Wu Chong-shi
a0a1a2a3 a4 a5 a6 (
a7)
a8Helmholtz
a9a10a11a12a13a14a15a16a17a18a19a20a21a22a23a24a25a26 Legendrea9a10
1
sinθ
d
dθ
parenleftbigg
sinθdΘdθ
parenrightbigg
+
bracketleftbigg
λ? μsin2θ
bracketrightbigg
Θ = 0
a27a28a29a30a31a32a33a34
a21 Legendrea9a10
1
sinθ
d
dθ
parenleftbigg
sinθdΘdθ
parenrightbigg
+ λΘ = 0,
a35
a19a36x = cosθ, y(x) = Θ(θ)a21a37a38a22
a8
a29a39a40a41a42
d
dx
bracketleftbiggparenleftbig
1?x2parenrightbig dydx
bracketrightbigg
+
bracketleftbigg
λ? μ1?x2
bracketrightbigg
y = 0
a43
d
dx
bracketleftbiggparenleftbig
1?x2parenrightbig dydx
bracketrightbigg
+ λy = 0.
a44a45a46a47a48a49a50
a9a10
a30a51
a21
a29a39a30a52a53a54a55a28a56
a11a17a18a19a20a57a58
a30a59a60a61
Wu Chong-shi
§19.1 Legendrea62a63a64a65 a662a67
§19.1 Legendre a68a69a70a71
a11a72a73Legendrea9a10
a30a51a30a74a75a34a76a77a78
a21
a79a80a81a82
a17a9a10
a30a51a83a84
a47 (
a85a86a87a88)a21
a89a90a91
a22
a27a92 Legendre
a9a10
a30a51a30a51a83a54
a35
a73a93a94
a61
star Legendrea95a96(a97a98a99z a100a101a102a103a104)
d
dz
bracketleftbiggparenleftbig
1?z2parenrightbig dwdz
bracketrightbigg
+ λw = 0.
a105a106a107a108a109
a21z = ±1a110z = ∞a21
a111a112a113
a100a114a115
a108a109
a61
a116a117
a21
a118a119
a97
a106a107a109a120a121
a100
a108a109a122
a21Legendre
a95a96a99a123a124a125a126a127a123a128
a61
star z = 0a109a100Legendrea95a96a99a129
a109
a21
a116a117
a21a95a96a99a123a124a130 z = 0a109a131a132a133a99a134a135
a132|z| < 1
a136a123
a128a21
a120
a130a137a138
a131 Taylor
a139a140
a61a141a142a143a144a145a146a147a148
a119a149a107a150a151a152a153
a99a154a123a21a155a156a100
w1(z) =
∞summationdisplay
n=0
22n
(2n)!
Γ
parenleftBig
n? ν2
parenrightBig
Γ
parenleftbigg
n + ν + 12
parenrightbigg
Γ
parenleftBig
?ν2
parenrightBig
Γ
parenleftbiggν + 1
2
parenrightbigg z2n,
w2(z) =
∞summationdisplay
n=0
22n
(2n + 1)!
Γ
parenleftbigg
n? ν ?12
parenrightbigg
Γ
parenleftBig
n + 1 + ν2
parenrightBig
Γ
parenleftbigg
?ν ?12
parenrightbigg
Γ
parenleftBig
1 + ν2
parenrightBig z2n+1,
a157
a144
ν(ν + 1) = λ.
a158
a97
a149a107
a154a123a159a123a128a160a161a21
a120
a130a162a163 Legendrea95a96a99a123a124
a157a164a165a166
a136a99a167a168a169
a61
a170
a100a21
a152a171a172a173
a21
a124a139a140a123a174a175
a132
a99
a132a176a177
a21
a178a179a180
a21a124 z = ±1a97
a149a109
a21a95a96a99a139a140a123a181a182a183a184a123a128
a61
a97a185
a177
a127a186
a148
a99a123a99a187a188a189a169
a120
a130a190
a148a61
a191a192w
1(z)a21a193na194a195a196a197a21
a157a198
a140
c2n = 2
2n
(2n)!
Γ
parenleftBig
n? ν2
parenrightBig
Γ
parenleftbigg
n + ν + 12
parenrightbigg
Γ
parenleftBig
?ν2
parenrightBig
Γ
parenleftbiggν + 1
2
parenrightbigg
~ 2
2n
(2n + 1)2n+1/2e?(2n+1)√2pi
parenleftBig
n? ν2
parenrightBign?(ν+1)/2
e?n+ν/2√2pi
Γ
parenleftBig
?ν2
parenrightBig
parenleftbigg
n + ν + 12
parenrightbiggn+ν/2
e?n?(ν+1)/2√2pi
Γ
parenleftbiggν + 1
2
parenrightbigg
=a129a140× 1n.
Wu Chong-shi
a199a200a201a202 a203 a204 a205 (
a206) a663a67
a97
a180a207
a21
a118a119
a182
a107
a129a140a208
a122
a21 w1(z)a124z = ±1a209a210a99a211
a131
a21a110
ln 11?z2 =
∞summationdisplay
n=1
1
nz
2n
a212
a125a213a214
a61
a116a117
a21 w1(z)a124 z = ±1
a191
a140a215a216
a61 z = ±1
a100 w1(z)a99a217
a109
a61
a172a218a158 Legendre
a95a96a124
z = 0a99
a141
a182a123w1(z)a123a128a160a161a163a125a126a127
a177
a21a155a182a183a100a182
a107a219a220a221
a140
a61
a191a192w
2(z)a21a193na194a195a196a197a21a222
a105
c2n+1 = 2
2n
(2n + 1)!
Γ
parenleftbigg
n? ν ?12
parenrightbigg
Γ
parenleftBig
n + 1 + ν2
parenrightBig
Γ
parenleftbigg
?ν ?12
parenrightbigg
Γ
parenleftBig
1 + ν2
parenrightBig
~ 2
2n
(2n + 2)2n+3/2e?(2n+2)√2pi
×
parenleftbigg
n? ν ?12
parenrightbiggn?ν/2
e?n+(ν?1)/2√2pi
Γ
parenleftbigg
?ν ?12
parenrightbigg
parenleftBig
n + 1 + ν2
parenrightBign+(ν+1)/2
e?n?1?ν/2√2pi
Γ
parenleftBig
1 + ν2
parenrightBig
=a129a140× 12n + 1.
a223
a130a21
a118a119
a182
a107
a129a140a208
a122
a21 w2(z)a124z = ±1a209a210a99a211
a131
a21a110
ln 1 + z1?z =
∞summationdisplay
n=1
2
2n + 1z
2n+1
a212
a125a213a214
a61
a116a117
a21 w2(z)a124 z = ±1 a222
a191
a140a215a216
a61 z = ±1
a222a100 w2(z)a99a217
a109
a61
a158 Legendre
a95a96a124
z = 0a99
a141a224
a123w2(z)a123a128a160a161a163a125a126a127
a177
a21a155a222a100a182
a107a219a220a221
a140
a61
star a225
a120
a130a124 z = 1(a226z = ?1)a109a99a227a166a136a147a123 Legendrea95a96
a61
a228a192z = ±1
a100a95a96a99a114a115
a108a109
a21a95a96a124a229
a166 0 < |z ?1| < 2
a136
a105a149a107
a114a115a123a21a230
a120a231
w(z) = (z ?1)ρ
∞summationdisplay
n=0
cn(z ?1)n,
a232a233Legendre
a95a96a21a234
a120
a130a162a163a124 z = 1a109a99a235a236a95a96
ρ(ρ?1) + ρ = 0.
a223
a130a21ρ1 = ρ2 = 0a61a97
a180a207Legendre
a95a96a124z = 1 a109a227
a166
a136a99
a141
a182a123a237a238
a177
a100a124
a132a166|z ?1| < 2
a136a123a128a99a21a239
a141a224
a123a115a182a183a240
a105a191
a140a241a21a130 z = 1(a110z = ?1)a131a217
a109
a61
a242a243
a129a244a245a95a96a139a140a123a246a99a236a247a248a249a21
a120
a130
a147a148 Legendre
a95a96a124z = 1a109a227
a166
a136a99
a141
a182a123
Pν(z) =
∞summationdisplay
n=0
1
(n!)2
Γ(ν + n + 1)
Γ(ν ?n + 1)
parenleftbiggz ?1
2
parenrightbiggn
,
Wu Chong-shi
§19.1 Legendrea62a63a64a65 a664a67
a250a131ν
a251
a141
a182a252Legendrea221a140a253
a141a224
a123
a120a254a131
Qν(z) = 12Pν(z)
bracketleftbigg
ln z + 1z ?1 ?2γ ?2ψ(ν + 1)
bracketrightbigg
+
∞summationdisplay
n=0
1
(n!)2
Γ(ν + n + 1)
Γ(ν ?n + 1)
parenleftbigg
1 + 12 +···+ 1n
parenrightbiggparenleftbiggz ?1
2
parenrightbiggn
,
a250a131ν
a251
a141a224
a252Legendrea221a140a21
a157
a144γ
a100 Eulera140a21ψ(z)a100Γa221a140a99
a191
a140a244a255
a61
a0a1a2a3P
ν(z)(a4a5a24a6a7a8
a9
a21
a29a10a27z = ?1a43z = ∞
a11a12a13
a30a14
a15a2a3) a43Q
ν(z)
a30a14
a15
a54a16
a17a18a19
a54a30a20
a19
a21a21
a60a22a23a53a31a24a25a26a61
Wu Chong-shi
a199a200a201a202 a203 a204 a205 (
a206) a665a67
§19.2 Legendre a27a28a29
a30
a189
a165a166
a136x2 + y2 + z2 < a2 a99Laplacea95a96a31
a220a32a33
?2u = 0,
uvextendsinglevextendsingleΣ = f(Σ),
a157
a144Σ
a232
a167
a30
a127x
2 + y2 + z2 = a2 a177
a99a102
a109
a61
a34a35
a163a36a124
a223a37a171
a99a38a39
a165a166
a99a187a188a189a40a21a41
a42a43a44a45a46a47a48a49a50
a147
a123a97
a107
a183a123
a32a33
a21a239
a112
a43a158a47a48a51a52a53a54
a124
a30a133
a61
a172a218
a31a55a56a57a187
a105a58a59
a182
a107 (
a60a61
a30a133
a99) a62a183a63a64a65a184a102a99
a191a250a151
a21
a66a67
a21a193
a42
a222a234a68a193
a158
a97
a107a191a250
a63a99a95a69
a254a131a70a71
a99a95a69
a61
a97a72a73a74
a119a75
a236
a198a76
a21
a223a77
a147
a99a78a79
a221
a140 ua193
a42
a234a80φa152a153a21
u = u(r,θ).
a81a82
a186
a148
a183a123
a32a33
a124
a30a75
a236
a198a83
a99a187a188a189a169
a61
a170
a100a21a84
a77a85a86a87
star Laplace a95a96a124θ = 0 a110θ = pia95a69
a177
a184a88a89a21a124a97a90
a109a177a91a157
a103a92a93a124u(r,θ)a191θ a99a134a94a95
a140
a61
a158 Laplace
a95a96a96a186a163
a30a75
a236
a198
a197a21
a131a119a97a98
a183a123
a32a33
a99a99a100
a151
a21a101a102a103
a91a177 u(r,θ)
a124θ = 0
a110θ =pia95a69
a177
a99
a105
a55a56a57
a61
star Laplacea95a96a124
a75
a236a104
a109 r = 0
a222a184a88a89a21a124a105
a109a91a157
a103a92a93a124 u(r,θ)a191r a99a134a94a95a140
a61
a158Laplace
a95a96a96a186a163
a30a75
a236
a198
a197a21
a131a119a97a98
a183a123
a32a33
a99a99a100
a151
a21a225a101a102a103
a91a177u(r,θ)
a124
a75
a236
a104
a109r = 0
a106a99
a105
a55a56a57
a61
a183a123
a32a33
a124
a30a75
a236
a198a83
a99
a212a107
a167a168a189a169a68a105a100
1
r2
?
?r
parenleftbigg
r2?u?r
parenrightbigg
+ 1r2 sinθ ??θ
parenleftbigg
sinθ?u?θ
parenrightbigg
= 0,
uvextendsinglevextendsingleθ=0 a105a55a21 uvextendsinglevextendsingleθ=pi a105a55a21
uvextendsinglevextendsingler=0 a105a55a21 uvextendsinglevextendsingler=a = f(θ).
a245a108a102a103
a61a109
u(r,θ) = R(r)Θ(θ),
a232a233
a95a96a110
a105
a55a56a57a21a234
a121
a195a245a108a102a103a239a162a163
1
sinθ
d
dθ
parenleftbigg
sinθdΘ(θ)dθ
parenrightbigg
+ λΘ(θ) = 0
Θ(0)a105a55 Θ(pi)a105a55
a110
d
dr
parenleftbigg
r2dR(r)dr
parenrightbigg
?λR(r) = 0,
a157
a144λ
a100a245a108a102a103a197a110a111a99a112a183a113a140
a61
Legendrea95a96a21
a114a177a105
a55a56a57a21
a115
a88a116a117
a220a32a33
a61
a60a129a159a102a118 x = cosθ, y(x) = Θ(θ)a21
a111a112a158
Wu Chong-shi
§19.2 Legendrea119a120a121 a666a67
a112a183a113a140λa186a88ν(ν + 1)a21a116a117
a220a32a33
a234a102
a131
d
dx
bracketleftbiggparenleftbig
1?x2parenrightbig dydx
bracketrightbigg
+ ν(ν + 1)y = 0,
y(±1)a105a55.
a122a123a124a125a126a123a124a127a128
star a129a130a131 Legendre a132a133a134 x = 0 a52a135a136a137a138a139a140a141a142a143a144a145a146a147a122a144a61
a177
a182a148
a145a146a149a148
a119
a97
a149a107a150a151a152a153
a123a99a189a169a21a225
a171a150a119a191a192
a182a151a99 λ(a226 ν) a220a21a97
a149a107
a123a124
x = ±1a113a100a191a140a215a216a99a61
a131a119a152
a162a95a96a99a123a124 x = ±1a153
a105
a55a21a234
a77
a147 λ(
a226ν)a254a59a90a154a154
a220
a61
star a185Legendrea95a96a124x = 1a109a227
a166
a136a99
a149a107a150a151a152a153
a123 Pν(x)a110Qν(x)a148a215
a50a37a171
a61
Pν(x) =
∞summationdisplay
n=0
1
(n!)2
Γ(ν + n + 1)
Γ(ν ?n + 1)
parenleftbiggx?1
2
parenrightbiggn
,
Pν(x)a124x = 1a109a100a123a128a99a21a193
a42
a222a234a100
a105
a55a99a253
Qν(x) = 12Pν(x)
bracketleftbigg
ln x + 1x?1 ?2γ ?2ψ(ν + 1)
bracketrightbigg
+
∞summationdisplay
n=0
1
(n!)2
Γ(ν + n + 1)
Γ(ν ?n + 1)
parenleftbigg
1 + 12 +···+ 1n
parenrightbiggparenleftbiggx?1
2
parenrightbiggn
,
Qν(x)a124x = 1a109a100
a191
a140a215a216a99
a61
a158Legendre
a95a96a99a60a123a186a88
y(x) = c1Pν(x) + c2Qν(x),
a228a192a77
a147
a123a124 x = 1a105a55a21a101a102
a105c
2 = 0a21a239
a112
a184a155
a254 c
1 = 1
a61
a77
a147
a123a124 x = ?1
a109
a222
a105
a55a21a234
a120
a130a183
a148
a116a117
a220 λ = ν(ν + 1)
a21a185a239
a147a148
a213a68a99a116a117
a221
a140
a61
a124x = ?1a109a21Pν(x)a99a140
a220a131
Pν(?1) =
∞summationdisplay
n=0
(?)n
(n!)2
Γ(ν + n + 1)
Γ(ν ?n + 1) = ?
sinνpi
pi
∞summationdisplay
n=0
Γ(n + ν + 1)Γ(n?ν)
(n!)2 .
a228Stirling
a156a169
a120
a130a157a158a162
Γ(n + ν + 1)Γ(n?ν)
(n!)2 ~
(n + ν + 1)n+ν+1/2e?n?ν?1(n?ν)n?ν?1/2e?n+ν
(n + 1)n+1/2e?n?1(n + 1)n+1/2e?n?1 ~
1
n
a223
a130
Wu Chong-shi
a199a200a201a202 a203 a204 a205 (
a206) a667a67
star a191a192a182a151a99 ν a220a21Pν(x)a124x = ?1a109a215a216
a61
star a92
a77P
ν(x)a100
a152a159
a139a140a21a155a234a184
a120a121
a124 x = ?1a109a105a55a253
star a77a152a162a116a117
a220a32a33a105 (
a160a161)a123a21a101a102
a77
a147 P
ν(x)a184a100
a152a159
a139a140a21a162a163a164
a131a219
a241a169
a61
a185Pν(x)a99a187a188a189a169a190a21a97a92
a121
a215a165a124 ν a131a160a166
a107
a140a197
a61
a223
a130a21a116a117
a220a32a33
a99a123a234a100
a116a117
a220 λ
l = l(l + 1), l = 0,1,2,3,···,
a116a117
a221
a140 yl(x) = Pl(x).
Pl(x)a100a182a107l a251a219a241a169a21a250a131 la251Legendrea219a241a169a21
Pl(x) =
lsummationdisplay
n=0
1
(n!)2
(l + n)!
(l?n)!
parenleftbiggx?1
2
parenrightbiggn
.
a81a82
a162a163Legendrea219a241a169a124x = 1a109a99a140
a220a87
Pl(1) = 1.
Legendre a14a167a76a10a35a11a44a168a15a169a170a30a51a73a171a30a21a10a35a11 Legendrea9a10a11
a17a172a173a174
a16
a30
a44a168a2a3
a73a171
a30a61
a175
a148a176a177
a99a178
a107 Legendrea219
a241a169a99a167a168a169
a87
P0(x) = 1,
P1(x) = x,
P2(x) = 12 parenleftbig3x2 ?1parenrightbig,
P3(x) = 12 parenleftbig5x3 ?3xparenrightbig,
P4(x) = 18 parenleftbig35x4 ?30x2 + 3parenrightbig.
a155a156a99a179a189a180a179 19.1a61
Wu Chong-shi
§19.2 Legendrea119a120a121 a668a67
a18119.1 Legendre
a119a120a121
Wu Chong-shi
a199a200a201a202 a203 a204 a205 (
a206) a669a67
§19.3 Legendre a27a28a29a70a182a183a184a185
Legendrea219a241a169a99a244a245a167a186a100
Pl(x) = 12ll! d
l
dxl
parenleftbigx2 ?1parenrightbigl .
a97
a107
a167a168a169a222
a250a131 Rodrigues
a156a169
a61
a187 a116a131
parenleftbigx2 ?1parenrightbigl = (x?1)l[2 + (x?1)]l = lsummationdisplay
n=0
l!
n!(l?n)!2
l?n(x?1)l+n,
a223
a130
1
2ll!
dl
dxl
parenleftbigx2 ?1parenrightbigl = dl
dxl
lsummationdisplay
n=0
1
n!(l?n)!2
?n(x?1)l+n =
lsummationdisplay
n=0
1
n!(l?n)!
(l + n)!
n!
parenleftbiggx?1
2
parenrightbiggn
.
a97a72a234
a150a207a119 Legendrea219
a241a169a99a244a245a167a186
a61 square
a185 Legendrea219a241a169a99a244a245a167a186a21a89a162
a120
a130a190
a148Legendre
a219
a241a169a99
a108a188a151a87 l a131a188
a140a197 Pl(x)
a100
a188a221
a140a253 la131a108a140a197Pl(x)a100
a108a221
a140a21a162
Pl(?x) = (?)lPl(x).
a189a190a191P
l(x)a124x = 1
a109
a99a140
a220
a21a192
a120
a130a162a163 Pl(x)a124x = ?1a109a99a140
a220
a21
Pl(?1) = (?1)l.
a185Legendrea219a241a169a99a244a245a167a186a225
a120
a130a193a194
a147a148Legendre
a219
a241a169
a144
a223a105a195
a241a99
a198
a140a21a185a239a95
a148
Legendrea219a241a169a99a196a182
a107a197a207
a167a168a169
a61
a131a117
a21
a120a198 parenleftbigx2 ?1parenrightbigl
a137a138a21
parenleftbigx2 ?1parenrightbigl = lsummationdisplay
r=0
(?)r l!r!(l ?r)!x2l?2r,
a42a76a199
a241a244a255 la251a21
dl
dxl
parenleftbigx2 ?1parenrightbigl = dl
dxl
lsummationdisplay
r=0
(?)r l!r!(l?r)!x2l?2r
=
[l/2]summationdisplay
r=0
(?)r l!r!(l ?r)! (2l?2r)!(l ?2r)! xl?2r,
a228a192
a244a255 l a251
a76
a21
a219
a241a169a99a251a140
a77a200
a177 l
a251a21
a223
a130a97a98a110a169a99
a177a201
a234
a228
a244a255a202a99 l a102
a131
a244a255
a76
a99
[l/2]a61a191a203a182
a83 Legendrea219
a241a169a99a244a245a167a186a21a234a162a163
Pl(x) =
[l/2]summationdisplay
r=0
(?)r (2l?2r)!2l r!(l?r)!(l ?2r)!xl?2r.
a185a97
a107
a167a168a169a204
a81a82
a147a148 Legendre
a219
a241a169Pl(x)a124x = 0a109a99a140
a220a87
P2l(0) = (?)l (2l)!22l l!l!, P2l+1(0) = 0.
Wu Chong-shi
§19.4 Legendrea119a120a121a64a205a206a207a208a209 a6610a67
§19.4 Legendre a27a28a29a70a210a211a212a213a214
Legendre a14a167a76a10a35a11
a44a168a15a169a170
a30
a44a168a2a3
a73a171
a30
a21a215a216a21a217
a44a168a15a169a170
a73a218a21a22
a27a219a220Legendre a14a167a76a30a221a222a54
a21a223a224a225a226
a128a227 Legendre
a228a229a230a134a231a232 [?1, 1] a233a234
a235
a21 integraldisplay
1
?1
Pl(x)Pk(x)dx = 0, k negationslash= l.
a120
a130a185a95a96
a148
a215
a50a150a207
a61
a36a124
a45
a196a182a236a95a246
a150a207
a97
a107a190a218
a61
a237
a158a238a239a245 integraldisplay
1
?1
xkPl(x)dx,
a157
a144k
a110la113a100a160a166
a107
a140
a61
star a191a192a97
a107
a239a245a21a185a240a239
a221
a140a99
a108a188a151a120
a130a241a164integraldisplay
1
?1
xkPl(x)dx = 0, a193k ±l =a108a140.
star a193k ±la131a188a140a197a21
a120a198 P
l(x)
a45
a155a99a244a245a167a186
a232a233
a21
a192
a100
a105
integraldisplay 1
?1
xkPl(x)dx = 12l l!
integraldisplay 1
?1
xk d
l
dxl
parenleftbigx2 ?1parenrightbigl dx
= 12l l!
bracketleftbigg
xk d
l?1
dxl?1
parenleftbigx2 ?1parenrightbigl vextendsinglevextendsinglevextendsingle1
?1
?
integraldisplay 1
?1
dxk
dx
dl?1
dxl?1
parenleftbigx2 ?1parenrightbigl dxbracketrightbigg.
a0a1 d
l?1
dxl?1
parenleftbigx2 ?1parenrightbigl
a58a242
a19a243a17
a215a244
parenleftbigx2 ?1parenrightbig
a21a245
a27
a11a246a247a248a16a249x = ±1a9a21a17a250a251
a17a73a252
a30a167
a242
a19
a11 0a21
a1a10a91a17
integraldisplay 1
?1
xkPl(x)dx = 12l l!
integraldisplay 1
?1
(?)1dx
k
dx
dl?1
dxl?1
parenleftbigx2 ?1parenrightbigl dx.
a97a72a21a245a253a239a245a182a251a21
a157a254a218
a234a167a36a124
a106
a95a127
a87
(1) a40a19a242a255
a221a0a1
a253
(2) a92a2a3parenleftbigx2 ?1parenrightbigl a30a82a2a3a4a242a255a253
(3) a92a2a3xk a30a82a2a5a6a242a255a61
a97a72a21a245a253a239a245 la251
a76
a21a244a255a7a238a234a125a253a65a8a163
a221
a140 xk a177a9a190a10a11a12a13integraldisplay
1
?1
xkPl(x)dx = 12l l!
integraldisplay 1
?1
(?)ld
lxk
dxl
parenleftbigx2 ?1parenrightbigl dx.
a14a15a16a17a18a19a20a9a21a22 k < l a9a23a24 xk
a25a26 l
a27
a21a28a13 0 a9a29a22
integraldisplay 1
?1
xkPl(x)dx = 0, a30k < l.
Wu Chong-shi
a31a32a33a34 a35 a36 a37 (
a38) a3911a40
a41a21a18a19a20a22 k ≥ l a9a42a29 k ±l =
a43
a24a9a44a45a46a47 k = l + 2n a9a29a22
integraldisplay 1
?1
xl+2nPl(x)dx = 12l l!
integraldisplay 1
?1
(?)ld
lxl+2n
dxl
parenleftbigx2 ?1parenrightbigl dx = 1
2l l!
(l + 2n)!
(2n)!
integraldisplay 1
?1
x2n parenleftbig1?x2parenrightbigl dx.
a48a12a49 x2 = t a9a50a51a52 B a23a24a11a19a53a54a55a56a57
integraldisplay 1
?1
xl+2nPl(x)dx = 12l l! (l + 2n)!(2n)!
integraldisplay 1
0
tn?1/2 (1?t)l dt = 12l l! (l + 2n)!(2n)!
Γ
parenleftbigg
n + 12
parenrightbigg
Γ(l + 1)
Γ
parenleftbigg
n + l + 32
parenrightbigg
= (l + 2n)!2l+2n n!
√pi
Γ
parenleftbigg
n + l + 32
parenrightbigg = 2l+1(l + 2n)!(l + n)!n!(2l + 2n + 1)!.
a58a59a22 k = l a9a60 n = 0 a15a9
integraldisplay 1
?1
xlPl(x)dx = l!2l
√pi
Γ
parenleftbigg
l + 32
parenrightbigg = 2l+1 l!l!(2l + 1)!.
a61a62a63a64a10a65a66a9a67a68a69a70a71 xk
a72
a69a73 k
a74a75 Legendre a76a77a78
a72
a73a71 l a9a79a80a9a69a70a71 xk
a81 l a73 Legendre
a76a77a78
a72a82a83a84a85a86 [?1, 1]
a87
a72a83a88a89a90a91 0
a92
a93a94a95a61a62a63a64a10a96a52a29a56a57
integraldisplay 1
?1
Pl(x)Pk(x)dx.
star a30 k negationslash= l a15a9a45a46a97a98 k < l a92a99a100a101 Pk(x) a22 k a27a102a103a104
a9a45a105 l ?k =
a106
a24a107
a43
a24a9a14a108
a102a103a104a109
a63a110
a103a111
a53 P
l(x)
a63a56a57a112a22 0 a9a113a53a11a114a66a115a116a117a73a71
a72 Legendre
a76a77a78
a84a85a86
[?1, 1] a87a118a119a92
star a120
a62a121a105 k = l a63a122a123
a92
a14a15a124a125a19a53a126a55a21a108 P
l(x)
a63a110
a103
a9a125a127a128
a103
a56a57a9
integraldisplay 1
?1
Pl(x)Pl(x)dx =
integraldisplay 1
?1
bracketleftbigc
lxl + cl?2xl?2 + cl?4xl?4 +···
bracketrightbigP
l(x)dx.
a129a130a9a131a115a132a21
a103a133 l a27 Legendre a102a103a104
a63
a111
a56a63a56a57a45a13 0
a134
a9a135a136a110
a103a133 l a27 Legendre
a102a103a104
a63
a111
a56a63a56a57a137a13 0
a92
a29a22a9a11a16
integraldisplay 1
?1
Pl(x)Pl(x)dx = cl
integraldisplay 1
?1
xlPl(x)dx = cl ×2l+1 l!l!(2l + 1)!,
cl a22 l a27 Legendre a102a103a104a109xl a103
a63a138a24a9
cl = (2l)!2l(l!)2,
a113a53a9 Legendre
a102a103a104
a63a139a140a22
integraldisplay 1
?1
Pl(x)Pl(x)dx = 22l + 1.
Wu Chong-shi
§19.4 Legendre a141a142a143a144a145a146a147a148a149 a3912a40
star a95 Legendre a102a103a104
a63a150a151a152
a133
a139a140a153a50a154a155a9a156a19a53a126a157
integraldisplay 1
?1
Pk(x)Pl(x)dx = 22l + 1δkl.
star a158
a29 Legendre
a102a103a104
a150a151a152a63a121a105
a133
a139a140a9a159a19a53a52 θ a13a160a12a161a162a163
a92integraldisplay
pi
0
Pk(cosθ)Pl(cosθ)sinθdθ = 22l + 1δkl.
a14a11a22a65a9 k a73 Legendre
a76a77a78 Pk(cosθ) a81 l a73 Legendre a76a77a78 Pl(cosθ) a84a85a86 [0, pi] a87a164
a165a70a71 sinθ
a118a119a92
a14a166a63a165a70a71 sinθ
a118a167a168a169a170
a88a171a172
d
dθ
bracketleftbigg
sinθdΘdθ
bracketrightbigg
+ λsinθΘ = 0
a173a174a175a176 λ
a177
a72
a70a71 sinθ
a92
a48a13a178a179a23a24a63Legendre
a102a103a104
a9a159a180a16a181a182a152a183a184a185a21a108a94a186a187 [?1, 1]
a109
a57a188a189a190a63a23a24
f(x) a9 (a94a191a137a192a193a194a185a195a120) a19a53a196a197a13a198a24
f(x) =
∞summationdisplay
l=0
clPl(x),
a135
a109
a63a196a197a138a24 c
l
a19a53a199a200 Legendre
a102a103a104
a63a150a151a152a201a202a9
cl = 2l + 12
integraldisplay 1
?1
f(x)Pl(x)dx.
a203 19.1
a204
a23a24 f(x) = x3
a205 Legendre
a102a103a104
a196a197
a92
a206a207 1 a98 x3 =
∞summationtext
l=0
clPl(x) a9a208
cl = 2l + 12
integraldisplay 1
?1
x3Pl(x)dx.
a199a200a61a62a63a121a105a9a19a53a209a210a9a131a115 l = 1
a133 3 a134
a9 c
l
a137a13 0
a92
x3 = c1P1(x) + c3P3(x).
a196a197a138a24 c
1 a133 c3
a57a59a13
c1 = 32
integraldisplay 1
?1
x4dx = 35, c3 = 72
integraldisplay 1
?1
x3P3(x)dx = 25.
a211a127a63a64a10a11a22
x3 = 35P1(x) + 25P3(x).
a194 a212a213
lim
N→∞
integraldisplay 1
?1
vextendsinglevextendsingle
vextendsinglef(x)?
Nsummationtext
l=0
clPl(x)
vextendsinglevextendsingle
vextendsingle
2dx = 0,
a214a215a216a217
∞summationtext
l=0
clPl(x)a218a219a220a221a222 f(x)a223
Wu Chong-shi
a31a32a33a34 a35 a36 a37 (
a38) a3913a40
a224a225a226a9a227a228a229a230c
1 a231a232
a9a233a234a235a236a237a238a228a239 c
3
a9a240a241a242a243a227a244a245a246a247a248a249 x = 1 a9
a250a251a252 c
1 + c3 = 1 a92
a206a207 2
a253
a13
x3 = c1P1(x) + c3P3(x) = c1x + c3
parenleftbigg5
2x
3 ? 3
2x
parenrightbigg
= 52c3x3 +
parenleftbigg
c1 ? 32c3
parenrightbigg
x,
a113a53
5
2c3 = 1, c1 ?
3
2c3 = 0.
a42a254a159a19a53a202
a101
c3 = 25, c1 = 32c3 = 35.
a206a207 3
a253
a13
x3 = c1P1(x) + c3P3(x),
a255a0 P
3(x)
a63a1a2a2a3a4
x =
radicalbigg
3
5,
a11a16
c1 = x
3
P1(x)
vextendsinglevextendsingle
vextendsinglevextendsingle
x=
√
3/5
= x2vextendsinglevextendsinglex=√3/5 = 35,
c3 = 1?c1 = 25.
a158
a29 Legendre
a102a103a104
a63a181a182a152a9a159a19a53a5a52a53 θ a13a160a12a161a162a163
a92
a14a15a9a6a10a7
a204
a23a24 f(θ)
a205
Legendre a102a103a104 Pl(cosθ) a196a197a9
f(θ) =
∞summationdisplay
l=0
clPl(cosθ),
a208a196a197a138a24a13
cl = 2l + 12
integraldisplay pi
0
f(θ)Pl(cosθ)sinθdθ.