Wu Chong-shi
a0a1a2a3 a4a5a6a7a8 (
a9)
§17.1 a10a11a12a13a14a15a16a17a18a19 (a20)
a21a22a23a24a25 a26a27a28a29a30a31a32a33a34a35a36a37
a38u(x,t) = v(x,t) + w(x,t)
a39
a40
?2u
?t2 ?a
2?
2u
?x2 = f(x,t)
uvextendsinglevextendsinglex=0 = 0 uvextendsinglevextendsinglex=l = 0
uvextendsinglevextendsinglet=0 = 0 ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0
=
?2v
?t2 ?a
2 ?
2v
?x2 = f(x,t)
vvextendsinglevextendsinglex=0 = 0 vvextendsinglevextendsinglex=l = 0
+
?2w
?t2 ?a
2?
2w
?x2 = 0
wvextendsinglevextendsinglex=0 = 0 wvextendsinglevextendsinglex=l = 0
wvextendsinglevextendsinglet=0 = ?vvextendsinglevextendsinglet=0 ?w?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= ??v?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
a41a42a43a44a45a46a47a48 f(x,t)
a49a50a51a52a53a54a55a39a56a57a58a59
a45a46a47a43a44
a49a60a61a39a62a63a57a64a65
a66a67
a49a61a68a69
a21a22a23a24a70
a71a72a73a74a75a76a77a78a79a80a81a82a83a84a85{X
n(x), n = 1,2,3,···}a39
a86a87a88a89a22a90a91a92a93a94a95a96
a39
a97
a98
a39a99a100a101a102a103 u(x,t)a104a105a106a107a108a109a110a105a106a107a111 f(x,t)a112a113
a82a83a84a85a114a115
u(x,t) =
∞summationdisplay
n=1
Tn(t)Xn(x),
f(x,t) =
∞summationdisplay
n=1
gn(t)Xn(x),
a116a117a118a76a77a119a120T
n(t)a121a100a69a122a123Tn(t)
a75a80a124a84a85
a39
a125a126a127
a110
a75a128a129a130
a108a109 (a81)a39
a131
a100a132a133
a119
a103
a134a129a130
a108a109a135a136a137a138a69
a82a83a84a85a81{X
n(x)}a110a139a140a141
a142
a137a138a110a143
a77a75
a139a144{Xn(x)}a145a146a147a106a107a148a103a149a150a110
a82a83a84a85
a39
a121
a126a127
a122a106a107
a134a129a130
a108a109a151a106a107a152a153a154a155
?2u
?t2 ?a
2?2u
?x2 = 0, 0 < x < l, t > 0,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, t ≥ 0
a130a156a157a158a159
a136
a79
a110
a82a83a160
a149a150
Xprimeprimen(x) + λnXn(x) = 0,
Xn(0) = 0, Xn(l) = 0.
Wu Chong-shi
§17.1 a161a162a163a164a165a166a167a168a169a170 (a171) a1722a173
a174u(x,t)
a151f(x,t)a110
a114a115a175
a151a176a177
a134a129a130
a108a109a39a178a179a111
a129a180
a39
∞summationdisplay
n=1
Tprimeprimen(t)Xn(x) ?a2
∞summationdisplay
n=1
Tn(t)Xprimeprimen(x) =
∞summationdisplay
n=1
gn(t)Xn(x).
a181a182X
n(x) a183
a126a127
a110
a128a129a130
a108a109a39a184a185a186
∞summationdisplay
n=1
Tprimeprimen(t)Xn(x) + a2
∞summationdisplay
n=1
λnTn(t)Xn(x) =
∞summationdisplay
n=1
gn(t)Xn(x).
a118a187a188a82a83a84a85
a110a189a190a191a39a99a136
a79 T
n(t)a183
a126a127
a110
a128a129a130
a108a109
Tprimeprimen(t) + λna2Tn(t) = gn(t).
a192a193
a39a102u(x,t)a110
a114a115a175
a176a177a194a195a154a155a39a196a100a136
a79
∞summationdisplay
n=1
Tn(0)Xn(x) = 0,
∞summationdisplay
n=1
Tprimen(0)Xn(0) = 0.
a187a188a82a83a84a85
a110a189a190a191a39a121a132a197
a120
Tn(0) = 0, Tprimen(0) = 0.
a182
a103a105a106a107
a128a129a130
a108a109a110
a128a85a157a198a77
a39a199a200
a182 Laplacea157a201
a39a99a100a101
a119a120
Tn(t) = lnpia
integraldisplay t
0
gn(τ)sin npil a(t?τ)dτ.
a202a203
a103
a77
a39a204a145a113a146a147a106a107a149a150a110
a82a83a84a85a114a115a77
a69
a118a182a202a203
a108
a77a119
a103a205 16.2
a71
a110a148a103a149a150
?2u
?t2 ?a
2?2u
?x2 = A0 sinωt, 0 < x < l, t > 0,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, t ≥ 0,
uvextendsinglevextendsinglet=0 = 0, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤ x ≤ l.
a23
a146a147a106a107a149a150a110
a82a83a84a85a206a207 15.1
a208
a71a209a120
a39a210a211a100
a76
u(x,t) =
∞summationdisplay
n=1
Tn(t)sin npil x,
a102a105a106a107a111 A0 sinωta196a113
a202a80a81a82a83a84a85a114a115
a39
A0 sinωt = 2A0pi
∞summationdisplay
n=1
1 ? (?1)n
n sin
npi
l xsinωt,
a176a177a108a109a151a194a195a154a155a39a99a136
a79
Tprimeprime(t) +
parenleftBignpi
l a
parenrightBig2
Tn(t) = 2A0pi 1 ? (?1)
n
n sinωt,
T(0) = 0, Tprime(0) = 0.
a103a212a121a136
Tn(t) = 2A0l
2
pi
1 ? (?1)n
n
1
(npia)2 ? (ωl)2 sinωt
Wu Chong-shi
a213a214a215a216 a217a218a219a220a221 (
a222) a1723a173
?2A0ωl
3
pi2a
1 ? (?1)n
n2
1
(npia)2 ? (ωl)2 sin
npi
l at.
a210a211a184a100a101
a119a120
a205 16.3a110a223
a80a203a224a175
a110a103
u(x,t) = 4A0l
2
pi
∞summationdisplay
n=0
1
2n + 1
1
[(2n + 1)pia]2 ? (ωl)2 sin
2n + 1
l pix sinωt
? 4A0ωl
3
pi2a
∞summationdisplay
n=0
bracketleftbigg 1
(2n + 1)2
1
[(2n + 1)pia]2 ? (ωl)2 sin
2n + 1
l pix sin
2n + 1
l piat
bracketrightbigg
.
a225
a123a226a148a149a150a39a205a227a39 Poissona108a109a110a228
a80a229
a152
a160
a149a150
?2u
?x2 +
?2u
?xy2 = f(x,y), 0 < x < a, 0 < y < b,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=a = 0, 0 ≤ y ≤ b,
uvextendsinglevextendsingley=0 = 0, uvextendsinglevextendsingley=b = 0, 0 ≤ x ≤ a,
a230a116
a196a100
a182
a113a146a147a106a107a149a150
a82a83a84a85a114a115
a110a231
a77a119
a103a69a205a227a39a100
a76
u(x,y) =
∞summationdisplay
n=1
Yn(y)sin npia x,
f(x,y) =
∞summationdisplay
n=1
gn(y)sin npia x.
a176a177a108a109a151a152a153a154a155a39a100a136
Y primeprimen (y) ?
parenleftBignpi
a
parenrightBig2
Yn(y) = gn(y),
Yn(0) = 0, Yn(b) = 0,
a119a120Y
n(y)a39a196a99
a209a120a232
a103 u(x,y)a69a233a234a235a236a237a39a196a100a101
a76
u(x,y) =
∞summationdisplay
m=1
Xm(x)sin mpib y,
f(x,y) =
∞summationdisplay
m=1
hm(x)sin mpib y,
a159a117
a197
a120X
m(x)
a126a127
a110a105a106a107
a128a129a130
a108a109a152
a160
a149a150
Xprimeprimem(x) ?
parenleftBigmpi
b
parenrightBig2
Xm(x) = hm(x),
Xm(0) = 0, Xm(a) = 0,
a119a120X
m(x) a121a100a69
a238a239a240a241
a68a242a243a244a245a246a247a69a248a249a49a250a251a252
a45a46a47a48 g
n(y) a253 hm(x) a49a254a255a50a51a63a0a250
a251a39a1a2a3a4a5 Yn(y)a253Xm(x) a49
a45a46a47a239a6a7a8a9a43a44a10
a243a11
a6a12a13
a5a58a61a69
Wu Chong-shi
§17.1 a161a162a163a164a165a166a167a168a169a170 (a171) a1724a173
a14
a100a101a15a16a17a18
a80a19
a110a143
a77
a39a121a102 u(x,y) a151 f(x,y) a192a20a21a113
a82a83a84a85 {X
n(x)} a22a184a113
a82a83a84a85
{Ym(y)}a114a115 (a145a23a24a25
a85)
u(x,y) =
∞summationdisplay
n=1
∞summationdisplay
m=1
cnm sin npia xsin mpib y,
f(x,y) =
∞summationdisplay
n=1
∞summationdisplay
m=1
dnm sin npia xsin mpib y,
a114a115a26a85c
nm a27
a119
a69a210a145f(x,y)a75a206a28a84a85a39a183a101 cnm a196
a75a206a28
a110a69
a207a29
a23a24a25
a85a114a115a20
a39
a230a116
a206a30
a15a16
a232
a152a153a154a155a69a102a31a32a110
a114a115a175
a176a177a108a109a39a121a136
?
∞summationdisplay
n=1
∞summationdisplay
m=1
cnm
bracketleftbiggparenleftBignpi
a
parenrightBig2
+
parenleftBigmpi
b
parenrightBig2bracketrightbigg
sin npia xsin mpib y =
∞summationdisplay
n=1
∞summationdisplay
m=1
dnm sin npia xsin mpib y.
a187a188a82a83a84a85
a110a189a190a191a39a133a33
a26a85
a39a121a136
?cnm
bracketleftbiggparenleftBignpi
a
parenrightBig2
+
parenleftBigmpi
b
parenrightBig2bracketrightbigg
= dnm.
a123
a75
cnm = ? dnmparenleftBignpi
a
parenrightBig2
+
parenleftBigmpi
b
parenrightBig2.
a142a117
a39
a119
a136a103
u(x,y) = ?
∞summationdisplay
n=1
∞summationdisplay
m=1
dnmparenleftBig
npi
a
parenrightBig2
+
parenleftBigmpi
b
parenrightBig2 sin npia xsin mpib y.
a202a203
a143
a77
a110a34a35
a75
a233a234a36a37
a232a119
a103a105a106a107
a128a129a130
a108a109a69
Wu Chong-shi
a213a214a215a216 a217a218a219a220a221 (
a222) a1725a173
§17.2 a38a39a40a41a42a43a44a15a39a40a45
a46a47a48a49a50
a39a51a52a3a53a54a55a56
a10a57
a249a243a11a58
a9a59a60a61a62
a65a5a54a63a64a65a255a22a1a2a66a67a252
a45a46a47
a49a57a68a39a69a70a71a252a249a58
a59a60a61a62
a252
a46a47
a49a69
a49a72a73a59a60a61a62a74a75
a252
a46a47
a49a76
? a45a46a47a59a60a61a62a250a0a9a77a78a79
? a80a243a81a82
a46a47a43a44
a253
a46a47a59a60a61a62
a49a60a61a63a64a83a84a85a86a0a81a82
a46a47a43a44
a253
a46a47a59a60a61a62
? a87a88a89a90a49a91a1a92a93
a46
a90a94a254a255a49a95a96a97
a45a46a47a59a60a61a62a41a98a99a100
a76
a101
a101a102a103a108a109a110a148a103a149a150a145a205a69
a145
a232a104a120
a105a106a107a152a153a154a155a110a35a105a39a106a148a108a109a151a194a195a154a155a107
a75
a106a107a110a69
?2u
?t2 ?a
2?2u
?x2 = 0, 0 < x < l, t > 0,
uvextendsinglevextendsinglex=0 = μ(t), uvextendsinglevextendsinglex=l = ν(t), t ≥ 0,
uvextendsinglevextendsinglet=0 = 0, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤ x ≤ l.
a145
a232
a147
a182a130a156a157a158a77
a39a108a109a139a144a39
a86a131a110
a102a105a106a107a152a153a154a155a106a107a185a39a121a111
u(x,t) = v(x,t) + w(x,t),
a112a230
a139a144v(x,t) a39a113a212
a126a127
v(x,t)vextendsinglevextendsinglex=0 = μ(t), v(x,t)vextendsinglevextendsinglex=l = ν(t).
a202a193
a39w(x,t)
a230a116
a99
a80
a148
a126a127
a106a107a152a153a154a155
w(x,t)vextendsinglevextendsinglex=0 = 0, w(x,t)vextendsinglevextendsinglex=l = 0.
a80a114a115
a135a39 w(x,t) a183
a126a127
a110a108a109a151a194a195a154a155a107a102
a75
a105a106a107a110a39
?2w
?t2 ?a
2?2w
?x2 = ?
parenleftbigg?2v
?t2 ?a
2 ?2v
?x2
parenrightbigg
,
wvextendsinglevextendsinglet=0 = ?vvextendsinglevextendsinglet=0, ?w?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= ? ?v?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
.
a116a182
a228 16.2a208a199
a82a117
a228 1a208a110a231
a77
a39a99a100a101
a119a120 w(x,t)
a39a196a99
a209a120a232
a103 u(x,t) a69
star a118a119a120a121
a35a36a37a91a92 v(x,t)
a76
a210a145a122
a87a119 v(x,t) a126a127
a152a153a154a155
v(x,t)vextendsinglevextendsinglex=0 = μ(t), v(x,t)vextendsinglevextendsinglex=l = ν(t),
a183a101
a131
a146
a230a123
a110a139a144a124a237a69
Wu Chong-shi
§17.2 a125a126a127a128a129a130a131a166a126a127a132 a1726a173
a227a133
a174t
a134a186
a75a135a85
a39
a202
a99
a86a87a119a207(x,y)
a136a32a31a110a137a138y = v(x,t) a139a140
a209
a148a110a141a142(0,μ(t))
a151(l,ν(t))a121a100a69
a205a227a39a100a140a143a138
v(x,t) = A(t)x + B(t),
a176a177a152a153a154a155a39a121a100a148
a120
B(t) = μ(t), A(t) = 1lbracketleftbigν(t) ?μ(t)bracketrightbig.
a196a100a140a144a145a138
v(x,t) = A(t)x2 + B(t),
A(t) = 1l2bracketleftbigν(t) ?μ(t)bracketrightbig, B(t) = μ(t), a199
v(x,t) = A(t)(l ?x)2 + B(t)x2,
A(t) = 1l2μ(t), B(t) = 1l2ν(t).
a146 17.1 a119
a103a148a103a149a150
?u
?t ?κ
?2u
?x2 = 0, 0 < x < l, t > 0,
uvextendsinglevextendsinglex=0 = Asinωt, uvextendsinglevextendsinglex=l = 0, t ≥ 0,
uvextendsinglevextendsinglet=0 = 0, 0 ≤ x ≤ l.
a23
a15a16
a79
a105a106a107a152a153a154a155a110a147a148
a224a175
a39a100
a76
a106a107a185
a84a85
a145
v(x,t) = A
parenleftBig
1? xl
parenrightBig
sinωt.
a123
a75
a111
u(x,t) = A
parenleftBig
1 ? xl
parenrightBig
sinωt + w(x,t),
a149w(x,t) a126a127
a148a103a149a150
?w
?t ?κ
?2w
?x2 = ?Aω
parenleftBig
1 ? xl
parenrightBig
cosωt, 0 < x < l, t > 0,
wvextendsinglevextendsinglex=0 = 0, wvextendsinglevextendsinglex=l = 0, t ≥ 0,
wvextendsinglevextendsinglet=0 = 0, 0 ≤ x ≤ l.
a102w(x,t) a151a108a109a110a105a106a107a111 1 ?x/la107a113a146a147a106a107a149a150a110
a82a83a84a85a114a115
a39
a131
w(x,t) =
∞summationdisplay
n=1
Tn(t)sin npil x, 1 ? xl =
∞summationdisplay
n=1
2
npi sin
npi
l x.
a187a188T
n(t)a183a147a150
a126a127
a105a106a107
a80a151a128a129a130
a108a109 Tprimen(t) + κ
parenleftBignpi
l
parenrightBig2
Tn(t) = ?2Aωnpi cosωt
a194a195a154a155 Tn(0) = 0,
a152a198a119a120
Tn(t) = 2Aωl
2
npi
1
κ2(npi)4 + ω2l4
braceleftbigg
κ(npi)2 exp
bracketleftBig
?
parenleftBignpi
l
parenrightBig2
κt
bracketrightBig
?κ(npi)2 cosωt?ωl2 sinωt
bracerightbigg
.
a202a193
a99
a119
a136
a232 w(x,t)
a39
a118
a176a153a154a39a99a136
a79
a148a103a149a150a110a103 u(x,t) a69
Wu Chong-shi
a213a214a215a216 a217a218a219a220a221 (
a222) a1727a173
a155a156
a250a251a49
a46a47a157
a254a255v(x,t)a39
a158a159
a49w(x,t)a49a54a61a55a56a160
a161a162
a62a250a251a39a58
a159
a49 w(x,t)
a162
a62a250a251a69a87a252a39a54a61a55a56a49a61a49a163a3a164a11a97a39a62a165a166a52a88a167a168
a159
a49u(x,t)a11a54a252a169a251
a49a39a170a171a172a173a51a49a50a51a63a0a243a174a250a251a69
a202a193
a99a100a101a175
a120a80a176
a17a177a110
a87a119
a141a139a144a178
a112
a110a106a107a185
a84a85 v(x,t)
a39a113 w(x,t) a183
a126a127
a110a148a103a149a150a179
a100a132a137a138a180a69
a142
a105
a74
a110a181a182a39
a230a116
a99
a75
a141a183a184a185a135 u(x,t) a110a108a109
a75
a183
a75
a106a107a110a39
a142a186 w(x,t)
a110a108
a109
a75
a106a107a110a69a99a31a32a110a148a103a149a150
a159a187
a39
a202a188a189a190a87a119
a106a107a185
a84a85 v(x,t)
a196
a75
a108a109a110a103a39
?2v
?t2 ?a
2 ?2v
?x2 = 0.
a225
a123a191a180a192a193a110 μ(t) a151ν(t)a39
a75
a100a101a143
a79a202a80
a142a110a69
a183a184a185a135a110a108a109
a75
a183
a75
a106a107a110a39a194a195
a174a202a203
a108
a77
a107a204a145
a102a108a109a151a152a153a154a155
a192a20
a106a107a185a69
a146 17.2 a119
a103a148a103a149a150
?2u
?t2 ?a
2?2u
?x2 = 0, 0 < x < l, t > 0,
uvextendsinglevextendsinglex=0 = 0, ?u?x
vextendsinglevextendsingle
vextendsinglevextendsingle
x=l
= Asinωt, t ≥ 0,
uvextendsinglevextendsinglet=0 = 0, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤ x ≤ l.
a23 a196a207
a99a197a198
a78a79a80a176
a106a107a185
a84a85
a39a102a108a109a151a152a153a154a155
a192a20
a106a107a185a69
a145a211a39
a76u(x,t) = v(x,t) +w(x,t)
a39a15a16
a79
a105a106a107a152a153a154a155a110a147a148
a84a85a224a175
a39a100a140a106a107a185
a84a85
v(x,t) a145
v(x,t) = f(x)sinωt,
a159f(x)a75a199a200a128a129a130
a108a109a152
a160
a149a150
fprimeprime(x) +
parenleftBigω
a
parenrightBig2
f(x) = 0,
f(0) = 0, fprime(l) = A
a110a103a39
f(x) = Aaω 1
cos ωla
sin ωax.
w(x,t) a183
a126a127
a110a148a103a149a150
a75
?2w
?t2 ?a
2?2w
?x2 = 0, 0 < x < l, t > 0,
wvextendsinglevextendsinglex=0 = 0, ?w?x
vextendsinglevextendsingle
vextendsinglevextendsingle
x=l
= 0, t ≥ 0,
Wu Chong-shi
§17.2 a125a126a127a128a129a130a131a166a126a127a132 a1728a173
wvextendsinglevextendsinglet=0 = 0, ?w?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= ? Aa
cos ωla
sin ωax, 0 ≤ x ≤ l.
a201a80a114
a103a145
w(x,t) =
∞summationdisplay
n=0
parenleftbigg
Cn sin 2n + 12l piat + Dn cos 2n+ 12l piat
parenrightbigg
sin 2n + 12l pix.
a187a188
a194a195a154a155a39a100a101a148
a120
Cn = ? 4A
picos ωla
1
2n+ 1
integraldisplay l
0
sin ωaxsin 2n + 12l pixdx
= (?)n 4Aω(2n + 1)pia 1parenleftBigω
a
parenrightBig2
?
parenleftbigg2n + 1
2l pi
parenrightbigg2,
Dn = 0.
a102
a202a193a119
a136a110 v(x,t) a151w(x,t) a146a202a39a99
a142a117a209a120a232
a103 u(x,t)a69