Wu Chong-shi
a0a1a2a3a4 a5a6a7a8a9a10a11 (a1)
Sturm-Liouville a12a13a14a15a16a17a18a19a20
§25.1 a21a22a23a24a25a26a27a28a29a30
a31a32 25.1
a33La34M a35a36a37a38a39a36a40a41a42a43a44a45 (a46a47) a48a49a50a51a52a53a54a40a41a42a43a44a45a55
a56a57a58
a40a41ua34va50a59a60
(v,Lu) = (Mv,u) a61
integraldisplay b
a
v?Ludx =
integraldisplay b
a
(Mv)?udx,
a62a63M
a64La45a65a66a67a68
a69 25.1
a51L= ddx a50a53a64
integraldisplay b
a
v?dudxdx = v?u
vextendsinglevextendsingle
vextendsingle
b
a
?
integraldisplay b
a
dv?
dxudx.
a70a71
a50a72ua34va73a74a75a76a77a78a79
y(a) = y(b)
a80
a50
d
dx a45a81a48a49a64?
d
dx a68
a36a37 25.1 a82a45a48a49M a34La64a83a35a81a48a49a50a84a35a85a86 M a64La45a81a48a49a50
a62
a52a53a55
a56
a40a41ua34va50a87a60
integraldisplay b
a
v?Mudx =
bracketleftBiggintegraldisplay b
a
(Mu)?vdx
bracketrightBigg?
=
bracketleftBiggintegraldisplay b
a
u?Lvdx
bracketrightBigg?
=
integraldisplay b
a
(Lv)?udx,
a70a71
a50La87a64M a45a81a48a49a68
a69 25.2
a33L= d
2
dx2 a50a88a89a90a91integraldisplay
b
a
v?d
2u
dx2dx =
bracketleftBig
v?uprime ? (v?)primeu
bracketrightBigb
a
+
integraldisplay b
a
parenleftBigd2v
dx2
parenrightBig?
udx.
a70a71
a50a72a40a41ua34va73a74a75a39a92a93a92a94a95a76a77a78a79
α1y(a) +β1yprime(a) = 0, α2y(b) +β2yprime(b) = 0
(a96a82|α1|2 + |β1|2 negationslash= 0, |α2|2 + |β2|2 negationslash= 0)a97a98a99a78a79
y(a) = y(b), yprime(a) = yprime(b)
a80
a50
d2
dx2 a45a81a48a49a100a64a101a102
a103
a68
Wu Chong-shi
§25.1 a104
a105a106a107a108a109a110a111a112a113 a1142
a115
a31a32 25.2
a51a48a49La45a81a48a49a100a64a101a102
a103
a50a61a52a53a54a40a41a42a43a44a45a55
a56a57a58
a40a41ua34va50
a59a60
(v,Lu) = (Lv,u) a61
integraldisplay b
a
v?Ludx =
integraldisplay b
a
(Lv)?udx,
a62a63L
a64a116a65a66a67a68
a69 25.3
a38a34a117 4a118a119a120a121a45a78a79a122a50a48a49 i ddx a100a64a102a81a48a49a68
integraldisplay b
a
v?
parenleftbigg
idudx
parenrightbigg
dx = ?i
integraldisplay b
a
dv?
dxudx =
integraldisplay b
a
parenleftbigg
idvdx
parenrightbigg?
udx.
a48a49a45a102a81a123a50a124a64a34a39a36a45a40a41a42a43a125a126a38a39a127a45a68a128a129a50a130a131a124a64a132a133
? a40a41a36a37a38a134a36a45a135a43a136a50
? a40a41a137a60a75a138a45a139a140a123(a117a85a50a52a53a93a141a46a47a48a49a50a100a132a133a40a41a45a93a141a142a41a139a140a50
a143
a144
a47a145a139a140a146a85a86a64a147a77a135a43a50
a62
a132a133a40a41a148a149a150a151) a50
a84a152a50a153a154a136a124a64a155a53 Hilberta42a43a68a156a157a50a158a132a133
? a40a41a74a75a39a36a45a76a77a78a79a50a61a124a64a159a155a38 Hilberta42a43a82a45a39a36a160a42a43a44a68
a161a162a163a164a165
a76a77a78a79a45a166a167a168a169a170a48a49a45a102a81a123a68
a39
a58
a48a49a50a120a52a53a171a39a95a40a41a64a102a81a45a50a172a52a53a173a39a95a40a41a50a100a150
a163a162
a64a102a81a45a68
a69 25.4
a33L= i ddx a50a174a175a76a77a78a79a176a177a178a39a179a45a180a181
y(b) = αy(a), αa35(a182)a129a41.
a53a64 integraldisplay
b
a
v?idudxdx =iv?u
vextendsinglevextendsingle
vextendsingle
b
a
? i
integraldisplay b
a
dv?
dxudx
=i(αα? ? 1)u(a)v?(a) +
integraldisplay b
a
parenleftbigg
idvdx
parenrightbigg?
udx.
a70a71a183
a60a76a77a78a79a82a45αa74a75αα? = 1a80a50a48a49 i ddx
a184
a64a102a81a45a68
a31a32 25.3
a33La35a102a81a48a49a50
a62
a149a185
Ly(x) = λy(x)
a63
a35a102a81a48a49a45a186a187a188a189a190a68
a191a192a193
a60a91a194a195a196a197a198a76a77a78a79a50a64a84a35a101a199a200a201a202a38a102a81a48a49La45a36a37a82a203a68
Wu Chong-shi
a204a205a206a207a208 Sturm-Liouville
a209a210a211
a108a109a110a111a112a113 a1143
a115
a102a81a48a49a45a186a187a188a189a190a137a60a122a212a213
a58a214
a132a45a215a186a123a216a217
? a218a219 1 a102a81a48a49a45a186a187a188a220a221a222a38a68(a162a90)
? a218a219 2 a102a81a48a49a45a186a187a188a220a35a153a41a68
a223
a84a35
Ly = λy,
a176a182a224a225
(Ly)? = λ?y?.
a226
a53La64a102a81a48a49a50
a70a71
integraldisplay b
a
[y?Ly? (Ly)?y]dx = (λ?λ?)
integraldisplay b
a
yy?dx = 0.
a227
a84a35
integraldisplay b
a
yy?dxnegationslash= 0a50
a70a71
λ = λ?,
a61a90a228a186a187a188λa35a153a41a68 square
? a218a219 3 a102a81a48a49a45a186a187a40a41a137a60a229a230a123a50a61a52a231
a162
a121a186a187a188a45a186a187a40a41a39a36a229a230a68
a223
a33λi a34λj a64
a162
a120a232a45
a57a58
a186a187a188a50a52a231a45a186a187a40a41a35 yi a34yj a50
Lyi = λiyi, Lyj = λjyj.
a233a56a234
a186a187a188λi,λj a35a153a41a50a53a64integraldisplay
b
a
[y?iLyj ? (Lyi)?yj]dx = (λj ?λi)
integraldisplay b
a
y?iyjdx.
a84a35λi negationslash= λj a50
a70a71
integraldisplay b
a
y?i (x)yj(x)dx = 0.
a191a235
a100a90a91a203a186a187a40a41a45a229a230a123a68 square
a226
a53a186a187a40a41a64a197a198a46a47a149a185a38a197a198a76a77a78a79a122a45a236a50
a70a71
a175a186a187a40a41a237
a71
a39
a58a238a239
a129a41a84
a160a240a221a64a186a187a40a41a68a130a131a100a150
a71a241
a72a242a243
a191a58
a129a41a84a160a50a244a228a52a53a55
a56
a39
a58
a186a187a188λi a50a73a60
integraldisplay b
a
y?i (x)yi(x)dx = 1.
a191a235
a228
a234
a45a100a64a39
a58a245a246a247a248a249a250a251a252
a68
integraldisplay b
a
y?i (x)yj(x)dx = δij.
Wu Chong-shi
§25.1 a104
a105a106a107a108a109a110a111a112a113 a1144
a115
? a218a219 4 a102a81a48a49a45a186a187a40a41 (a45a119a253) a254a177a39
a58
a118a255a40a41a0a50a61a55
a56
a39
a58
a38a135a43 [a,b] a82a60
a139a140a93a141a142a41a92a157a74a75a34a102a81a48a49La120a121a45a76a77a78a79a45a40a41f(x)a50
a1
a150a2a186a187a40a41{yn(x)}
a3a4
a35
a161
a52a174a157a39a5a6a7a45a8a41
f(x) =
∞summationdisplay
n=1
cnyn(x), (#)
a96a82
cn =
integraldisplay b
a
f(x)y?n(x)dx
integraldisplay b
a
yn(x)y?n(x)dx
.
a9a10
a64a50a85a86a186a187a40a41a0a64a11a39a12a45a50
a62
a136a181a82a45a47a13a35 1a50
a3a4
a45a180a181a178a14a15a16a68(a162a90)
a121
a235
a50a229a230a11a39a45a186a187a40a41a0a45a118a255a123a87a158a150
a71a17a18
a177
∞summationdisplay
n=1
yn(x)y?n(xprime) = δ(x?xprime).
? a226a136a19a45a123a2163a344a150
a71a20a234
a50
a183
a132a175a186a187a40a41
a241
a72a11a39a12a50
a62
a186a187a40a41a45a119a253a100a254a177a203a39
a58
a118a255a45a229a230a11a39a40a41a21a68a84a152a50a136a39a22a82a60a23a118a255a45a229a230a11a39a40a41a21a45a169a170
a1
a150
a241a24
a68
? a191a192a25a80a26a27a28a39a29a150
a163
a123a50a61a52a231a53a39
a58
a186a187a188a150
a163
a60
a162a30
a39
a58(
a31a123a147a23a45)a186a187a40a41a50
a84a174a150
a163
a156
a162a32
a152a229a230a68
a191
a29a33a180a175a38 25.3a22a169a170a68a172a61a244a85a152a50a124a158a150
a71a34a24 Schmidt
a45
a229a230a12a35a36 (a37a38 18.1a22)a244a39a229a230a12a50a84a174a240a221a150
a71
a228
a234
a39
a58
a118a255a45a229a230a11a39a40a41a21a68
? a40a153a136a50a136a19a45
a3a4
a78a79a158a150
a71a41a42
a35a217a52a53a55
a56
a38[a,b] a82a148a149a150a151a45a40a41a50(#)a181a38a148
a1
a6a7
lim
N→∞
integraldisplay b
a
vextendsinglevextendsingle
vextendsinglef(x) ?
Nsummationdisplay
n=1
cnyn(x)
vextendsinglevextendsingle
vextendsingle
2
dx = 0
a45
a56
a37a122a240a221a177a43a68
a44a45a46
a168a50a136a19a23a53a102a81a48a49a186a187a188a45a222a38a123a34a186a187a40a41a45a118a255a123a45a169a170a50a186a168a158
a231a72a135a47a47a48a45 (a135a43a147a77a97a49a147a77a146a97a64a38a60a77a135a43a136a46a47a149a185a60a47a50) a34
a238
a47a48a45
(a135a43a60a77a50a157a46a47a149a185a38a135a43a136a147a47a50)a186a187a188a189a190
a191a57
a29a33a180a68a172
a226
a53a156
a193
a60a134a196a60
a23a45a90a91a50
a70a71
a87a100a51a52a135a47
a191a57
a95a186a187a188a189a190a68a174a157a50a35a203a53a54a45a149a55a50a38a60a23a45
a17
a54a82a73
a34a24
a203a60a77a135a43a45a180a181a68
Wu Chong-shi
a204a205a206a207a208 Sturm-Liouville
a209a210a211
a108a109a110a111a112a113 a1145
a115
§25.2 Sturm–Liouville a56a57a58a25a26a27a28a29a30
a38a59a19a213a60a82a50a130a131a169a170a61a213
a58
a129a46a47a149a185a45a186a187a188a189a190a68a62a63a45a46a47a149a185a60
Xprimeprime +λX = 0;
d
dx
bracketleftbiggparenleftbig
1 ?x2parenrightbig dydx
bracketrightbigg
+
bracketleftBig
λ? m
2
1 ?x2
bracketrightBig
y = 0;
1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
+
bracketleftBig
λ? m
2
r2
bracketrightBig
R = 0.
a101a131a150
a71
a11a64a35a122a19a45a39a179a180a181
d
dx
bracketleftbigg
p(x)dydx
bracketrightbigg
+ [λρ(x) ?q(x)]y = 0. (#)
a191
a29a95a65a45a149a185
a63
a35 Sturm–Liouvillea65(a15
a63 S–L
a65)a149a185a68
? a162a66a67S–La65a149a185a82a45a40a41p(x), q(x)a34ρ(x)a155a68a35a73a64a153a40a41a50a174a157a73a74a75a220a132a45a139a140a123
a132a133a68
? ρ(x)a50
a63
a35a69
a214
a40a41a68
? a72a69
a214
a40a41ρ(x) =a129a41
a80
a50a150
a71
a176a35 1a68
? a162a59a35a129a41a45a69
a214
a40a41a50a150
a71
a168a70a53a229a230a71a19a72a73a126a45a244
a24 (a191a80
a150
a71a74 Laplace
a48a49a45a137a253
a17a75
a181a82a76a77
a234
a69
a214
a40a41a45a78a79a146
a74a80
a186a136
a46
a50a101a81a82a203a72a73a83a84a16a85a64a54a86a87a45a40a41a68a150
a71a63
a39a35a168a70a53a42a43a45a213a88a89a54a45
a162a1a90
a123) a50a87a150
a163
a168a70a53a189a190
a70
a62a63a45a91a92a123a216a45
a162a1
a90
a123(a117a85a50
a93
a84a47a94a45
a162a1a90)
a68a84a152a50a100a130a131
a70
a23a95a45a91a92a189a190a174a96a50
a162a66a97
a33 ρ(x) ≥ 0a50
a174a157a50a231a72
a162
a59a35 0a68
a35a203a38a195a45a98a99a50a158a150
a71a100a101
a48a49
L≡ ? ddx
bracketleftbigg
p(x) ddx
bracketrightbigg
+q(x) (dividemultiply)
a45a102a103a68
a191a235
a50 S–La65a149a185a100a150
a71a104
a195a177
Ly(x) = λρ(x)y(x). (##)
S–La65a149a185a105a14a136
a241
a72a45a76a77a78a79a50a100a254a177 S–La65a149a185a45a186a187a188a189a190a68 λa63a35a186a187a188a68a52a53
a171a39
a58
a186a187a188λa50a74a75 S–La149a185a63a120a231a45a76a77a78a79a45
a238a239
a236a100a64a186a187a40a41a68
a74
a46a47a149a185a168
a20
a50
a226
a53ρ(x)a45a196a106a50 S–La65a149a185 (#)a97(##) a91a107
a162
a121a53a149a185
Lprimeu(x) = λu(x). (maltesecross)
Wu Chong-shi
§25.2 Sturm–Liouvillea209a210a211
a108a109a110a111a112a113 a1146
a115
a172a64a50a128a61a86a87a86a108
u(x) =
radicalbig
ρ(x)y(x),
a100a150
a71
a175a149a185 (#)a12a35 (maltesecross)a50a96a82
Lprime = ? ddx
bracketleftbigg
φ(x) ddx
bracketrightbigg
+ψ(x),
φ(x) = p(x)ρ(x),
ψ(x) = ? 1radicalbigρ(x) ddx
bracketleftBig
p(x) ddx 1radicalbigρ(x)
bracketrightBig
+ q(x)ρ(x).
a149a185 (maltesecross)a72a221a87a158a64 S–La65a149a185a50
a183a162
a61a64a39a29
a9a109
a45S–La65a149a185a50a69
a214
a40a41a35 1
a45S–La65a149a185a68
a31a110 25.1
a52a53a55
a56
a40a41u1(x)a34u2(x)a50a59a60
u?1Lprimeu2 ?parenleftbigLprimeu1parenrightbig?u2 = ? ddx
bracketleftBig
φ(x)
parenleftBig
u?1du2dx ?u2du
?1
dx
parenrightBigbracketrightBig
,
a96a82
Lprime = ddx
bracketleftbigg
φ(x) ddx
bracketrightbigg
?ψ(x).
a111a112a113
a66a67La68
L≡ ? ddx
bracketleftbigg
p(x) ddx
bracketrightbigg
+q(x)
a84a35a38a86a108 u1(x) = radicalbigρ(x)y1(x), u2(x) = radicalbigρ(x)y2(x)a39a122a50a60
u?1Lprimeu2 ?parenleftbigLprimeu1parenrightbig?u2 = y?1Ly2 ? (Ly1)?y2.
a70a71
a50a52a53a55
a56
a40a41y1(x)a34y2(x)a50
y?1Ly2 ? (Ly1)?y2 = ? ddx
bracketleftBig
p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigbracketrightBig
.
a31a110 25.2
a38a76a77a78a79
φ(x)
parenleftBig
u?1du2dx ?u2du
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
b
a
= 0
a39a122a50a48a49Lprime a64a102a81a45a68
a175a36a92 1a45a114a170a34a36a92 2a115a116a127a168a50a43a61a228
a234
a217a38a76a77a78a79
p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
b
a
= 0 (circleasterisk)
a39a122a50a48a49La87a64a102a81a45a68
Wu Chong-shi
a204a205a206a207a208 Sturm-Liouville
a209a210a211
a108a109a110a111a112a113 a1147
a115
a38a117a118a33a119a122a50a76a77a78a79 (circleasterisk)a163a138a177a43a120
? a121a39a29a33a119a64a38a122a50x = aa34x = ba50
a1
a60
p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBig
= 0. (triangle)
1. a85a86y1 a34y2 a38
a57
a122a50
a1
a74a75a121a39a92a93a92a94a95a76a77a78a79a50
a62 (triangle)
a181a177a43a68
a117a85a50a38x = aa50a50
αyi(a) ?βyprimei(a) = 0, i = 1,2, αa34βa1a35(a229)a153a41a50
a176a182a224a225a50a158a150
a71
a228a196
αy?i (a) ?βy?i prime(a) = 0, i = 1,2.
a226
a53αa34β
a162
a150
a163
a121
a80
a35 0a50a123a60vextendsingle
vextendsinglevextendsingle
vextendsingle
y?1(a) y?prime1 (a)
y2(a) yprime2(a)
vextendsinglevextendsingle
vextendsinglevextendsingle = y?1(a)yprime2(a) ?y2(a)y?prime1 (a) = 0.
2. a85a86p(x) a38a122a50(a117a85a50x = a)a124a35 0, a191a80x = aa50a64a149a185a45a47a50a68a97a36p(x), q(x) a34
ρ(x)a74a75a39a36a45a132a133a50a244a228x = aa50a64a149a185a45a229
a62
a47a50a50a174a157a121a39a236a60a77a50a121a93a236a147a77a68
a38a105a14a136a60a77a78a79a125
a28
a147a77a236a126a50a100a60
p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
x=a
= 0.
a117a85
p(a) = 0, pprime(a) negationslash= 0, ρ(x)a34(x?a)q(x)a1a38x = aa50a236a127
a97
p(a) = 0, pprime(a) = 0, pprimeprime(a) negationslash= 0, ρ(x)a34q(x)a1a38x = aa50a236a127,
a191
a38a130a131a169a170a61a45a153a154a189a190a82a64
a163
a138a74a75a45a68
? a173a39a29a33a119a64
p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
x=a
= p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
x=b
,
a172
a162
a350a50
a191a80(triangle)
a181a87a177a43a68a85a86
p(a) = p(b), q(a) = q(b), ρ(a) = ρ(b),
a156a157
yi(a) = yi(b), yprimei(a) = yprimei(b), i = 1,2,
a107a221a100a150
a71
a74a75
a191a58
a132a133a68
a191
a229a64a169a170a61a45a98a99a78a79a45a33a180a68
Wu Chong-shi
§25.3 Sturm–Liouvillea209a210a211
a109a110a111a112a113a108a128a129a130a131 a1148
a115
§25.3 Sturm–Liouville a56a57a58a26a27a28a29a30a25a132a133a134a135
a52a231a39
a58
a186a187a188a60
a162a183
a39
a58 (
a31a123a147a23a45) a186a187a40a41a45a106a136a50
a63
a35a15a156a97a137a12a68
a226
a53S–La65a149a185a64a93a141a31a123a129a46a47a149a185a50
a70a71
a50a52a231a39
a58
a186a187a188a138a139
a183a163
a60
a57a58(
a31
a123a147a23a45)a186a187a40a41a68
a38a117a118a78a79a122a50 S–La65a149a185a45a186a187a188a189a190a64a15a156a45a120a38a117a118a78a79a122a64
a238
a15a156a45a120
a31a110 25.3
a85a86S–La65a149a185a186a187a188a189a190a45a39
a58
a186a187a40a41a64a182a45a50a157a96a153a140a34a141a140a31a123a147a23a50
a62
a152a186a187a188a189a190a64a93
a214
a15a156a45a68
a223 a80a142
a36a92
a70
a33a50a186a187a40a41y(x)a64a182a45a50a96a153a140a34a141a140a47
a10
a35f(x)a34g(x)a50
y(x) = f(x) + ig(x).
a62S–L
a65a149a185a150
a71
a195a177
L(f + ig) = λρ(f + ig).
a226
a53a48a49La64a153a48a49a50a69
a214
a40a41ρ(x)a64a153a40a41a50a157a186a187a188λa35a153a41a50a123a175a136a181a47
a10a143a144
a153a140a34a141
a140a50a100a228
a234
Lf = λρf, Lg = λρg.
a191a46
a91f(x) a34g(x) a73a64a52a231a53a121a39
a58
a186a187a188λa45a186a187a40a41a50a101a131a45a31a123a147a23a123a38a36a92a45a199a145a78
a79a82a199a200a146a203a91a194a45a155a36a68
a158a220a147a90a91f(x) a34g(x) a87a74a75a148a186a187a188a189a190a45a76a77a78a79a68
a191a80a183
a132
a233a56a234
a76a77a78a79a87a64a31
a123a197a198a45a50a156a157a150
a163
a196a106a45a126a41a87a64a153a41a50a53a64a38a76a77a78a79a82a87a47
a10a143a144
a153a140a34a141a140a61a150a68 square
a31a110 25.4
a33y1(x)a34y2(x)a73a64S–La65a149a185a186a187a188a189a190
Ly(x) = λρ(x)y(x).
a45
a57a58
a153a45a31a123a147a23a45a186a187a40a41a50a156a157a38x = aa34x = ba50a73a16a149a74a75a76a77a78a79
p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
x=a
= p(x)
parenleftBig
y?1 dy2dx ?y2dy
?1
dx
parenrightBigvextendsinglevextendsinglevextendsingle
vextendsingle
x=b
= 0, (#)
a62y
1(x)a34y2(x)
a162
a150
a163
a52a231a53a121a39
a58
a186a187a188λa68
a223 a24
a81a90a150a68a33y1(x)a34y2(x)a52a231a53a121a39
a58
a186a187a188λa50
Ly1 = λρy1, Ly2 = λρy2,
a84a152
y1Ly2 ?y2Ly1 = 0,
a233a56y
1(x)a34y2(x)a73a64a153a40a41a50y?1(x) = y1(x)a50y?2(x) = y2(x)a50
a70a71a80a142
a136a22a36a92 1a45a114a170a50a100a60
d
dx
bracketleftbigg
p(x)
parenleftbigg
y1dy2dx ?y2dy1dx
parenrightbiggbracketrightbigg
= 0.
a53a64
p(x)
parenleftbigg
y1dy2dx ?y2dy1dx
parenrightbigg
=a129a41C.
Wu Chong-shi
a204a205a206a207a208 Sturm-Liouville
a209a210a211
a108a109a110a111a112a113 a1149
a115
a174
a80a142
a36a92a134a196a45a199a145a78a79 (#)a50a100a231a60
p(x)
parenleftbigg
y1dy2dx ?y2dy1dx
parenrightbigg
≡ 0.
a172a84a35p(x) negationslash≡ 0a50a123a60
y1dy2dx ?y2dy1dx ≡ 0,
a61
Wbracketleftbigy1(x), y2(x)bracketrightbig ≡
vextendsinglevextendsingle
vextendsinglevextendsingley1(x) y2(x)
y?1(x) y?2(x)
vextendsinglevextendsingle
vextendsinglevextendsingle ≡ 0.
a191a46
a91y1(x) a34y2(x) a31a123a120a23a50a151a199a145a78a79a152a153a68
a70a71 y
1(x) a34y2(x)
a162
a150
a163
a52a231a53a121a39
a58
a186a187
a188a68 square
a191a58
a36a92a100a154a155a130a131a50a38a39a92a93a92a94a95 (a197a198)a76a78a79a97(a34)a60a77a78a79a122a50S–La65a149a185
a186a187a188a189a190
a162
a150
a163
a64a15a156a45a68a100a186a38
a70
a169a170a61a45a213a29a95a65a45a76a77a78a79a174a96a50
a183
a60a38a98a99
a78a79a39a122a50a186a187a40a41a38a135a43a45a156a39
a58
a122a50a156
a162
a16a149a74a75(#)a50
a184
a60a150
a163a157a158
a15a156a106a136a68
Wu Chong-shi
§25.4 a159Sturm–Liouvillea209a210a211
a108a109a110a111a112a113a160a161a162a163a164a165 a11410
a115
§25.4 a166 Sturm–Liouville a56a57a58a25a26a27a28a29a30a167a168a169a170a171a172
a240
a71a173
a45a174a175a176a189a190a35a117a68
a52a53
a57
a122a177a36
a173
a45a102
a226
a175a176a50a36a236a189a190a64
?2u
?t2 ?a
2?2u
?x2 = 0, 0 <x<l,t> 0;
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, t> 0;
uvextendsinglevextendsinglet=0 = φ(x), ?u?t
vextendsinglevextendsingle
vextendsingle
t=0
= ψ(x), 0 <x<l.
a80a14225.1
a22a3425.2a22a45a169a170a150a145a50a85a86a222a38a39
a58 S–L
a149a185a45a186a187a188a189a190
LX = λρX,
X(0) = 0, X(l) = 0,
a178
a118a50
a226
a53a101a45a76a77a78a79a34a36a236a189a190a45a76a77a78a79a180a181a118a119a120a121a50a84a152a50a150
a71
a175a36a236a189a190a45a236u(x,t)
a2a179a186a187a40a41a45a119a253 {Xn(x), n = 1, 2, 3, ···} (a35a149a55a127a37a50
a97
a33a186a187a40a41
a1
a199a11a39a12) a3a4a50
u(x,t) =
∞summationdisplay
n=1
Tn(t)Xn(x).
a191a192
a50a186a187a40a41a0a45a118a255a123a127a203a180a36a123a45a146
a24
a68a35a203a181a90
∞summationtext
n=1
Tn(t)Xn(x) a163a138a6a7
(a143a144a64a148
a1
a6a7) a234a236u(x,t)a50
a191a192
a45a133a34a220a147a182a63a183a184a186a187a40a41a68
a161a162
a150
a71
a147a92
a226
a185a186a187
a51a188
a58
a186a187a40a41a68
a189a62
a50
a190a191
a38a180a181a136a192a193a240
a163
a133
a234
a39
a58
a8a41a194a236a195a50a172a101
a161a162
a150
a163
a6a7
a234a196
a229a45a236u(x,t)a68
a175a236a181a197a198a149a185a50a60
∞summationdisplay
m=1
Tprimeprimem(t)Xm(x) ?a2
∞summationdisplay
m=1
Tm(t)Xprimeprimem(x) = 0.
a24X?
n(x)a237a136a181
a57
a122a50a221a126a38a135a43 [0, l]a136a151a47a50a100a228
a234
Tprimeprimen(t) ?a2
∞summationdisplay
m=1
(Xn, Xprimeprimem)Tm(t) = 0, m = 1,2,3,···.
a199
a175a200a201a78a79a87a2
a191
a39a0a186a187a40a41
a3a4
a50a228
a234
Tn(0) = (Xn, φ), Tprimen(0) = (Xn, ψ).
a85a86
a163
a138a133a196Tn(t)a50a197a202
a234
a236a181a82a50a72a221a100a133a196a203a36a236a189a190a45a236 u(x,t)a68
a191a192
a132a133a236a45a64a23a53a51a145a40a41{Tn(t),n = 1,2,3,···}a45a129a46a47a149a185a0a68a39a179
a46
a168a50
a191
a158a64
a143a144a203a204
a45a68
a205a206a207
a203a197a198a76a77a78a79a38a47
a165
a86a87a150a82a45a180a36a123a146
a24
a126a50
a238
a197a198a149a185a45a33a180a100a208a209a174a236a203a68
Wu Chong-shi
a204a205a206a207a208 Sturm-Liouville
a209a210a211
a108a109a110a111a112a113 a11411
a115
a85a86
a67
a36a236a189a190a82a45a149a185
a104
a35
?2u
?t2 ?a
2?2u
?x2 = f(x,t),
a178
a118a50a106a38
a20
a168a50a133a236a61a185a156
a193
a60a210a211a45a212a48a50
a162
a121a39a124
a183
a38a53a132a175a149a185a45
a238
a197a198a213 f(x,t)a87a2
a186a187a40a41
a3a4
a50a53a64a50a197a198a45a129a46a47a149a185a0a86a177a203
a238
a197a198a45a149a185a0
Tprimeprimen(t) ?a2
∞summationdisplay
m=1
(Xn,Xprimeprimem)Tm(t) = (Xn,f), m = 1,2,3,···.
f(x,t)a146a35xa45a40a41a50a34{Xn(x)}a231a72a214a53a121a39a58a40a41a42a43a68
a121
a235
a50a87a100
a162a204
a92a236a50a85a86a36a236a189a190a45a76a77a78a79a64
a238
a197a198a45a50a100a215a216a220a147a175a76a77a78a79a197a198a12a68
? a234a106a38a35a30a50a130a131a217a214a47a127a203a197a198a76a77a78a79a38a47a165a86a87a150a82a45a180a36a123a146a24a68
? a52a53a186a187a40a41a50
a218
a203a132a133a101a74a75a34a36a236a189a190a120a121a45a76a77a78a79a219a50a52a53a101
a70
a74a75a45a46a47a149a185
a183
a64a132a133a220a147a64 S–La65a149a185a50a172a52a53a149a185a45a137a253a180a181a156
a193
a60a155a68a68
? a186a187a40a41a74a75a45a46a47a149a185
a162
a121a50 {Xn(x), n = 1,2,3,···} a45a180a181
a162
a121a50a84a174a228
a234
a45a23a53Tn(t)
a45a129a46a47a149a185a0a45a180a181a87
a162
a120a121a50a133a228a45 Tn(t)a87
a162
a120a121a68
? a36a236a189a190a45a236a45a222a38a220a39a123a50a181a90a203a138a126a133a228a45a236a120a121a68
? a221a132
a233a56
a50a156
a162
a64a55a88a129a46a47a149a185a0a73a64a88a89a133a236a45a68
? a38a153a154a133a236a61a185a82a50a100a221a132a222a72
a185
a242a243a186a187a40a41a0{Xn(x), n = 1,2,3,···}a50a244a228Tn(t) a45a133
a236a189a190
a190
a150
a163a185
a15a16a68
? a138a15a16a45a33a180a100a64a132a133
(Xn,Xprimeprimem) = 0, a72nnegationslash= m,
a108a223a224
a46
a50
(Xn, Xprimeprimem) = ?λmδnm.
a84a152a50Tn(t)a74a75a129a46a47a149a185
Tprimeprimen(t) +a2λnTn(t) = 0
a97
Tprimeprimen(t) +a2λnTn(t) = (Xn, f).
a174
a162
a64a129a46a47a149a185a0a68
? a225a226
a234
a186a187a40a41a0{Xn(x), n = 1,2,3,···}a64a229a230a11a39a45a50
(Xn, Xm) = δmn,
a136a54a132a133a100a232a227a53
(Xn, Xprimeprimem) = ?λm(Xn, Xm) a61 (Xn, Xprimeprimem +λmXm) = 0
Wu Chong-shi
§25.4 a159Sturm–Liouvillea209a210a211
a108a109a110a111a112a113a160a161a162a163a164a165 a11412
a115
a191a56a228
a217a186a187a40a41a231a72a74a75a129a46a47a149a185
Xprimeprimen(x) +λnXn(x) = 0,
a191
a229a64a130a131
a24
a47
a165
a86a87a150a45a73a229a35a36a228
a234
a45a46a47a149a185a68
a70a71
a50a47
a165
a86a87a150a100a35a130a131a230a231a203a39
a58
a242a243a186a187a40a41a0a45a138a232a149a233a68
a186a187a40a41a45a118a255a123a64a38a92a170a136a181a90a203a39a36a150
a71
a175a36a236a189a190a45a236a2a54a186a187a40a41a0
a3a4(a191
a64a60a78a79a45a50a36a236a189a190a34a186a187a40a41a132a74a75a120a121a45a197a198a76a77a78a79) a50
a242
a24
a194a120a231a197a198a189a190a45a186a187a40a41a195
a62
a181a90a203a150
a71
a149a55
a185
a133a196
a3a4
a126a41 (a153a154a136a64a40a41)a50
a181a90a203
a191
a29a236a150a38a153
a24
a136a45a150a234a123a68
a38a235a198a92a236a203a47
a165
a86a87a150a45a236a237a153a216a126a50a133a236a238a46a47a149a185a36a236a189a190
a80
a100a239a228a203a178a211a45a102
a226
a68
a191a162a240
a253a106a38a244a228a130a131a52a53a241a29a95a65a45a36a236a189a190(a149a185a197a198a97
a238
a197a198a50a76a77a78a79a197a198a97
a238
a197a198)a45
a133a236a60a203a39
a58a242
a39a45a178a235a198a45a243a244a50a87a158
a17
a106a38a245
a42
a203a52a53a171a246a36a236a189a190a45a133a236a247a248a68
a117a85a50a52a53a16a85a249a44a45a250a36a189a190a50
?2u = f, x2 +y2 +z2 < 1;
uvextendsinglevextendsinglex2+y2+z2=1 = 0,?
a34a24
a249a72a73a126a133a236a50a2a179a61a125a45a251a150a50a231a72a175 u(r,θ,φ) a2 a194a120a231a197a198a189a190a45a186a187a40a41a195 Yml (θ,φ)
a3a4
a50
u(r,θ,φ) =
∞summationdisplay
l=0
lsummationdisplay
m=?l
Rlm(r)Yml (θ,φ),
a221a126a50
a80a142
a149a185
1
r2
d
dr
bracketleftbigg
r2dRlmdr
bracketrightbigg
? l(l+ 1)r2 Rlm(r) =
integraldisplayintegraldisplay
Ym?l (θ,φ)f(r,θ,φ)sinθdθdφ
(a96a82a45a151a47a182a63a252a58 4pia43a253a253)a254a255a0a1a2
Rlm(0)a3a0, Rlm(1) = 0
a4a5R
lm(r)a6
a7a8a9a10a11a12a13a14a15a16a17a18a19a20a21a22a11a23a24a25a15a16a26a17a27a28a29a30a31a4a32a33a34a35a23a24
a25a36a11a37a38a39a40
a6
a41a42a43a44a11a14a45a26a46a47a28a48a10a18a49a50a51a52a22a26a53a54a55a56a57a58a59a60a32a61a62a11a24a25
a255a0a1a2
a26a63a64a26
a65a66a67a68u(r,θ,φ)a41a7a18a49a50a51a52a22a69a70
a6
a37a38a71a72a26a66a67a73a4a32a50a51a74a61a62
??2w = λw, x2 +y2 +z2 < 1;
wvextendsinglevextendsinglex2+y2+z2=1 = 0,
Wu Chong-shi
a75a76a77a78a79 Sturm-Liouville
a80a81a82a83a84a85a86a87a88 a8913a90
a91a10a50a51a74
λnl = k2nl, n = 1,2,3,···, l = 0,1,2,···
a254
a50a51a52a22
wnlm(r,θ,φ) = jl(knlr)Yml (θ,φ),
a92a93k
nl
a17l
a94a95Bessela52a22jl(x)a11a96na19a97a98a99a6
a100a101a26a7a8a11a50a51a74a102m = 0,±1,···,±l
a103a104
a26a105a106a107a71a26a59a50a51a74a61a62a17a108m
a109
a110a11a26
a109
a110a111a112 2l+ 1
a6
a113a114a26a68u(r,θ,φ)a41w
nlm(r,θ,φ)
a69a70a26
u(r,θ,φ) =
∞summationdisplay
n=1
∞summationdisplay
l=0
lsummationdisplay
m=?l
cnlm jl(knlr)Yml (θ,φ),
a115a116a117a13a14a15a16a26a65a91a10
?k2nlcnlm
integraldisplay 1
0
j2l (knlr)r2dr =
integraldisplay 1
0
jl(knlr)r2dr
integraldisplayintegraldisplay
Ym?l (θ,φ)f(r,θ,φ)sinθdθdφ,
a118a119
a95 Bessela52a22a11a60a120a121a3a104a122
a47a26a66a67a4a91
integraldisplay 1
0
j2l (knlr)r2dr = pi2k
nl
integraldisplay 1
0
J2l+1/2(knlr)rdr
= pi4k
nl
bracketleftbigJprime
l+1/2(knl)
bracketrightbig2
= 12bracketleftbigjprimel(knl)bracketrightbig2,
a123a67
cnlm = ? 2
k2nl bracketleftbigjprimel(knl)bracketrightbig2
integraldisplay 1
0
jl(knlr)r2dr
integraldisplayintegraldisplay
Ym?l (θ,φ)f(r,θ,φ)sinθdθdφ.
? a124a4a32a50a51a52a22a125a26a126a127a128a10a129a130a131a255a0a1a2a26a132a133a124a134a105a10a95a135a136a21a125a5a137a11a138a139a1a2a254
a3a0a1a2a6
a7a140a26a65a141a142a129a32u(r,θ,φ)a56a57a58a7a143
a255a0a1a2a6
? a7a144a32a145a11a146a99a17a147a129a54a48a10a148a149a11a50a51a52a22a150a26a118a50a151a152a54a153a154a4a32a12a13a14a15a16a6
? a7a17a67a155a156a129a18a157a158a22a69a70a112a115a159a11a6
? a160
a114a11
a122
a47a97a161a162a35a68R
lm(r)
a56a41
a95Bessela52a22jl(knlr)a69a70a6
? a7a144a163a145a56a3a164a165a166a167a53a149a128a35a151a168a125a169a11a170a60a61a62a26a110a171a172a54a4a161a173a11a50a51a74a61a62a3a32a26
a174a175a172a54a4 0a151a17a50a51a74
a6
a67a176a11a163a145a26a162a113a66a67a15a177a178a179a180a10a92a181a182a183a39a184a11a185a186a187a188a26a189a190a186a191a44a176a11a18a60a187a188
a6