Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (a1)
§23.1 Bessel a8a9a10a11a12a13a14a15
a16a17a18a19a20a21a22a23a24a25a26a27a28a29 Bessel
a30a31a32a33a34a35
a23a24a36
a37a38a39a40a41
a32a42a43a44a45a32
a40a46a47a48
a49a50a27a51a52a53a54a55a56a57a58a59a60a61a58a62a63a64a65a66a67a68a69a53a54a70a71a72a73a74a75a76a77a78a79a80a81a27a82a83
a84a62a85a55a86a87a88a89a90a91a92a93a94a62a95a96a97a98a99a100a101a102a103a101a104a105a106a36a71a72a83a84a62a86a107a75a108a109a27a110a84a77
a76a68a63a64a65a66a67a102a111a112a80a81a113a62a82a75a114a115a93a94a116a117a62a118a108a109a36a85a119a86a120a121a71a72a62a53a54a122a73a74a75a76
a77a78a79a80a81a27a82a123a85a55a124a125a77a95a96a126a94a55a105a62a127a61a36
a128a129a130a131a132a133a134a27a132a133a135a136a137a138a17
a42a43a44a45a32a139a140
a36a141a142a27a143a144a145
a30a31a146a147a148a149a150a151a152
?2u
?t2 ?c
2
bracketleftbigg1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
+ 1r2 ?
2u
?φ2
bracketrightbigg
= 0, (23.1a)
uvextendsinglevextendsingler=0a46a148, uvextendsinglevextendsingler=a = 0, (23.1b)
uvextendsinglevextendsingleφ=0 = uvextendsinglevextendsingleφ=2pi, ?u?φ
vextendsinglevextendsingle
vextendsinglevextendsingle
φ=0
= ?u?φ
vextendsinglevextendsingle
vextendsinglevextendsingle
φ=2pi
. (23.1c)
a16a17a153a37
a32a151a152
a17
a147a148a149a150 (23.1b) a146 (23.1c) a32a154a155a156
a27a157a158a159a160a161a162 ω
a35
a27a163a164
a30a31
(23.1a)a46a165a166a167
u(r,φ,t) = v(r,φ)eiωt. (23.2)
a168a169a167a170a171a25
a30a31 (23.1)a172a147a148a149a150 (23.1b)a146(23.1c)a27a173a174k = ω/ca27a151
a160a175a164a157
1
r
?
?r
parenleftbigg
r?v?r
parenrightbigg
+ 1r2 ?
2v
?φ2 + k
2v = 0,
vvextendsinglevextendsingler=0 a46a148 vvextendsinglevextendsingler=a = 0,
vvextendsinglevextendsingleφ=0 = vvextendsinglevextendsingleφ=2pi, ?v?φ
vextendsinglevextendsingle
vextendsinglevextendsingle
φ=0
= ?v?φ
vextendsinglevextendsingle
vextendsinglevextendsingle
φ=2pi
.
a176a174 v(r,φ) = R(r)Φ(φ) a27a145a177a178a179a27
a151
a164a157a180a20
a33a34a35
a23a24
Φprimeprime(φ) + m2Φ(φ) = 0, (23.3a)
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi) (23.3b)
a146
1
r
d
dr
bracketleftbigg
rdR(r)dr
bracketrightbigg
+
parenleftbigg
k2 ? m
2
r2
parenrightbigg
R(r) = 0, (23.4a)
R(0)a46a148, R(a) = 0. (23.4b)
Wu Chong-shi
§23.1 Bessela181a182a183a184a185a186a187a188 a1892a190
a33a34a35
a23a24 (23.3)
a191a192a193a194a195
a157a196a27a197a198a199a200
a32a33a34a35
m2, m = 0,1,2,3,···,
a33a34a201a202a203
Φm(φ) =
braceleftbiggcosmφ,
sinmφ.
a204a175a27a17
a33a34a35
a23a24 (23.4)
a139
a27a205
a202m2 a152a191a206a32
a27a207k2
a152a33a34a35
a27a208a37a36
a160a175a209a210
k2
integraldisplay a
0
R(r)R?(r)rdr = m2
integraldisplay a
0
R(r)R?(r)drr +
integraldisplay a
0
dR(r)
dr
dR?(r)
dr rdr,
a204a175a27a19a41a46
a33a34a35 k2 > 0a36a211a196a212a178a213 x = kr a27y(x) = R(r)a27a151
a160a175a168a144a145
a30a31 (23.4a)a214a203
Bessela30a31
a27a18a207a37a164a200
a32
a211a167
R(r) = CJm(kr) + DNm(kr). (23.5)
a215a216a157
a147a148a149a150 (23.4b)a32
a153a37a27 R(0)a46
a148
a27a217D = 0
a218a219a220
a199a153a37R(a) = 0a27
a151
a164a157
Jm(ka) = 0. (23.6)
a168m
a221Bessela201a202Jm(x)a32a222ia20a223a166a136(a220a224
a157a225a226a227)
a228
a212μ(m)
i
a27i = 1,2,3,···a27a229
a33a34a35
a23
a24(23.4)
a32
a167
a152
a33 a34 a35 k2mi =
parenleftBigg
μ(m)i
a
parenrightBigg2
, i = 1,2,3,···, (23.7a)
a33a34a201a202 Rmi(r) = Jm(kmir). (23.7b)
a199
a152a151
a37a164a230
a42a43a44a45a32
a40a46a231a232
a32a233
a47a48
ωmi = μ
(m)
i
a c, (23.8)
a234
a139μ(m)i a152ma221Bessela201a202Jm(x)a32a222ia20a223a166a136a36
a17a235a236a37a167a196
a31a139
a27a237a238a235a239a157a230a46a240J
ν(x)
a166a136
a32a241
a29a70a242ν > ?1
a243a203a244a202a245
a27J
ν(x)
a46
a246a247
a193
a20a166a136a27a200a248a249a250a251
a152
a237
a202
a27a197a252a253a145a254a17a237a255a235a36
Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (a1)
a1893a190
Zeros of the functions Jν(z) & Nν(z)
1. Real zeros
When ν is real, the functions Jν(z) & Nν(z) each have an infinite number of zeros, all of which are
simple with the possible exception of z = 0. For non-negative ν the sth positive zeros of these functions
are denoted by jν,s and nν,s respectively.
s j0,s j1,s n0,s n1,s
1 2.40483 3.83171 0.89358 2.19714
2 5.52008 7.01559 3.95768 5.42968
3 8.65373 10.17347 7.06805 8.59601
4 11.79153 13.32369 10.22235 11.74915
5 14.93092 16.47063 13.36110 14.89744
6 18.07106 19.61586 16.50092 18.04340
7 21.21164 22.76008 19.64131 21.18807
8 24.35247 25.90367 22.78203 24.33194
9 27.49348 29.04683 25.92296 27.47529
10 30.63461 32.18968 29.06403 30.61829
2. McMahon’s expansions for large zeros
jν,s,nν,s ~ β ? μ?18β ? 4(μ?1)(7μ?31)3(8β)3 ? 32(μ?1)(83μ
2 ?982μ+ 3779)
15(8β)5
?64(μ?1)(6949μ
3 ?153855μ2 + 1585743μ?6277237)
105(8β)7 ?······, s greatermuch ν, μ = 4ν
2,
β =
?
???
???
parenleftbigg
s+ ν2 ? 14
parenrightbigg
pi, for jν,s
parenleftbigg
s+ ν2 ? 34
parenrightbigg
pi, for nν,s
3. Complex zeros of Jν(z)
When ν ≥ ?1 the zeros of Jν(z) are all real. If ν < ?1 and ν is not an integer the number of
complex zeros of Jν(z) is twice the integer part of (?ν); if the integer part of (?ν) is odd two of these
zeros lie on the imaginary axis.
4. Complex zeros of Nν(z)
When ν is real the pattern of the complex zeros of Nν(z) depends on the non-integer part of ν.
Attention is confined here to the case ν = n, a positive integer or zero.
Wu Chong-shi
§23.1 Bessela181a182a183a184a185a186a187a188 a1894a190
Zeros of Nn(z)
The figure 23.1 shows the approximate distribution of the complex zeros of Nn(z) in the region
|argz|≤pi. The figure is symmetrical about the real axis. The two curves on the left extend to infinity,
having the asymptotes
Imz = ±12 ln3 = ±0.54931......
There are an infinite number of zeros near each of
these curves.
The two curves extending from z = ?n to z = n
and bounding an eye-shaped domain intersect the
imaginary axis at the points ±i(na+ b), where Figure 23.1 Zeros of Nn(z)
a =
radicalBig
t20 ?1 = 0.66274......
b = 12
radicalBig
1?t?20 ln2 = 0.19146......
and t0 = 1.19968...... is the positive root of cotht = t. There are n zeros near each of these curves.
Complex zeros of N0(z) Complex zeros of N1(z)
Real part Imaginary part Real part Imaginary part
?2.40302 0.53988 ?0.50274 0.78624
?5.51988 0.54718 ?3.83353 0.56236
?8.65367 0.54841 ?7.01590 0.55339
Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (a1)
a1895a190
a203
a230a17a145a177a178a179a8
a139a32
a198a239a27a9a10a153a28a29a235a130a164a157
a32a33a34a201a202a32
a223a11a12a19a240a134a36
a156
a130a27a13a14
a19a15a16
a203a17a18a32a19
a8a27a160a175
a18a245
a164a157
a33a34a201a202a32
a223a11a12a19a240a134a36
a20a21a27a22a23
a33a34a201a202 Rmi(r) = Jm(kmir)
a204a24a25
a32
a144a145
a30a31a146a147a148a149a150
a27
1
r
d
dr
bracketleftbigg
rdJm(kmir)dr
bracketrightbigg
+
parenleftbigg
k2mi ? m
2
r2
parenrightbigg
Jm(kmir) = 0, (23.9a)
Jm(0)a46a148, Jm(kmia) = 0. (23.9b)
a18a245
a27a176a22a23
a201a202 R(r) = Jm(kr)a204a24a25a32
a144a145
a30a31a146a147a148a149a150
a27
1
r
d
dr
bracketleftbigg
rdJm(kr)dr
bracketrightbigg
+
parenleftbigg
k2 ? m
2
r2
parenrightbigg
Jm(kr) = 0, (23.10a)
Jm(0)a46a148. (23.10b)
a220
a199a234
a139a32 ka203a26a27
a237
a202
a27a204a175a19a28a29a30a27
a17a31
a46 J
m(ka) = 0
a36
a176a239rJ
m(kr)a146rJm(kmir)
a145a32a33
a30a31(23.9a)a146 (23.10a)a27
Jm(kr) ddr
bracketleftbigg
rdJm(kmir)dr
bracketrightbigg
+
parenleftbigg
k2mi ? m
2
r2
parenrightbigg
rJm(kmir)Jm(kr) = 0,
Jm(kmir) ddr
bracketleftbigg
rdJm(kr)dr
bracketrightbigg
+
parenleftbigg
k2 ? m
2
r2
parenrightbigg
rJm(kmir)Jm(kr) = 0,
a34a35a27a173a17a36a37 [0, a]a235a38a145a27
a151
a164a157
parenleftbigk2
mi ?k
2parenrightbig
integraldisplay a
0
Jm(kmir)Jm(kr)rdr = r
bracketleftbigg
Jm(kmir)dJm(kr)dr ?Jm(kr)dJm(kmir)dr
bracketrightbiggvextendsinglevextendsingle
vextendsinglevextendsingle
r=a
r=0
.
a171a25
a147a148a149a150 (23.9b)a146(23.10b)
a27a160a175a168a235a130
a32a241a39a214a203
parenleftbigk2
mi ?k
2parenrightbig
integraldisplay a
0
Jm(kmir)Jm(kr)rdr = ?kmiaJm(ka)Jprimem(kmia). (23.11)
a40a248a197a180a20a41a42a43
a43a44a45a46
a36
a222
a19a15a43
a43a152 k = kmj negationslash= kmi
a36a141
a245a151
a46 J
m(kmja) = 0
a27a47a169
(23.11)a170a32a48a49a203 0a36a50a220a199kmj negationslash= kmi a27a204a175integraldisplay
a
0
Jm(kmir)Jm(kmjr)rdr = 0, kmi negationslash= kmj, (23.12)
a51a197a198a199
a17a18a33a34a35a32a33a34a201a202
a17a36a37 [0, a]a235a175a52a53 ra223a11a36
a54a19a15a43
a43a152k = kmi a27a141a245(23.11)a170a32a180a49a55a2030a36a40a248a160a175a21a168(23.11)a170a32a180a49a18a56a175
k2mi ?k2 a27a10a57a128a131a154 k → kmi a27a141a142a151
a164a157
integraldisplay a
0
J2m(kmir)rdr = ? lim
k→kmi
kmia
k2mi ?k2Jm(ka)J
prime
m(kmia) =
a2
2 [J
prime
m (kmia)]
2 . (23.13)
a141a223
a152a33a34a201a202 Jm(kmir)a32a58a30
a36
a59
a39
a168
a33a34a35
a23a24 (23.9)
a139r = aa49a32a60a194a147a148a149a150 (23.9b)a61a203a222a62a63a243a222a64a63a147a148a149a150
a27
a65a160a175
a63a66
a253a28a29a36
a67a237a235a27a160a175a68a141
a64
a15a43
a43a69
a19a22a70
1
r
d
dr
bracketleftbigg
rdR(r)dr
bracketrightbigg
+
parenleftbigg
k2 ? m
2
r2
parenrightbigg
R(r) = 0, (23.14a)
Wu Chong-shi
§23.1 Bessela181a182a183a184a185a186a187a188 a1896a190
R(0)a46a148, αRprime(a) + βR(a) = 0. (23.14b)
a59
a39α negationslash= 0, β = 0a27a229a152a222
a19
a63a147a148a149a150a218
a59
a39 α = 0, β negationslash= 0a27a151a152a222a62a63a147a148a149a150a218
a59
a39 αa146β
a55a17a2030a27a229a203a222a64a63a147a148a149a150
a36
a240a199Bessel
a201a202a71a32a72a73a74
a27a141a75a76a77a23
a241
a29a70a59
a39a201a202f(r)a17a36a37[0, a]a235a78a79a27a80a76a46a46
a154
a20a131a225
a146
a131
a224
a27a229a160a81
a33a34a201a202 Jm(kir)a82a83
a27
f(r) =
∞summationdisplay
i=1
biJm(kir), (23.15)
a234
a139Jm(kir)a152a33a34a35
a23a24 (23.14)
a32
a167a27a207
a82a83
a134
a202a203
bi =
integraldisplay a
0
f(r)Jm(kir)rdr
integraldisplay a
0
J2m(kir)rdr
. (23.16)
a141a142a164a157
a32a84a202
a17a36a37 [δ, a?δ] (δ > 0)a235
a152
a19a85a86a87
a32
a36a209a210
a195
a205a215a88a89[15],
a22217.33a90
a36a91a88
a139
a65a92a46a93a94a95
a32a82a83
a41a96a36
Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (a1)
a1897a190
a97 23.1
a42a98
a22
a32a99a100
a36a101a46a19a20a246a247a102
a32a42a98
a22a27a103a104
a203 a a36a105a9a10a253a40a248a198a91a106a239a98
a132a133a134a27 z a255a51
a203a42a98
a22
a32
a255a36a59
a39a98
a22
a32a107
a130a108a109a110a111
a203 0a27a112a108a203u0f(r)a27a113a37a98
a22a114a108a109
a32
a145a254
a146
a178
a214
a36
a115 a116a10a108a109u
a117φ, z a246a240a27a51u = u(r,t)a36a200a220
a41a167a23a24
?u
?t ?
κ
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
= 0, (23.17a)
uvextendsinglevextendsingler=0a46a148, u
vextendsinglevextendsingle
r=a = 0, (23.17b)
uvextendsinglevextendsinglet=0 = u0f(r) (23.17c)
a118a41a36a119a120a121a130
a32
a19a28a28a29a27a122a123a22a23a169a41a167a23a24
a32
a19a28a167
u(r,t) =
∞summationdisplay
i=1
ci J0
parenleftBig
μira
parenrightBig
exp
bracketleftbigg
?κ
parenleftBigμi
a
parenrightBig2
t
bracketrightbigg
, (23.18)
a234
a139μi a152J0(x)a32a222ia20a223a166a136a36a171a25a112a149a150
a27a46
u(r,t)vextendsinglevextendsinglet=0 =
∞summationdisplay
i=1
ci J0
parenleftBig
μi ra
parenrightBig
= u0f(r).
a204a175
ci = 2u0a2J2
1(μi)
integraldisplay a
0
f(r)J0
parenleftBig
μi ra
parenrightBig
rdr. (23.19)
a206a124
a230f(r)
a32
a21a22
a43
a170a27
a151
a160a175a125a23a235a130
a32
a38a145a36a126a59a27a127
f(r) = 1?
parenleftBigr
a
parenrightBig2
, (23.20)
a128a46
ci = 2u0a2J2
1(μi)
integraldisplay a
0
bracketleftbigg
1?
parenleftBigr
a
parenrightBig2bracketrightbigg
J0
parenleftBig
μi ra
parenrightBig
rdr = 8u0μ3
iJ1(μi)
. (23.21)
a129a57a19a130a239a157a230a126 21.2
a139a32a131
a125
a241a39
a36
a168
a33
a24a164a157
a32a241a39
1?x2 = 8
∞summationdisplay
i=1
1
μ3iJ1(μi) J0(μix)
a180
a49
a144a132a27a173a174 x = 1a27a92a160a175a133a23a19a20a46
a27a134a32a241a39
a70
∞summationdisplay
i=1
1
μ2i =
1
4. (23.22)
Wu Chong-shi
§23.1 Bessela181a182a183a184a185a186a187a188 a1898a190
a97 23.2
a42a135
a212a129a130a104a136a231a232
a32
a40a46a47a48a36a101
a42a135a32
a114a137a103a104a145a32
a203 aa146ba36a127a114a147a148(a114
a42)
a40a41a27a137
a147a148 (
a137
a42) a9a220
a27a37
a42a135
a212a129a130a104a136a231a232
a32
a40a46a47a48a36
a115 a116a10a198a91a106a239a129a130a131a132a133a134a36a229a138a139 (
a140
a179)u = ue
r
a24a25
a32a141
a232
a30a31a203
?2u
?t2 ?c
2?2u = 0. (23.23)
a47
a203
?2u≡?2(uer) =
parenleftBig
?2u? ur2
parenrightBig
er + 2r2 ?u?φeφ,
a204a175
a30a31(23.23)a142a143
a199a143a144a145
a30a31a144
?2u
?t2 ?c
2
bracketleftBig
?2u? ur2
bracketrightBig
= 0, ?u?φ = 0. (23.23prime)
a220
a169a160
a195
a27a104a136a138a139
a117 φa246a240a27u = u(r,t)a24a25a144a145a30a31a146a147a148a149a150
?2u
?t2 ?c
2
bracketleftbigg1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
? ur2
bracketrightbigg
= 0, (23.24a)
uvextendsinglevextendsingler=a = 0, ?u?r
vextendsinglevextendsingle
vextendsinglevextendsingle
r=b
= 0. (23.24b)
a174u(r,t) = R(r)e?iωt, k = ω/ca27a171a25(23.24)a27a128a164a157
1
r
d
dr
bracketleftbigg
rdR(r)dr
bracketrightbigg
+
bracketleftbigg
k2 ? 1r2
bracketrightbigg
R(r) = 0, (23.25a)
R(a) = 0, Rprime(b) = 0. (23.25b)
a122a123a209a210a27 k = 0
a245a33a34a35
a23a24(23.25)a246a167a36a199
a152
a27a160a212a178a213 x = kr
a146 y(x) = R(r) a27a207a168a30a31
(23.25a)a214a203Bessela30a31
a27
a220
a169a51a160a164a157
a30a31 (23.25a)a32
a211a167
R(r) = CJ1(kr) + DN1(kr).
a171a25
a147a148a149a150 (23.25b)
a27a51a164
CJ1(ka) + DN1(ka) = 0, CJprime1(kb) + DNprime1(kb) = 0.
a141a160a175a145a70
a152
a240a199 C
a146Da32a146a74
a171
a202a30a31a144
a27a46a165a166a167
a32a147
a145a148a153
a149a150a152vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingleJ1(ka) N1(ka)Jprime
1(kb) Nprime1(kb)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle= 0.
a141a142
a151
a37a164
a42a135
a212a129a130a104a136a231a232
a32
a40a46a47a48 ω
i = kic
a27a234
a139ki a152
J1(ka)Nprime1(kb)?N1(ka)Jprime1(kb) = 0 (23.26)
a32a222ia20a223a119(a220a224
a157a225a226a227) a36a37a23C
a146D a27a151
a160a22a23a34a198
a32
a40a46a231a232
a58
a170
ui(r,t) = [N1(kia)J1(kir)?J1(kia)N1(kir)]e?ikict. (23.27)
Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (a1)
a1899a190
§23.2 Hankel a149a150
a121a130a13a14
a32 Jν(x)a146Nν(x)a251a160a175a239a30a151a22a98
a130
a141
a27a200a248
a32a152a153a82a83
a145a32
a152
Jν(x) ~
radicalbigg
2
pix cos
parenleftBig
x? νpi2 ? pi4
parenrightBig
, Nν(x) ~
radicalbigg
2
pix sin
parenleftBig
x? νpi2 ? pi4
parenrightBig
.
a122a123a145a23a27a200a248a151a22
a32a98
a130
a141a139
a27a154a46a155a156
a141
a27
a219
a46
a31a157a141
a36a50a59
a39
a40a248a158a96
a32
a23a24
a139
a27a76a159
a172
a155
a156
a141a243a31a157a141
a27
a243
a153a37a210a160a36a145a155a156
a141a243a31a157a141
a27a141a180a20
a201a202a151a17a30
a128a230a36a141
a245
a116a10a198a242a212
a146a74
a144a161
H(1)ν (x) ≡Jν(x) + iNν(x)
~
radicalbigg
2
pix exp
bracketleftBig
i
parenleftBig
x? νpi2 ? pi4
parenrightBigbracketrightBig
,
H(2)ν (x) ≡Jν(x)?iNν(x)
~
radicalbigg 2
pix exp
bracketleftBig
?i
parenleftBig
x? νpi2 ? pi4
parenrightBigbracketrightBig
.
a59
a39a162a161
a235a34a198
a32a245
a37a47a163 e?iωt a27a229H(1)
ν (x)
a171
a107
a155a156
a141
a27 H(2)
ν (x)
a171
a107a31a157a141
a36
H(1)ν (x)a146H(2)ν (x) a145a32a252a203a222
a19
a63a146a222a62a63 Hankela201a202
a36a200a248a251
a152 Bessela30a31a32
a167a27a251
a152a98
a201a202
a36
a69
a252
a203a222a64a63a98a201a202
a36
Wu Chong-shi
§23.3 a164a165a166 Bessel a6a7 a18910a190
§23.3 a167a168a169 Bessel a149a150
a18a135a229a235a29a27a17Bessel
a201a202a170a171Neumanna201a202a146Hankela201a202a32
a41a172
a139
a27a200a248
a32a173
a179
a33
a30
a151
a160
a175
a152a174a202
a36a50
a152
a27
a203
a230a237a239a235
a32a30
a128a27a197a199Bessel
a201a202a32a173
a179
a203a175a176a202a32
a43
a43
a92
a152a35
a164a212a19a162a145
a177a28a29a27a173a178a19a130a41a172a180
a63a176a173
a179
a32 Bessela201a202
a36
a17a179a180
a10a18a143a144a145
a30a31a32
a41a167a23a24a23a155a27a30a181a25
a176a173
a179
a32Bessela201a202
a36a126a59a27a182a101a46
a42a98
a22
a114
a32Laplacea30a31
a41a167a23a24
1
r
?
?r
parenleftbigg
r?u?r
parenrightbigg
+ 1r2 ?
2u
?φ2 +
?2u
?z2 = 0, (23.28a)
uvextendsinglevextendsingleφ=0 = uvextendsinglevextendsingleφ=2pi, ?u?φ
vextendsinglevextendsingle
vextendsingle
φ=0
= ?u?φ
vextendsinglevextendsingle
vextendsingle
φ=2pi
, (23.28b)
uvextendsinglevextendsinglez=0 = 0, uvextendsinglevextendsinglez=h = 0, (23.28c)
uvextendsinglevextendsingler=0a46a148, uvextendsinglevextendsingler=a = f(φ,z). (23.28d)
a81a183a145a177a178a179a8
a32
a133a184
a19
a8a27a174
u(r,φ,z) = R(r)Φ(φ)Z(z),
a171a25
a30a31(23.28a)a175a172a147a148a149a150 (23.28b)a146(23.28c)a27a145a177a178a179a27a151a31
a164a157
a33a34a35
a23a24
Φprimeprime(φ) + μΦ(φ) = 0, (23.29a)
Φ(0) = Φ(2pi), Φprime(0) = Φprime(2pi) (23.29b)
a146
Zprimeprime(z) + λZ(z) = 0, (23.30a)
Z(0) = 0, Z(h) = 0 (23.30b)
a175
a172a185
a144a145
a30a31
1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
+
parenleftBig
?λ? μr2
parenrightBig
R = 0. (23.31)
a220a33a34a35
a23a24 (23.29)a27a160a175a164a157
a33 a34 a35 μm = m
2, m = 0,1,2,3,···, (23.32a)
a33a34a201a202 Φm(φ) = Am cosmφ + Bm sinmφ, (23.32b)
a234
a139Am a146Bm a152a26a27a185a202
a36a176
a220a33a34a35
a23a24 (23.30)a27
a219
a160a37a164
a33 a34 a35 λn =
parenleftBignpi
h
parenrightBig2
, n = 1,2,3,···, (23.33a)
a33a34a201a202 Zn(z) = sin npih z. (23.33b)
a141a142a27
a185
a144a145
a30a31 (23.31)a151
a178a70
1
r
d
dr
parenleftbigg
rdRdr
parenrightbigg
+
bracketleftbigg
?
parenleftBignpi
h
parenrightBig2
? m
2
r2
bracketrightbigg
R = 0. (23.31prime)
Wu Chong-shi
a0a1a2a3a4 a5 a6 a7 (a1)
a18911a190
a212a178a213x = (npi/h)r
a146y(x) = R(r)a27a151
a160a175a168a169
a30a31a214a203
1
x
d
dx
parenleftbigg
xdydx
parenrightbigg
+
parenleftBig
?1? m
2
x2
parenrightBig
y = 0. (23.34)
a141a20
a30a31
a252
a203a176a173
a179Bessel
a30a31
a27a47
a203
a176a212a178a213t = ix
a151
a160a175a168a200
a214a203 Bessela30a31
a36a199
a152
a27
a30a31
(23.31prime)a32
a211a167
a151a152
R(r) = CJm
parenleftbigginpi
h r
parenrightbigg
+ DNm
parenleftbigginpi
h r
parenrightbigg
. (23.35)
a141a75
a151
a23a16a230
a173
a179
a203a175a176a202a32 Bessela201a202a146Neumanna201a202
a36
a19a28a29a30a27a242 Bessel
a201a202a32a173
a179
a203a175a176a202 xeipi/2 (xa203
a237
a202)a245
a27
a201a202a35
a65
a152a174a202
a36
Jν(xeipi/2) =
∞summationdisplay
k=0
(?)k
k!Γ(k + ν + 1)
parenleftBigx
2e
ipi/2
parenrightBig2k+ν
= eiνpi/2
∞summationdisplay
k=0
1
k!Γ(k + ν + 1)
parenleftBigx
2
parenrightBig2k+ν
.
a141a142a27a128
a17a179
a41a172
a222
a19
a63a176a173
a179 Bessel
a201a202
Iν(x) ≡ e?iνpi/2Jν(xeipi/2) =
∞summationdisplay
k=0
1
k!Γ(k + ν + 1)
parenleftBigx
2
parenrightBig2k+ν
. (23.36)
a41a32
a152
a197a199
a244a202a221a32a222
a19
a63a176a173
a179 Bessel
a201a202
a27a186a187a253a46
In(x) = i?nJn(ix). (23.37)
a47a169a27a242x
a146ν a55a203
a237
a202a245
a27 I
ν(x)a32a201a202a35
a65
a152
a237
a202
a36
a18
a142a27
a220
a199 I
ν(x)a146I?ν(x)
a251
a152a176a173
a179 Bessel
a30a31(23.34)a32
a167a27a207a80a27a215a216a157
I?n(x) = In(x), (23.38)
a160a175a41a172
a222a62a63a176a173
a179 Bessel
a201a202a203
Kν(x) = pi2sinνpi
bracketleftBig
I?ν(x)?Iν(x)
bracketrightBig
. (23.39)
a141a142a27a242ν
a203a244a202na245
a27K
n(x)a180
a10a46
a27
a172a27a80
a117 In(x)a146a74
a246a240a36
Kn(x) = limν→nKν(x)
= 12
n?1summationdisplay
k=0
(?)k (n?k?1)!k!
parenleftBigx
2
parenrightBig2k?n
+ (?)n+1
∞summationdisplay
k=0
1
k!(n+k)!
bracketleftbigg
ln x2 ? 12ψ(n+k+1)?12ψ(k+1)
bracketrightbiggparenleftBigx
2
parenrightBig2k+n
. (23.40)
a141a75
a180a188
a41a27a242 n = 0
a245
a27a198a189a190
a48a49a222
a19a191
a32
a46
a154a146
a36
a19223.2
a139
a77a23a230a121a193a20 I
n(x)a146Kn(x)a32
a192
a43
a36
a220Iν(x) a146 Kν(x) a32
a41a172a27a122a123a22a23a200a248a17 x → 0
a245a32a152a153a194a203
a36a41a32
a152
a27a59
a39 ν ≥ 0
a27a229
Iν(x)a152
a46
a148a32
a27a207 K
ν(x)a152
a246
a148a32
a36a242 x →∞
a245
a27a200a248
a32a152a153a194a203a219a152
Iν(x) ~
radicalbigg 1
2pixe
x, (23.41)
Kν(x) ~
radicalbiggpi
2xe
?x. (23.42)
Wu Chong-shi
§23.3 a164a165a166 Bessel a6a7 a18912a190
a17a237a239
a139
a27
a185a185
a119a120a141a162
a152a153a194a203a195
a106a23a204a196a153
a32
a167a36a126a59a27a17a235a130
a32
a41a167a23a24 (23.28)
a139
a27
a220
a199
a46
a148a149a150u
vextendsinglevextendsingle
r=0
a46
a148a32a154a155
a27a17a167a170(23.35)
a139a151
a19a41a46D = 0a36a199
a152
a27a17
a147a148a149a150(23.28b) (23.28c)
a146
a46
a148a149a150a32a154a155a156
a27
a30a31 (23.28a)a32
a41a167
a151a152
umn(r,φ,z) = (Amn cosmφ + Bmn sinmφ) Im
parenleftBignpi
h r
parenrightBig
sin npih z. (23.43)
a168a249a250a41a167a197a198a199a30a27a164a157a19a28a167a27a176a200a239
a147a148a149a150 (23.28d)a51a160a41a23a197a198a134a202
a36
a20123.2
a202a203a204Bessela205a206In(x)a207Kn(x)
Iν(x)a146Kν(x)a32
a234a208
a74a209(a126a59a27a210a211a240a134)a27a242a10a251a160a175a220Jν(x)a146Nν(x)a32
a34a198
a74a209
a133a23a27
a169a158a18a16a36
a175a235a41a172
a32a176a173
a179 Bessel
a201a202
a27
a175a212a152
a17a213a214 x
a203
a237
a202a32a149a150a156
a181a178
a32
a36a50
a152
a27a141a15
a154a155a149
a150
a173
a17a152
a148a153
a32
a36
a72
a249a160a175a68 I
ν(x) a32
a41a172 (23.36)
a215a147
a157a216a46a217
a146a32a174
a129a130|argx| < pia235a36a34a198
a253a27K
ν(x)a32
a41a172(23.39)a65
a151a215a147
a157a230
a18
a19a36a218
a139
a36