100
a29a101a102 f(t) = 0
a23
a107 26.1 a92
a68f(t) = 1a65Laplacea72a73a71
1 equaldotleftright
integraldisplay ∞
0
e?pt dt = ? 1p e?pt
vextendsinglevextendsingle
vextendsinglevextendsingle
∞
0
= 1p, Rep > 0.
a63a64a65a108a109a110a111 Rep > 0
a66a71a112a113a114a115a89a116a117a49a84a118a119a66 Laplacea77a72a120a121
a65a110a111
a23
a107 26.2 a92
a68f(t) = e
αt a65Laplace
a72a73a71
eαt equaldotleftright
integraldisplay ∞
0
e?pt · eαt dt = ? 1pe?(p?α)t
vextendsinglevextendsingle
vextendsinglevextendsingle
∞
0
= 1p?α, Rep > Reα.
a63a64a65a108a109a110a111 Rep > Reα
a122a123a66a71a112a113a114a115a89a116a117a49a124 Laplacea77a72a120a121a23
a125a12626.1
a85
a12626.2
a127a128a129a130a49
a131a132Laplace
a77a72
a65a78
a66e?pt a49
a133
a128a134
a132a135a136a137a138a65a92
a68f(t)a49
a139
a75a76a72a73a140a120a121a141a142a143
a136 t → ∞, f(t) → ∞
a87a49f(t)a65a75a76a72a73a88a127a144a120a121a23
Wu Chong-shi
§26.1 Laplacea145a146a147a148a149 a1502a151
Laplacea53a54a152a153a154a155a156a157a158a55a58a59
integraldisplay ∞
0
e?ptf(t)dta159a160a154a155a156a23a121a161a162a163a68a67a164a165a166a167a49f(t)
a140a144a168a169
1. f(t) a24a170a1710 ≤ t < ∞ a34a172a173a174a19a175a171a176a177a178a179a15a180a181a18a49a182a183a35a180a181a184a25a49a24a185a186a35a187
a170a171a34a188
a20
a171a176a177
a18
a25a189
a15
a35a187
a18a141
2. f(t)a35a35a187a18a190a191a192
a25
a49a193a194
a24a195a25M > 0a30sprime ≥ 0
a49
a196a197a198a185a186t
a199(a200a201a202a49a203
a95a197a198
a204a205a206
a18ta199)a49
|f(t)| < Mesprimet.
a63
a66Laplace a53a54a152a153a154a207a59a155a156a23
a208a209
a165a166a167a210a211
a65a92
a68a140a144a168a169
a63a212a213a214
a23
a215a216sprime
a120a121
a65a217
a49a218
a208a219a220a221a222a208
a49a223a71a224sprime a162
a65a225a226a227
a68a88a228a229
a213a214
a23 sprime a65a230a231a70a71a159
a160a232a233a49a234a71s0 a23
Wu Chong-shi
a235a236a237a238a239 Laplace
a145a146 a1503a151
§26.2 Laplace a7a8a240a241a242a243a244
a245a246 26.1 Laplace
a53a54a55a56a247a248
a245
a53a54a49a124a249
f1(t) equaldotleftrightF1(p), f2(t) equaldotleftrightF2(p),
a250
α1f1(t) + α2f2(t) equaldotleftrightα1F1(p) + α2F2(p).
a188a251
a47a48a252a253a254a255Laplacea9a10a18a43a44a0a1a49
a2a102a51
a203a3a4a15a21a22a5a6a18a7a47a47a48a18a8
a9
a23a10a11
a188a251
a47a48a49a12a193a0a1
sinωt = e
iωt ? e?iωt
2i equaldotleftright
1
2i
bracketleftbigg 1
p? iω ?
1
p + iω
bracketrightbigg
= ωp2 + ω2;
cosωt = e
iωt ? e?iωt
2 equaldotleftright
1
2
bracketleftbigg 1
p? iω +
1
p + iω
bracketrightbigg
= pp2 + ω2.
a245a246 26.2 Laplace
a54a13a154a14a15
a245
a23
a188a251
a47a48a16a50a17a17a18a43a19a20a21a22 s0 a49
a188a24a23 Laplace
a9a10a18a8a24a106a15a25a16a26
a95
a18a23
a245a246 26.3
a249f(t)a168a169Laplacea77a72a120a121
a65a27
a89
a110a111
a49
a250
F(p) → 0, a136Rep = s → +∞.
a245a246 26.4
a28a29a30a154a31a30a154 Laplace a53a54a23a32f(t) a33fprime(t) a140a168a169Laplacea77a72a120a121
a65a27
a89
a110a111
a49f(t) equaldotleftright F(p)a49
a250
fprime(t) equaldotleftrightpF(p) ?f(0).
a197a34a35a25f(t)
a18a36a37a5a6a38a39
a102a197a40a35a25 F(p)
a18a41a42a5a6a49a182a183a43a44
a45a46a47a173f(t)
a18
a48
a199a23
a195a2a102a188a251a49a177
a49a50a50Laplacea9a10a51a42a15
a23a101
a36a22a51
a32
a18a19a20a26
a95
a51a42a23
a122a123a49a52
a213 f(t), fprime(t), ···, f(n)(t)
a140a168a169 Laplacea77a72a120a121
a65a27
a89
a110a111
a49 f(t) equaldotleftright F(p)a49
a250
fprimeprime(t) equaldotleftright p2F(p)?pf(0)?fprime(0),
f(3)(t) equaldotleftright p3F(p)?p2f(0)?pfprime(0) ?fprimeprime(0),
...
f(n)(t) equaldotleftright pnF(p)?pn?1f(0)?pn?2fprime(0) ?···?pf(n?2)(0) ?f(n?1)(0).
Wu Chong-shi
§26.2 Laplacea145a146a147a53a54a55a56 a1504a151
a245a246 26.5
a28a29a30a154a58a59a154 Laplace a53a54a23a32f(t)a168a169Laplacea77a72a120a121
a65a27
a89
a110a111
a49
a250
integraldisplay t
0
f(τ)dτ equaldotleftright F(p)p .
Wu Chong-shi
a235a236a237a238a239 Laplace
a145a146 a1505a151
§26.3 Laplace a7a8a240a57a58
a59
a29a30a154a31a30a154a60a61 a32 f(t) a168a169 Laplace a77a72a120a121
a65a27
a89
a110a111
a49 f(t) equaldotleftright F(p) a49
a250 F(p)
a121
Rep ≥ s1 > s0 a65a62a63a64a167a65a66a49a223a67a127a128a121a115a89a68a230a214a69
F(n)(p) = d
n
dpn
integraldisplay ∞
0
f(t)e?pt dt =
integraldisplay ∞
0
(?t)nf(t)e?pt dt.
a133
a128
F(n)(p) equaldotrightleft (?t)nf(t).
a70a71a63a212a72
a73a49a127a128a73a74a75a76a211
1
p2 = ?
d
dp
1
p equaldotrightleftt,
1
p3 =
1
2
d2
dp2
1
p equaldotrightleft
1
2t
2.
a249F(p)a66a86a77
a92
a68a49
a250a78
a127a128
a79a79a80
a89a89a73
a214a81a82
a23
a126a215
1
p3(p + α) =
1
α
1
p3 ?
1
α2
1
p2 +
1
α3
1
p ?
1
α3
1
p + α
equaldotrightleft 12αt2 + 1α2t + 1α3 ? 1α3e?αt.
a59
a29a30a154a58a59a154a60a61
a215a216
integraldisplay ∞
p
F(q)dq a120a121a83a49a84
a136t → 0
a87a49|f(t)/t|a86
a231
a49
a250
integraldisplay ∞
p
F(q)dq equaldotrightleft f(t)t . (star)
a85a86a63a212a72
a73a49a87a127a128a76a211a88a163
a92
a68
a65 Laplace
a77a72a23
a126a215
sinωt
t equaldotleftright
integraldisplay ∞
p
ω
q2 + ω2 dq =
pi
2 ? arctan
p
ω.
a89
a90a66a49
a215a216 p → 0
a87a49(star) a73a90a91
a65
a115a89a92a120a121a49
a250
a86integraldisplay
∞
0
F(p)dp =
integraldisplay ∞
0
f(t)
t dt.
a85a86a63a212a93a216
a49a127a128a94a95
integraldisplay ∞
0
f(t)
t dta96
a65
a115a89a23
a126a215
integraldisplay ∞
0
sint
t dt =
integraldisplay ∞
0
1
p2 + 1 dp =
pi
2.
a188a251
a21a22a97a98a38a17a99
a25
a43
a29a100
a6a4a23
a188a101
a18
a100
a6a102
a102
a11a103a23
a86a104a115a89
a86a105
a68
a219
a77a94a95a224a106a69a107a49a108a109a127a128a110a111a75
a86a63a212a112a113
a94a95a23
a126a215
integraldisplay ∞
0
cosat? cosbt
t dt =
integraldisplay ∞
0
parenleftbigg p
p2 + a2 ?
p
p2 + b2
parenrightbigg
dp
a83 a114a115a116a117a118a119a120a121a122a123a124
Rep→+∞a125a126a127
a117a118a128a129a130
F(p)
a116a123a131a132a133a134
a125a135a136
a117a118a137a128a129a138a139a140
Wu Chong-shi
§26.3 Laplacea145a146a147a141a142 a1506a151
= 12 ln p
2 + a2
p2 + b2
vextendsinglevextendsingle
vextendsinglevextendsingle
∞
0
= lnb? lna, a > 0, b > 0.
a10a11 Laplace a9a10a18a7a47a47a48a49a143a144 Laplace a10a145 F(p) a16a50a22
a101a102a146a251a35a25 F
1(p) a147
F2(p)a148a147a49
a149a150
a49
a51
a18a8a24a151a152a105a153a154a252a11a52a99a203
a95F
1(p)a147F2(p)a18
a34a35a25a179
a194
a24
a49
F(p) a18
a34a35a25
a154a15F1(p) a147 F2(p) a18
a34a35a25
a148a147a23a143a144F(p) a16a50a22
a101a102F
1(p) a147F2(p)
a148a21a49
a45
a8a24a151a152a154
a94a95
a17a1a155a156a18a157a21a43
a29
a23
a158
a58a159a160 a32F1(p) equaldotrightleftf1(t)a49F2(p) equaldotrightleft f2(t)a49
a250
F1(p)F2(p) equaldotrightleft
integraldisplay t
0
f1(τ)f2(t?τ)dτ.
a161a162a81a82a72
a73 a249
a92
a68F(p), p = s + iσ a168a169a99
(1) F(p)a24a170a163 Rep > s0 a34a101a164a49
(2)a24a170a163 Rep > s0 a34a49|p| → ∞a106F(p)a19a165a166a167
a198 0
a49
(3)a197a198a50a35a18 Rep = s > s0 a49a168a169a7 L : Rep = sa18a170a171a21a22integraldisplay
s+i∞
s?i∞
|F(p)|dσ (s > s0)
a19a20a49
a250
a134
a132 Rep = s > s
0 a49F(p)a66
f(t) = 12pii
integraldisplay s+i∞
s?i∞
F(p)ept dp
a65Laplace
a77a72a49
a139
a167ta71a67a77a172a23
a131a161a162a81a82a72
a73
a214Laplace
a77a72
a65a91a92
a68a49
a173
a33a69
a63a64a174a65a175a176
a115a89a23
a208a209
a127
a85a86a105
a68
a219
a77a177
a94a95a23