Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10 a111
a12
a13a14a15 a16a17a18a19a20a21a22a23
§10.1 a24a25a26a27
a28a29a30a31 a32a33a34 G
a35a36a37 C a38a39a40a41a42a43a35a44a45a46a47a48a49a50a51a52a53a54a55a56a57a58a59
bk, k = 1,2,3,···,n a60a61a62a63 f(z) a64 G a65a45a66a67a68a61a64 G a69a70a71a61a72a64 C a73a74a53 f(z) a35a58
a59a61a75
contintegraldisplay
C
f(z)dz = 2pii
nsummationdisplay
k=1
resf(bk).
resf(bk) a76a38 f(z) a64 bk
a77
a35a78a63a61a79a80a81 f(z) a64 bk a35a82
a34
a65Laurent a83a84a69(z ?bk)?1 a35a85a63
a(k)?1 a50
a8610.1
a87a88a89a90
a91 a92a93 10.1
a61a94a95a96a55a58a59bk
a97
a46a47a48a49γk a61a98γk
a99
a64G a65a61a72a100a101a102a103a61a75a104a105a106
a70a107
a33a34 Cauchy
a108a109a110a62a63
a97
Laurenta83a84a111a35a85a63a112a113a61a114a53contintegraldisplay
C
f(z)dz =
nsummationdisplay
k=1
contintegraldisplay
γk
f(z)dz
= 2pii
nsummationdisplay
k=1
a(k)?1
= 2pii
nsummationdisplay
k=1
resf(bk). square
a115a116a117a118a119a120a121a122
a61a123a124a125
a116a126a127a128a129a130a131a132
a125
a116a133a127a128a134a126a135a136a137a138a139a140
a50a141a142
a143a144
a123a124a125
a116a126a127a128a129a130a131
a61a145a146
a143a144a147
a125
a116a133a127a128a134a135a136a148a126a115a116
a50
star a149f(z)a64a58a59b
a77
a35a78a63a61
a150
a75a73a151a61a114a152a149f(z)a64z = ba35a82
a34
a65Laurenta83a84a69(z?b)?1
a153
a35a85a63a50
star a64a154a59a35a155a156a157a61a158a159a107a160a161a162a163a164a149a78a63a50
Wu Chong-shi
§10.1 a3a4a5a6 a112a12
star a165a166a167a168a169a170a171
a32b
a59a152f(z)a35a39a172a154a59a61a75a64ba59a35a82
a34
a65a61
f(z) = a?1(z ?b)?1 + a0 + a1(z ?b) + a2(z ?b)2 +···.
a159(z ?b)a173a83a84a113a174a175a61
(z ?b)f(z) = a?1 + a0(z ?b) + a1(z ?b)2 + a2(z ?b)3 +···.
a176
a159
a?1 = lim
z→b
(z ?b)f(z).
star a177a178a179a180a35a155a156a152f(z) a158a159a181a182a38P(z)/Q(z)a61P(z)a183Q(z)
a99
a64ba59a110a184a82
a34
a65a67a68a61b
a152Q(z)a35a39a172a185a59a61Q(b) = 0a61Qprime(z) negationslash= 0a61P(b) negationslash= 0a61a75
a?1 = lim
z→b
(z ?b)f(z) = lim
z→b
(z ?b)P(z)Q(z) = P(b)Qprime(b).
a186 10.1
a149
1
z2 + 1 a64a58a59a77a35a78a63a50
a187 z = ±i
a152a79a35a39a172a154a59a50
resf(±i) = 12z
vextendsinglevextendsingle
vextendsingle
z=±i
= ?i2.
a186 10.2
a149
eiaz ?eibz
z2 a64a58a59a77a35a78a63a50
a187 z = 0
a152a79a35a39a172a154a59a50
resf(0) = limz→0z · e
iaz ?eibz
z2 . = limz→0
eiaz ?eibz
z = i(a?b).
star a188a166a167a168a169a170a171
a32z = b
a152f(z)a35ma172a154a59a61m ≥ 2a61
f(z) = a?m(z ?b)?m + a?m+1(z ?b)?(m?1) +···+ a?1(z ?b)?1 + a0 + a1(z ?b) +···.
a174a175a173a73 (z ?b)m a61
(z ?b)mf(z) = a?m + a?m+1(z ?b) +···+ a?1(z ?b)m?1 + a0(z ?b)m + a1(z ?b)m+1 +···.
a189
a111a?1 a152(z ?b)mf(z)a35a83a84a113a69(z ?b)m?1 a153a35a85a63a61a190
a?1 = 1(m?1)! d
m?1
dzm?1(z ?b)
mf(z)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=b
.
a186 10.3
a1491/(z2 + 1)3 a64a58a59
a77
a35a78a63a50
a187 z = ±i
a152a79a35a191a172a154a59a50
resf(±i) = 12! d
2
dz2(z ?i)
3 · 1
(z2 + 1)3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=±i
= 12! d
2
dz2
1
(z ±i)3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=±i
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10 a113
a12
= 12!(?3)(?4)(z±i)?5
vextendsinglevextendsingle
vextendsinglevextendsingle
z=±i
= ? 316i.
star a192
a29a193∞
a168a169
a28a29
a194
a81∞a59a61a108a195
resf(∞) = 12pii
contintegraldisplay
Cprime
f(z)dz,
a189a196
a35Cprime a152a95∞a59a197a198(a199a114a152a200a111a201a202a198) a39a203a35a94a204a61a64a94a204a65a52 ∞a59a158a205a152f(z)a35a58a59
a60a178a206a58a59a50
star resf(∞)a207a101a152f(z)a64∞a82
a34
a65Laurenta83a84a69z1 a153a35a85a63a50
resf(∞) = 12pii
contintegraldisplay
Cprime
f(z)dz = ? 12pii
contintegraldisplay
C
f
parenleftbigg1
t
parenrightbigg dt
t2
=? 1t2f
parenleftbigg1
t
parenrightbigg
a64t = 0a59a82
a34
a65a208a209a63a83a84a69t?1a153a35a85a63
=?f
parenleftbigg1
t
parenrightbigg
a64t = 0a59a82
a34
a65a208a209a63a83a84a69t1a153a35a85a63
=?f(z)a64z = ∞a59a82
a34
a65a208a209a63a83a84a69z?1a153a35a85a63a50
star a189a55a210a211a183a53a54a212
a77
a101a213a214
a77a215
1. a216a217a218a219a220a61a125
a116f(z)a133∞a136a126a115a116
a61a221a222f(z)
a133∞a136a223a224a134a225a226a116a227a228a229z?1
a230
a126
a231a116a232a233?1
a61a234a235a236a142
a237a238a239a240
a50
2. a216a241a242a219a220a61a243a222z?1 a230a244a245a222f(z) a133∞a136a223a224a134a225a226a116a227a228a246a126a247a248a249a130a61a250a251a61a252
a253∞a136a254
a244f(z)
a126a135a136
a61resf(∞)a255a0
a233a254
a141 0a50
a1a2
a61a252
a253∞a136
a244f(z)
a126a135a136
a61
a3a4
a244a237a5
a6a136
a61a255a0
a233
a141 0a50
star a28a29a169a7a8 a9
a31
a192
a29
a169a10a11a11a12a50
a13
a50a14a62a63
f(z) = 1(z ?1)(z ?2)(z?3)
a15
a40a40a113a50
1
(z ?1)(z ?2)(z ?3) =
A
z ?1 +
B
z?2 +
C
z ?3.
a191a55a16a108a179a63a61A, Ba183C a61a197a17a114a152a62a63f(z)a64a39a172a154a59z = 1, z = 2a183z = 3a59
a77
a35a78a63a50
a18a19
A = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=1
= 12,
Wu Chong-shi
§10.1 a3a4a5a6 a114a12
B = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=2
= ?1,
C = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=3
= 12.
a92
a211a62a63f(z)a20a53a21a172a154a59a61a199a158a159a22a23a24
a77
a109a50
a13a92
a61
1
(z ?1)2(z ?2)(z ?3) =
A
(z ?1)2 +
B
z ?1 +
C
z?2 +
D
z ?3.
a25a26a27a28
A = res 1(z ?1)(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=1
= 12,
B = res 1(z ?1)2(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=1
= 34,
C = res 1(z ?1)2(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=2
= ?1,
D = res 1(z ?1)2(z ?2)(z ?3)
vextendsinglevextendsingle
vextendsinglevextendsingle
z=3
= 14.
star a28a29a169a7a8 a29a30
a30a31
a11a50
a78a63a108a109a32a94a204a33a40a35a163a164a34a35a38a78a63a35a163a164a61
a36a37
a205a32a108a33a40a183a39a108a67a68a62a63a35a94a204a33a40
a38
a85a39a40a61a114a53a158a205a41a42a44a43a24a163a164
a28a189a44
a108a33a40a50
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10 a115
a12
§10.2 a45a27a46a47a48a25a49a50a51
a53a109a191a52a62a63a35a33a40a35a53a113a152
I =
integraldisplay 2pi
0
R(sinθ,cosθ)dθ,
a184a69Ra152sinθ, cosθa35a53a109a62a63a61a64a33a40
a33a54
a73a152a70a71a35a50
a97a55a56
z = eiθ a61a75
sinθ = z
2 ?1
2iz , cosθ =
z2 + 1
2z , dθ =
dz
iz ,
a57a58
a35a33a40a59a60a75
a55
a38 z a61a62a73a35a45a63a64a35a64a203|z| = 1a50a81a152a61
I =
contintegraldisplay
|z|=1
R
parenleftbiggz2 ?1
2iz ,
z2 + 1
2z
parenrightbigg dz
iz = 2pi
summationdisplay
|z|<1
res
braceleftbigg1
zR
parenleftbiggz2 ?1
2iz ,
z2 + 1
2z
parenrightbiggbracerightbigg
.
a53a109a191a52a62a63R(sinθ,cosθ)a64a33a40
a33a54[0,2pi]
a73a70a71a61a114a65a66a67a53a109a62a63R
parenleftbiggz2 ?1
2iz ,
z2 + 1
2z
parenrightbigg
a64a45a63a64a35a64a203a73a206a58a59a50
a186 10.4
a163a164a33a40 I =
integraldisplay 2pi
0
1
1 + εcosθdθ, |ε| < 1a50
a187 a68a69
a73a62a35a202a70a71a72a61a73a74a53
I =
integraldisplay 2pi
0
1
1 + εcosθdθ =
contintegraldisplay
|z|=1
1
1 + εz
2 + 1
2z
dz
iz
=
contintegraldisplay
|z|=1
2
εz2 + 2z + ε
dz
i = 2pi
summationdisplay
|z|<1
res
braceleftbigg 2
εz2 + 2z + ε
bracerightbigg
= 2pi· 22εz + 2
vextendsinglevextendsingle
vextendsinglevextendsingle
z=(?1+√1?ε2)/ε
= 2pi√1?ε2.
a163a164a78a63a111a61a75a76a62a63 2/(εz2 + 2z + ε)a53a174a55a154a59a61
z = ?1±
√1?ε2
ε ,
a77a78
a81a79a74a35a173a33a38 1a61
a176
a159a39a108
a36
a53a39a55a154a59a61 z = (?1 +√1?ε2)/εa61
a77
a81a45a63a64a65a50
Wu Chong-shi
§10.3 a79a80a81a82
a116
a12
§10.3 a83a84a50a51
a206a85a33a40a35a108a195a38 integraldisplay
∞
?∞
f(x)dx = limR
1 →+∞R
2 →+∞
integraldisplay R2
?R1
f(x)dx.
a53a111
a189a86
a154a54a101a87a64a61
a77
limR→+∞
integraldisplay R
?R
f(x)dxa87a64a61a76a38a33a40a88a66a61a89a38
v.p.
integraldisplay ∞
?∞
f(x)dx = lim
R→+∞
integraldisplay R
?R
f(x)dx.
a90a91
a61a92
a189
a174
a86
a154a54a93a87a64a111a61a79a74a94a108
a57
a80a50
a64a106a61a62a73
a27
a61a33a40 integraldisplay
∞
?∞
f(x)dx
a152a95a96a97a98a99a100a35a61a207a101a101a102a106
a55
a62a63a35a94a204a33a40a50
? a73a74a158a159
a25a26
a24a14a97a62a63 f(x)a103a104a38a106a62a63f(z)
? a38a67a205a101a102a94a204a33a40a207
a58a105
a78a63a108a109a163a164a61a106a94a107
a215
(1) a108a73a109a92a35a33a40a59a60a110a53a102a46a47a94a204a61a163a164
contintegraldisplay
f(z)dza111
(2) a64a108a73a35a59a60a73a35a33a40a61a112a113a114
a176a37
a149a163a164a35a206a85a33a40a115a116
a57a117
a61a112a113a158a159a44a45a202a43a24
a163a164
a28
a40a50
a118a119a91
a35a120a70a92
a91
a152a108a73a159
a150
a59a38a64a121a61 Ra38a122a60a35a73a122a64CR a61contintegraldisplay
C
f(z)dz =
integraldisplay R
?R
f(z)dz +
integraldisplay
CR
f(z)dz.
a86 10.2
a110a123a124R → ∞a50
a189a125
a61a73a74a43a126
a37
a163a164
integraldisplay
CR
f(z)dz a35a154a54a66a50
a36a37f(z)
a127a128a109a92a35a129a130a61
a189
a152a158a159a120a131a35a50
a101a132a133
a32
a62a63f(z)a127a128a157a134a129a130
a215
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10 a117
a12
1. f(z)a64a73a122a61a62a52a67a53a54a55a56a57a58a59a60a152
a77a77
a67a68a35a61a64a97a98a73a74a53a58a59a111
2. a640 ≤ argz ≤ pia135a94a65a61a92|z|→∞a111a61zf(z)a39a136a24a137a81 0a61
a138a194
a81a139a140a35ε > 0a61a87a64
M(ε) > 0a61a98a92 |z|≥ M a610 ≤ argz ≤ pia111a61|zf(z)| < εa50
a234a141
a238a142a143a144
a254a145a146
a50a1471
a238a142a143a148a149
a142
a150a151a126a152a153a129a130a254
a244a154
a129a130
a61
a144a155
a0
a233a156a157
a115a116a117a118a143a144a127a128a129a130
contintegraldisplay
C
f(z)dz =
integraldisplay R
?R
f(z)dz +
integraldisplay
CR
f(z)dz = 2pii
summationdisplay
a219a158a159a160
resf(z).
a1472a238a142a143a61a161a162a244a163a141a152a153a164a165a129a130a126a166a167a142a143
limx→±∞xf(x) = 0
a126a168a169a170a171
a61a172a173a61a174a175a176
a118 3.2
a61a177
a148a149
a142
lim
R→∞
integraldisplay
CR
f(z)dz = 0.
a178
a154a54R →∞a61a114a179a131 integraldisplay
∞
?∞
f(x)dx = 2pii
summationdisplay
a73a122a61a62
resf(z).
a186 10.5
a163a164a108a33a40I =
integraldisplay ∞
?∞
dx
(1 + x2)3 a50
a187 a19
a111
a90a91a180
a47a73a181
a37
a149a35a129a130a61a190
I =
integraldisplay ∞
?∞
dx
(1 + x2)3 = 2pii·res
1
(1 + z2)3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=i
=2pii·
parenleftbigg
?3i16
parenrightbigg
= 38pi.
a118
a123a61a38a67
a194a58a105
a78a63a108a109a163a164a108a33a40a35a182a183a184a185a53a39a55a41a42a186a187a35a109a67a61a101a132a188a189a106a39a157
a190
a62a35a191a181
a215
a38a67a205a192
a58a105
a78a63a108a109a163a164a206a85a33a40a61a73a74a94a107
a215
1. a108a73a109a92a35a33a40a59a60a110a53a102a46a47a94a204a61a163a164
contintegraldisplay
f(z)dza111
2. a64a108a73a35a59a60a73a35a33a40a61a112a113a114
a176a37
a149a163a164a35a206a85a33a40a115a116
a57a117
a61
a112a113a158a159a44a45a202a43a24a163a164
a28
a40a50
Wu Chong-shi
§10.3 a79a80a81a82
a118
a12
a182a81
a189a125
a35a109a67a61a114a158a159a193a194a195a196a24a197
a105
a78a63a108a109a163a164a108a33a40a50
star a198a218
a244f(x)
a199a125
a116
a61
a248a200
a222
a129a130
integraldisplay ∞
0
f(x)dxa61a243a222
integraldisplay ∞
0
f(x)dx = 12
integraldisplay ∞
?∞
f(x)dx,
a201a233a202a169
a0
a233a203a157a20410.2a126a127a128
a61
a144a205a206
a219a160
a126a207a208
a61a209a210a211integraldisplay
∞
0
f(x)dx = 12
integraldisplay ∞
?∞
f(x)dx = pii
summationdisplay
a219a158a159a160
resf(z).
star a198a218
a133a129a130
integraldisplay ∞
0
f(x)dx a229a61a212
a129
a125
a116f(z)
a213
a139a214a215a200a216a217a218
a61a219a198
f(z) = f(zeiθ),
a220a221
a61a255a0
a233a203a157a20410.3 a229a126a127a128a151a143a144
a50
a86 10.3 a86 10.4
a186 10.6
a163a164a108a33a40
integraldisplay ∞
0
dx
1 + x4 a50
a187 a78
a81
a189a196
a35a222a33a62a63f(x) = 11 + x4 a152x4 a35a62a63a61
a176
a159a61a73a74a158a159a223
a105a93 10.4
a35a94a204
a215
a95a197a97a98
a780
a131Ra61a95a64a224a131a225a197a226a98a61a188a95a197a226a98
a78iR
a227a131
a150
a59a50
a189a125
a61a104a105a78a63a108a109a61a53
contintegraldisplay
C
dz
1 + z4 =
integraldisplay R
0
dx
1 + x4 +
integraldisplay
CR
dz
1 + z4 +
integraldisplay 0
R
idy
1 + (iy)4
=(1?i)
integraldisplay R
0
dx
1 + x4 +
integraldisplay
CR
dz
1 + z4
=2pii res 11 + z4
vextendsinglevextendsingle
vextendsinglevextendsingle
z=eipi/4
= pi2 1?i√2 .
a178
a154a54R →∞a61
a18
a38
limz→∞z · 11 + z4 = 0,
a176
a159a61a104a105a228a109 3.2a61a53
lim
R→∞
integraldisplay
CR
dz
1 + z4 = 0.
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10 a119
a12
a81a152a114a179a131 integraldisplay
∞
0
dx
1 + x4 =
√2
4 pi.
a133
a234
a238
a219a229
a229
a61a230
a169a202a169
a0
a233a203a157
a158a231a232
a126a127a128
a50a234a173a212
a129
a125
a116 1/(1+z4)a133a127a128a134a139
a141
a238
a135a136
a215
z = eipi/4 a233z = ei3pi/4 a50
a143a144a234
a230
a169a235a236a237a238
a237a239
a50a0
a233a240a241
a61a198a218
a235a143a144
a117a129a130
integraldisplay ∞
0
dx
1 + x100,
a203a157a242a243
a141pi/50
a126a244
a232
a127a128
a61
a127a128a134
a145
a139
a237a238
a135a136
a111a209
a203a157
a158a231a232
a127a128
a61
a127a128a134a248a139
50a238a135a136a50a141a245a133a143a144a234a219a126a246a247a248a249a0a250a50
a198a218a220a61
a133
a219a160a234
a239
a219a229
a229
a61
a244
a232
a127a128
a233
a158a231a232
a127a128
a141a245a251a252a0a253a254a255
a126a0
a61
a220a221
a61
a133
a1
a160a234
a238
a219a229
a229
a61
a244
a232
a127a128a2
a145a3
a244a4a237
a126
a254a255a50
a186 10.7
a163a164a33a40
integraldisplay ∞
0
dx
1 + x3 a50
a187 a90a91
a61
a189
a111
a58a5a6a7a8
a52a38 2pi/3a35a9a53a94a204 (
a9310.5)
a50
a86 10.5
contintegraldisplay
C
dz
1 + z3 =
integraldisplay R
0
dx
1 + x3 +
integraldisplay
CR
dz
1 + z3 +
integraldisplay 0
R
ei2pi/3dx
1 + x3
=
parenleftBig
1?ei2pi/3
parenrightBigintegraldisplay R
0
dx
1 + x3 +
integraldisplay
CR
dz
1 + z3
= 2pii res 11 + z3
vextendsinglevextendsingle
vextendsinglevextendsingle
z=eipi/3
= 2pi3 e?ipi/6.
a178
a154a54R →∞a61
a18
a38
limz→∞z · 11 + z3 = 0,
a176
a159
lim
R→∞
integraldisplay
CR
dz
1 + z3 = 0.
a118
a123a114a179a131 integraldisplay
∞
0
dx
1 + x3 =
2pi
3
e?ipi/6
1?ei2pi/3 =
pi
3cos pi6
= 2pi3√3.