Wu Chong-shi
a0a1a2a3 a4a5a6a7a8 (
a9)
§16.1 a10a11a12a13a14a15a16a17a18a19a20a21
a22a23a24a25
?u
?t ?κ
parenleftBig?2u
?x2 +
?2u
?y2
parenrightBig
= 0, 0 <x<a, 0 <y<b,t> 0,
?u
?x
vextendsinglevextendsingle
vextendsingle
x=0
= 0, ?u?x
vextendsinglevextendsingle
vextendsingle
x=a
= 0, 0 ≤y ≤b,t≥ 0,
?u
?y
vextendsinglevextendsingle
vextendsingle
y=0
= 0, ?u?y
vextendsinglevextendsingle
vextendsingle
y=b
= 0, 0 ≤x≤a,t≥ 0,
uvextendsinglevextendsinglet=0 = φ(x,y), 0 ≤x≤a, 0 ≤y ≤b.
a26u(x,y,t) = v(x,y)T(t)
a27a28a29a30a31a27a32a33a34a35a27
v(x,y)Tprime(t) ?κ
bracketleftbigg?2v
?x2 +
?2v
?y2
bracketrightbigg
T(t) = 0 =?
?2v
?x2 +
?2v
?y2
v(x,y) =
1
κ
Tprime(t)
T(t) = ?λ
a36
?2v
?x2 +
?2v
?y2 +λv(x,y) = 0,
Tprime(t) +λκT(t) = 0,
a37a38λ
a39a32a33a34a35a40a41a42a43a44a45a46a47a48a49a40a50a51a52a53a54a27a55a56a57
a36
?v
?x
vextendsinglevextendsingle
vextendsingle
x=0
= 0 ?v?x
vextendsinglevextendsingle
vextendsingle
x=a
= 0
?v
?y
vextendsinglevextendsingle
vextendsingle
y=0
= 0 ?v?y
vextendsinglevextendsingle
vextendsingle
y=b
= 0
a58a59v(x,y) = X(x)Y(y)
a27a42a60a61a32a33a34a35a27
Xprimeprime(x)Y(y) +X(x)Yprimeprime(y) +λX(x)Y(y) = 0 =? X
primeprime(x)
X(x) +λ = ?
Yprimeprime(y)
Y(y) = ν
a36
Xprimeprime(x) +μX(x) = 0 Yprimeprime(y) +νY(y) = 0
a62a63a64
a41a42a65a46a47μa27a66μ,νa67λ a38a68a69a70a71a39a72a73a43a27a74a75a76a77a78a79μ+ν = λa48
a58a80
a51a52a53a54a32a33a34a35a27a81a56
a36a82
Xprime(0) = 0, Xprime(a) = 0 a67 Yprime(0) = 0, Yprime(b) = 0.
a83a23a84a85X(x)
a86a87a88a89
a24a25
Xprimeprime(x) +μX(x) = 0
Wu Chong-shi
§16.1 a90a91a92a93a94
a95a96a97a98a99a100a101 a1022
a103
Xprime(0) = 0, Xprime(a) = 0
star a104μ = 0a40a27a46a105a32a30a31a43a106a107a39
X(x) = A0x+B0.
a28a29(a108a109) a51a52a53a54a27
a36
A0 = 0, B0
a110a111
.
a62a112a113λ = 0
a39a60
a71a114a115a116
a27
a114a115a117
a47a56a118a119
X(x) = 1.
a120a121a122a123a124a125a126a126a127a128a129a126μ = 0a127a130a131a132
a27
a128a127a133a134a135μ = 0
a136a27
a130a131a132a137a138a139a140a141
a142X(x) = B
0,B0
a127a143a144a145a146
a48
star a104μnegationslash= 0a40a27a46a105a32a30a31a43a106a107a39
X(x) = Asin√μx+Bcos√μx.
a28a29(a108a109) a51a52a53a54a27a81
a36a82
A = 0, √μsin√μa = 0.
a147a148
a27
√μa = npi
a27a149
a114a115a116 μ
n =
parenleftBignpi
a
parenrightBig2
, n = 1,2,3,···
a114a115a117
a47 Xn(x) = cos
npi
a x.
a150μ = 0
a67μ> 0a43a151a152a153a154a155a156a27a157a56
a148a158
a60a159a160
a114a115a116 μ
n =
parenleftBignpi
a
parenrightBig2
, n = 0,1,2,3,···,
a114a115a117
a47 Xn(x) = cos npia x.
a49a161a56
a148
a107
a36a162a163Y(y)
a43
a114a115a116a164a165
Yprimeprime(y) +νY(y) = 0
Yprime(0) = 0, Yprime(b) = 0
a43a107a119
a114a115a116 ν
m =
parenleftBigmpi
b
parenrightBig2
, m = 0,1,2,3,···,
a114a115a117
a47 Ym(x) = cos mpib y.
Wu Chong-shi
a166a167a168a169 a170a171a95a96a172 (
a173) a1023a103
a174a163a175
a45a43na67ma27
a58
a42a60a61a176a177
T00(t) = A00, n = m = 0,
Tnm(t) = Anm e?λnmκt, a37a178a179a180,
a55a56
a148
a159a160
a158
a60a43
a180a181
Tnm(t) = Anm e?λnmκt, n = 0,1,2,3,···, m = 0,1,2,3,···,
λnm = μn +νm =
parenleftBignpi
a
parenrightBig2
+
parenleftBigmpi
b
parenrightBig2
.
a182a183
a27a157a176
a36a184a71
a45a107
a164a165
a43a185a107
unm(x,y,t) = Xn(x)Ym(y)Tnm(t)
= Anm cos npia xcos mpib ye?λnmκt
a67a60a186a107
u(x,y,t) =
∞summationdisplay
n=0
∞summationdisplay
m=0
unm(x,y,t)
=
∞summationdisplay
n=0
∞summationdisplay
m=0
Anm cos npia xcos mpib ye?λnmκt
=
∞summationdisplay
n=0
∞summationdisplay
m=0
Anm cos npia xcos mpib yexp
braceleftbigg
?
bracketleftbiggparenleftBignpi
a
parenrightBig2
+
parenleftBigmpi
b
parenrightBig2bracketrightbigg
κt
bracerightbigg
.
a28a29a187a188a53a54a27
a69
u(x,y,t)vextendsinglevextendsinglet=0 =
∞summationdisplay
n=0
∞summationdisplay
m=0
Anm cos npia xcos mpib y = φ(x,y).
a189
a60a61a157a190a104a191a192
a114a115a117
a47a43a193a194a195a45a177a196a197a198a47a48a199a200a201a202a203
a82 {X
n(x), n = 0,1,2,···}a43a193a194
a195a27a81a202a203
a82{Y
m(y),m = 0,1,2,···}a43a193a194a195a27a204a60a205a56a48
a37
a109a27a206a207
a82
a74a75a43a193a194a208a60a195integraldisplay
a
0
Xn(x)Xnprime(x)dx = a2 (1 +δn0)δnnprime,
integraldisplay b
0
Ym(y)Ymprime(y)dy = b2 (1 +δm0)δmmprime.
a209a210a38a211a212
a202a213a214a215a32n = 0a216nnegationslash= 0a67m = 0 a216mnegationslash= 0a43
a179a180
a48
a209a210
a43a151a152a39
Anm = 4ab 1(1 +δ
n0)(1 +δm0)
integraldisplay a
0
integraldisplay b
0
φ(x,y)cos npia xcos mpib ydxdy.
Wu Chong-shi
§16.2 a217a218a219
a220a221a222a223a224a225a226 a2274
a228
§16.2 a12a229a230a18a231a17a232a233a234a235
a236a237a238a239a240a241a242a120a236a237a243a244a245a246a247a240a248a249a250a251a252a253a254a255a0a1a2a3a133a134a241a242a120a243a244a245a246
a127a236a237a126
a27
a240a248a249a250a4a5a6a7a8
a48
a9a10a11a142a137a138
a252a126a241a242a120a243a244a245a246a124a127a236a237a126
a27a12
a139a13a139a14a15a16a2a240a248a249a250a251a17
a22a23a24a25
?2u
?t2 ?a
2?2u
?x2 = f(x,t), 0 <x<l, t> 0,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, t≥ 0,
uvextendsinglevextendsinglet=0 = 0, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤x≤l.
a119a65a18a177
a174a163
a30a31a19a108a109a20a43a21a22a27
a62a63a23a24a25a26
a50a27a28a41a155a43
a70a29a30
a45a31a43a32a33a34a35a27a31a43a187
a36a37
a67a187a38a39a40a119 0a48
a41
a87
a23a42a43 a44a45a46a47a48a49a50a51a52a53a54a55
u(x,t) = v(x,t) +w(x,t),
a200
a80
a19a108a109a30a31a108a109a56a43a49a40a27a76a77a57a58a59
a69
a43a108a109a51a52a53a54a205a34a48
a107a60a43
a162a61
a157a200
a163
a176
a36
a185a107v(x,t)a48
a62
a203
a163f(x,t)a180a181a63a64a65a66
a43
a179a180
a48
a23 a67a68
a176a107a19a108a109a30a31a43a60a69a70a60a27a71a176
a36
a19a108a109a30a31a43a60
a71
a185a107 v(x,t) a27
?2v
?t2 ?a
2?2v
?x2 = f(x,t).
a128a72
a27
a9a10a73u(x,t) = v(x,t) +w(x,t)
a27
a74
?2u
?t2 ?a
2?
2u
?x2 = f(x,t)
uvextendsinglevextendsinglex=0 = 0 uvextendsinglevextendsinglex=l = 0
uvextendsinglevextendsinglet=0 = 0 ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0
=
?2v
?t2 ?a
2?
2v
?x2 = f(x,t)
vvextendsinglevextendsinglex=0 = 0 vvextendsinglevextendsinglex=l = 0
+
?2w
?t2 ?a
2?
2w
?x2 = 0
wvextendsinglevextendsinglex=0 = 0 wvextendsinglevextendsinglex=l = 0
wvextendsinglevextendsinglet=0 = ?vvextendsinglevextendsinglet=0 ?w?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= ??v?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
a75a76a77
a5a78a79a142v(x,t)
a27a80
a14a6
a77a81w(x,t)
a126
a75a82
a142
w(x,t) =
∞summationdisplay
n=1
parenleftBig
Cn sin npil at+Dn cos npil at
parenrightBig
sin npil x,
Wu Chong-shi
a166a167a168a169 a170a171a95a96a172 (
a173) a1025a103
a83a6
u(x,t) = v(x,t) +
∞summationdisplay
n=1
parenleftBig
Cn sin npil at+Dn cos npil at
parenrightBig
sin npil x,
a84a85a86a87a245a246
a27
∞summationdisplay
n=1
Dn sin npil x = ?v(x,t)vextendsinglevextendsinglet=0,
∞summationdisplay
n=1
Cnnpial sin npil x = ??v(x,t)?t
vextendsinglevextendsingle
vextendsingle
t=0
,
a88a2a130a131a89a146a126a90a91a92
a75a93
a27
a11
a81a94a95a96
a146
Cn = ? 2npia
integraldisplay l
0
?v(x,t)
?t
vextendsinglevextendsingle
vextendsingle
t=0
sin npil xdx,
Dn = ? 2l
integraldisplay l
0
v(x,0)sin npil xdx.
? a128a97a142a251a98a134a241a242a120a243a244a245a246a126a125a136a236a237a99a48
? a247a100a140a236a237a241a242a236a237a99a126a125a136a27a101a102a103a104a105a139a126a236a237a243a244a245a246a124a249a48
? a142a251a126a255a0a80a247a106a77a5a79a142v(x,t)a48a107
a2a106f(x,t)
a108a109a110a111a112a113
a126a114
a108a48
? a236a237a86a87a245a246a126a115a116a14a6a117a118a48
a119 16.1
a176a107a45a107
a164a165
?2u
?t2 ?a
2?2u
?x2 = f(x), 0 <x<l, t> 0,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, t≥ 0,
uvextendsinglevextendsinglet=0 = 0, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤x≤l,
a37a38f(x)
a119a120a121
a117
a47a48
a23 a68a175
a177a107
a165
a43a122a202a123a124a48
a50
a163
a30a31a43a19a108a109a20
a68
a39xa43
a117
a47a27a157a56
a148a150
a108a109a56
a117
a47a55a118a119
a68
a39xa43
a117
a47a27a149
a26
u(x,t) = v(x) +w(x,t),
a37a38v(x)
a78a79a46a105a32a30a31a43a51
a116a164a165
vprimeprime(x) = ? 1a2f(x),
v(0) = 0, v(l) = 0;
a125w(x,t)
a126a78a79a45a107
a164a165
?2w
?t2 ?a
2?2w
?x2 = 0, 0 <x<l, t> 0,
wvextendsinglevextendsinglex=0 = 0, wvextendsinglevextendsinglex=l = 0, t≥ 0,
wvextendsinglevextendsinglet=0 = ?v(x), ?w?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤x≤l.
Wu Chong-shi
§16.2 a92a127a128
a98a129a97a130a131a132a133 a1026
a103
a119 16.2
a176a107a45a107
a164a165
?2u
?t2 ?a
2?2u
?x2 = A0 sinωt, 0 <x<l, t> 0,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=l = 0, t≥ 0,
uvextendsinglevextendsinglet=0 = 0, ?u?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= 0, 0 ≤x≤l,
a37a38a, A
0 a134
ωa40a119a120a121a46a47a48
a23 a26
u(x,t) = v(x,t) +w(x,t),
a206a207
a82
a19a108a109a20a43a135a136
a180a181
a27a56
a80
a108a109a56
a117
a47v(x,t)a118a119
v(x,t) = f(x)sinωt.
a137a36v(x,t)
a78a79a19a108a109a30a31
a134
a108a109a51a52a53a54a27
?2v
?t2 ?a
2?2v
?x2 = A0 sinωt, 0 <x<l, t> 0,
vvextendsinglevextendsinglex=0 = 0, vvextendsinglevextendsinglex=l = 0, t≥ 0,
a55a157a39a138a139f(x)a27
a137a36
?ω2f(x) ?a2fprimeprime(x) = A0,
f(0) = 0, f(l) = 0.
a62a71
a19a108a109a46a105a32a30a31a43a106a107a119
f(x) = ?A0ω2 +Asin ωax+Bcos ωax.
a28a29a108a109a51a52a53a54a56
a148
a45a177
B = A0ω2, A = A0ω2 tan ωl2a.
a163
a39
f(x) = ?A0ω2
bracketleftbiggparenleftBig
1?cos ωax
parenrightBig
?tan ωl2a sin ωax
bracketrightbigg
= ?A0ω2
bracketleftbigg
1? cos(ω(x?l/2)/a)cos(ωl/2a)
bracketrightbigg
.
a62
a161a157a140a141a177w(x,t)
a147
a78a79a43a45a107
a164a165
a27
?2w
?t2 ?a
2?2w
?x2 = 0, 0 <x<l,t> 0,
w
vextendsinglevextendsingle
vextendsingle
x=0
= 0, wvextendsinglevextendsinglex=l = 0, t≥ 0,
wvextendsinglevextendsinglet=0 = 0, ?w?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t=0
= ?ωf(x), 0 ≤x≤l.
a74a43a60a186a107a119
w(x,t) =
∞summationdisplay
n=1
bracketleftBig
Cn sin npil at+Dn cos npil at
bracketrightBig
sin npil x.
Wu Chong-shi
a166a167a168a169 a170a171a95a96a172 (
a173) a1027a103
a142
a203a143a144a43a187a188a53a54a157a56
a148
a45a177
Dn = 0,
Cn = ? 2ωnpia
integraldisplay l
0
f(x)sin npil xdx = ?2A0ωl
3
pi2a
1?(?)n
n2
1
(npia)2 ?(ωl)2.
a68a69n =
a145a47a40a27Cn
a146
a205a1190 a48
a62
a161a27a147a148a157a176a177a65
w(x,t) = ?4A0ωl
3
pi2a
∞summationdisplay
n=0
bracketleftbigg 1
(2n+ 1)2
1
[(2n+ 1)pia]2 ?(ωl)2 sin
2n+ 1
l pix sin
2n+ 1
l piat
bracketrightbigg
a67
u(x,t) = ? A0ω2
bracketleftbigg
1? cosω(x?l/2)/acos(ωl/2a)
bracketrightbigg
sinωt
? 4A0ωl
3
pi2a
∞summationdisplay
n=0
bracketleftbigg 1
(2n+ 1)2
1
[(2n+ 1)pia]2 ?(ωl)2 sin
2n+ 1
l pix sin
2n+ 1
l piat
bracketrightbigg
.
a149a150a151a152a3
a32a33a28a43a153a154a155ωa193a156a39a31a43a157a158
a30a69
a154a155a27
ω = (2k+ 1)pia/l, ka119a157
a71a159
a45a43a19a160
a184
a47
a31a200a32a33a28a43a161a203
a189a162a163a164a165
a34a199a166a48
a119 16.3
a176a107a45a107
a164a165
?2u
?x2 +
?2u
?y2 = xy, 0 <x<a, 0 <y<b,
uvextendsinglevextendsinglex=0 = 0, uvextendsinglevextendsinglex=a = 0, 0 ≤y ≤b,
uvextendsinglevextendsingley=0 = φ(x), uvextendsinglevextendsingley=b = ψ(x), 0 ≤x≤a.
a23 a167a168
a176a177a30a31a43a106a107
1
6x
3y +f(x+ iy) +g(x?iy).
a62
a104a138a139
a117
a47f a67ga27a169a170a27
f(x+ iy) +g(x? iy) = ?a
2
24i
bracketleftbig(x+ iy)2 ?(x?iy)2bracketrightbig = ?1
6a
2xy,
a137a36a82
a43a107
v(x,y) = 16 parenleftbigx2 ?a2parenrightbigxy
a78a79a108a109a51a52a53a54
v(x,y)vextendsinglevextendsinglex=0 = 0, v(x,y)vextendsinglevextendsinglex=a = 0.
a59
u(x,y) = v(x,y) +w(x,y),
Wu Chong-shi
§16.2 a92a127a128
a98a129a97a130a131a132a133 a1028
a103
a157a56
a148
a141a177w(x,t) a147a190a78a79a43a45a107
a164a165
a27
?2w
?x2 +
?2w
?y2 = 0, 0 <x<a, 0 <y<b,
wvextendsinglevextendsinglex=0 = 0, wvextendsinglevextendsinglex=a = 0, 0 ≤y ≤b,
wvextendsinglevextendsingley=0 = φ(x), wvextendsinglevextendsingley=b = ψ(x) ? b6 parenleftbigx2 ?a2parenrightbigx, 0 ≤x≤a.
a37a38
a43a30a31a67a60
a174
a51a52a53a54a171a39a108a109a43a27
a182a183
a27a172
a167a168
a176a107a48